metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Di­chlorido­bis­­(secnidazole-κN3)copper(II)

crossmark logo

aInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico, and cTecnológico Nacional de México, Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, 22444 Tijuana BC, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by I. Brito, University of Antofagasta, Chile (Received 15 April 2024; accepted 24 April 2024; online 3 May 2024)

The use of acetic acid (HOAc) in a reaction between CuCl2·2H2O and secnid­azole, an active pharmaceutical ingredient useful in the treatment against a variety of anaerobic Gram-positive and Gram-negative bacteria, affords the title complex, [CuCl2(C7H11N3O3)2]. This compound was previously synthesized using ethanol as solvent, although its crystal structure was not reported [Betanzos-Lara et al. (2013[Betanzos-Lara, S., Gracia-Mora, I., Granada-Macías, P., Flores-Álamo, M. & Barba-Behrens, N. (2013). Inorg. Chim. Acta, 397, 94-100.]). Inorg. Chim. Acta, 397, 94–100]. In the mol­ecular complex, the Cu2+ cation is situated at an inversion centre and displays a square-planar coordination environment. There is a hydrogen-bonded framework based on inter­molecular O—H⋯Cl inter­actions, characterized by H⋯Cl separations of 2.28 (4) Å and O—H⋯Cl angles of 175 (3)°. The resulting supra­molecular network is based on R22(18) ring motifs, forming chains in the [010] direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Secnidazole [C7H11N3O3, IUPAC name: 1-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ol, abbreviated secnim] is an active pharmaceutical ingredient used in the treatment against a variety of anaerobic Gram-positive and Gram-negative bacteria (Gillis & Wiseman, 1996[Gillis, J. C. & Wiseman, L. R. (1996). Drugs, 51, 621-638.]). Some coordination complexes including secnidazole as a ligand were synthesized with late transition metals, Co2+, Ni2+, Cu2+ and Zn2+ (Betanzos-Lara et al., 2013[Betanzos-Lara, S., Gracia-Mora, I., Granada-Macías, P., Flores-Álamo, M. & Barba-Behrens, N. (2013). Inorg. Chim. Acta, 397, 94-100.]). Following the ideas of that group, the aim of this study is to obtain new complexes, to evaluate the synergistic effect of coordination of secnidazole to copper(II) on the anti­microbial activity.

In the literature, only one crystal structure of a secnidazole metallic complex has been reported (CSD refcode KICFUZ; Betanzos-Lara et al., 2013[Betanzos-Lara, S., Gracia-Mora, I., Granada-Macías, P., Flores-Álamo, M. & Barba-Behrens, N. (2013). Inorg. Chim. Acta, 397, 94-100.]). The complex consists of a dinuclear cluster of Cu2+ surrounded by four acetate anions OAc and two secnidazole mol­ecules bonded in terminal positions, to give [Cu2(secnim)2(μ2-OAc)4]. The same authors synthesized [Cu(secnim)2Cl2], although they did not determine its crystal structure. We have now obtained the same mononuclear complex using a simple synthetic route (see Experimental), and determined its mol­ecular and crystal structure.

The mononuclear Cu2+ ion is surrounded by two secnim mol­ecules trans-coordinated through the imidazolic nitro­gen atom N3, and two chloride ions, giving a distorted square-plane geometry for CuII, with Cu1—N3 and Cu1—Cl1 bond lengths being 1.9953 (19) Å and 2.2586 (6) Å, respectively. The metal is located at an inversion centre in space group P[\overline{1}], and the asymmetric unit contains half a mol­ecule (Fig. 1[link]). A mol­ecular overlay shows that the global conformation of the secnim free ligand (Novoa de Armas et al., 1997[Novoa de Armas, H., Dago Morales, A., González Hernández, R., Li, N. & Pomés Hernández, R. (1997). Revista CENIC Ciencias Químicas, 28, 89-92.]) is not altered by coordination to the central metal (Fig. 2[link]). The most significant modification is related to the free rotation of the NO2 group bonded to C5 in the ligand. The dihedral angle between the nitro group and the mean plane of the imidazole ring is 1.0° in the non-coordinating ligand, while this angle is 15.2 (4)° in the complex. Such a rotation could be a consequence of a steric hindrance between the nitro group and the propan-2-ol lateral chain in a neighbouring mol­ecule in the crystal (Table 1[link], entry 2).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯Cl1i 0.97 (4) 2.28 (4) 3.252 (2) 175 (3)
C7—H7A⋯O3ii 0.97 2.40 3.327 (3) 160
C7—H7B⋯O1iii 0.97 2.51 3.436 (3) 159
Symmetry codes: (i) [x, y+1, z]; (ii) [x-1, y, z]; (iii) [-x+1, -y+1, -z].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level. Non-labelled atoms are generated by the symmetry operation 1 − x, −y, 1 − z.
[Figure 2]
Figure 2
An overlay calculated with Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), comparing the shape of secnidazole as free ligand (red mol­ecule; Novoa de Armas et al., 1997[Novoa de Armas, H., Dago Morales, A., González Hernández, R., Li, N. & Pomés Hernández, R. (1997). Revista CENIC Ciencias Químicas, 28, 89-92.]) and in the title compound (green mol­ecule). The overlay was computed using the five atoms belonging to the imidazole heterocycle. Note the small rotation of ca 14° for the nitro group.

The orientation of the hy­droxy group promotes the formation of inter­molecular hydrogen bonds and acts as a donor to the chloride ion, which acts as an acceptor (Table 1[link], entry 1). The crystal structure features centrosymmetric [R_{2}^{2}](18) ring motifs formed by the inter­action between the non-coordinating hydroxy group and the chloride ion of a symmetry-related complex. A periodic framework is created, based on chains running in the [010] direction (Fig. 3[link]). These chains are parallel in the crystal, and inter­act poorly, through weak C—H⋯O contacts involving the hy­droxy and nitro groups as acceptors (Table 1[link], entries 2 and 3).

[Figure 3]
Figure 3
Part of the supra­molecular framework based on inter­molecular O—H⋯Cl hydrogen bonds (dashed purple lines) corresponding to the first entry in Table 1[link], as viewed down [100].

Synthesis and crystallization

Two ethano­lic solutions of secnim (185 mg, 1 mmol in 15 ml) and CuCl2·2H2O (170 mg, 1 mmol, in 15 ml) were prepared at ambient conditions. Acetic acid (5 ml) was added to the CuCl2·2H2O solution. The solutions were combined under stirring for 1 h at 333 K. The resulting solution was then filtered and allowed to evaporate at 298 K over 2 days, affording blue single crystals suitable for X-ray crystallography.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [CuCl2(C7H11N3O3)2]
Mr 504.81
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 4.6536 (3), 8.2542 (3), 13.6820 (6)
α, β, γ (°) 78.092 (4), 82.801 (4), 85.469 (4)
V3) 509.42 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.38
Crystal size (mm) 0.28 × 0.21 × 0.10
 
Data collection
Diffractometer SuperNova, Dual, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.879, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11147, 2582, 1956
Rint 0.066
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.05
No. of reflections 2582
No. of parameters 139
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −0.33
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

trans-Dichloridobis(secnidazole-κN3)copper(II) top
Crystal data top
[CuCl2(C7H11N3O3)2]Z = 1
Mr = 504.81F(000) = 259
Triclinic, P1Dx = 1.646 Mg m3
a = 4.6536 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2542 (3) ÅCell parameters from 4331 reflections
c = 13.6820 (6) Åθ = 4.3–28.4°
α = 78.092 (4)°µ = 1.38 mm1
β = 82.801 (4)°T = 298 K
γ = 85.469 (4)°Plate, blue
V = 509.42 (4) Å30.28 × 0.21 × 0.10 mm
Data collection top
SuperNova, Dual, AtlasS2
diffractometer
2582 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source1956 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.066
Detector resolution: 5.1970 pixels mm-1θmax = 29.5°, θmin = 3.2°
ω scansh = 65
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1111
Tmin = 0.879, Tmax = 1.000l = 1818
11147 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: mixed
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.261P]
where P = (Fo2 + 2Fc2)/3
2582 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.33 e Å3
0 constraints
Special details top

Refinement. Methine, methylene and methyl H atoms were refined using a riding model and calculated displacement parameters, while hydroxy H atom (H3) was refined with free coordinates and isotropic displacement parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.0000000.5000000.04075 (17)
Cl10.26976 (17)0.14756 (8)0.41467 (5)0.0491 (2)
O10.7606 (6)0.3821 (3)0.04775 (15)0.0687 (7)
O21.0650 (7)0.1867 (4)0.0998 (2)0.1057 (12)
O30.7513 (5)0.6770 (3)0.27030 (16)0.0542 (5)
N10.5217 (4)0.3783 (2)0.24801 (14)0.0310 (4)
N20.8580 (6)0.2806 (3)0.11389 (17)0.0495 (6)
N30.5786 (5)0.1665 (2)0.37287 (15)0.0381 (5)
C20.4408 (5)0.3135 (3)0.34601 (17)0.0324 (5)
C40.7580 (7)0.1368 (3)0.29152 (19)0.0446 (7)
H40.8821340.0433250.2891560.054*
C50.7251 (6)0.2663 (3)0.21463 (18)0.0371 (6)
C60.2311 (6)0.3957 (4)0.4130 (2)0.0488 (7)
H6A0.3089530.4953240.4220230.073*
H6B0.1958150.3223910.4770620.073*
H6C0.0523840.4229770.3836210.073*
C70.4181 (5)0.5424 (3)0.19434 (19)0.0367 (6)
H7A0.2437750.5793650.2322790.044*
H7B0.3675190.5319330.1293500.044*
C80.6415 (6)0.6722 (3)0.17891 (19)0.0408 (6)
H80.8040350.6403270.1326010.049*
C90.5105 (8)0.8384 (4)0.1286 (2)0.0617 (9)
H9A0.3508510.8732640.1724850.093*
H9B0.4429360.8276240.0668690.093*
H9C0.6551430.9193580.1145510.093*
H30.598 (9)0.730 (5)0.310 (3)0.084 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0753 (4)0.0250 (2)0.0210 (2)0.0102 (2)0.0118 (2)0.00433 (16)
Cl10.0764 (5)0.0412 (4)0.0320 (3)0.0149 (3)0.0117 (3)0.0050 (3)
O10.1028 (18)0.0693 (15)0.0242 (10)0.0088 (13)0.0001 (11)0.0037 (10)
O20.133 (3)0.096 (2)0.0610 (17)0.056 (2)0.0316 (16)0.0013 (15)
O30.0585 (13)0.0574 (13)0.0476 (12)0.0023 (10)0.0117 (10)0.0113 (10)
N10.0391 (11)0.0283 (10)0.0222 (10)0.0017 (8)0.0046 (8)0.0037 (8)
N20.0718 (17)0.0423 (13)0.0300 (12)0.0029 (12)0.0036 (11)0.0051 (10)
N30.0633 (14)0.0253 (10)0.0229 (10)0.0046 (9)0.0065 (9)0.0030 (8)
C20.0423 (13)0.0289 (12)0.0237 (11)0.0070 (10)0.0049 (9)0.0024 (9)
C40.0704 (19)0.0309 (13)0.0300 (14)0.0092 (12)0.0083 (12)0.0032 (11)
C50.0540 (15)0.0312 (12)0.0230 (12)0.0018 (11)0.0028 (10)0.0006 (10)
C60.0539 (17)0.0496 (16)0.0347 (15)0.0017 (13)0.0105 (12)0.0007 (12)
C70.0405 (13)0.0358 (13)0.0273 (12)0.0044 (10)0.0069 (10)0.0082 (10)
C80.0559 (16)0.0334 (13)0.0297 (13)0.0002 (12)0.0048 (11)0.0006 (10)
C90.097 (3)0.0335 (15)0.0472 (18)0.0074 (15)0.0099 (17)0.0058 (13)
Geometric parameters (Å, º) top
Cu1—N31.9953 (19)C2—C61.477 (4)
Cu1—N3i1.9953 (19)C4—C51.350 (3)
Cu1—Cl12.2586 (6)C4—H40.9300
Cu1—Cl1i2.2586 (6)C6—H6A0.9600
O1—N21.207 (3)C6—H6B0.9600
O2—N21.210 (3)C6—H6C0.9600
O3—C81.417 (3)C7—C81.517 (4)
O3—H30.97 (4)C7—H7A0.9700
N1—C21.355 (3)C7—H7B0.9700
N1—C51.373 (3)C8—C91.520 (4)
N1—C71.478 (3)C8—H80.9800
N2—C51.424 (3)C9—H9A0.9600
N3—C21.331 (3)C9—H9B0.9600
N3—C41.358 (3)C9—H9C0.9600
N3—Cu1—N3i180.0C2—C6—H6A109.5
N3—Cu1—Cl188.73 (6)C2—C6—H6B109.5
N3i—Cu1—Cl191.27 (6)H6A—C6—H6B109.5
N3—Cu1—Cl1i91.27 (6)C2—C6—H6C109.5
N3i—Cu1—Cl1i88.73 (6)H6A—C6—H6C109.5
Cl1—Cu1—Cl1i180.00 (4)H6B—C6—H6C109.5
C8—O3—H3106 (2)N1—C7—C8112.9 (2)
C2—N1—C5105.98 (19)N1—C7—H7A109.0
C2—N1—C7124.6 (2)C8—C7—H7A109.0
C5—N1—C7129.3 (2)N1—C7—H7B109.0
O1—N2—O2123.5 (3)C8—C7—H7B109.0
O1—N2—C5119.7 (2)H7A—C7—H7B107.8
O2—N2—C5116.8 (2)O3—C8—C7111.3 (2)
C2—N3—C4107.4 (2)O3—C8—C9113.4 (2)
C2—N3—Cu1127.62 (18)C7—C8—C9109.2 (2)
C4—N3—Cu1124.32 (17)O3—C8—H8107.6
N3—C2—N1110.2 (2)C7—C8—H8107.6
N3—C2—C6125.2 (2)C9—C8—H8107.6
N1—C2—C6124.6 (2)C8—C9—H9A109.5
C5—C4—N3108.2 (2)C8—C9—H9B109.5
C5—C4—H4125.9H9A—C9—H9B109.5
N3—C4—H4125.9C8—C9—H9C109.5
C4—C5—N1108.2 (2)H9A—C9—H9C109.5
C4—C5—N2126.7 (2)H9B—C9—H9C109.5
N1—C5—N2125.0 (2)
C4—N3—C2—N11.5 (3)C2—N1—C5—C41.2 (3)
Cu1—N3—C2—N1169.46 (16)C7—N1—C5—C4177.2 (2)
C4—N3—C2—C6178.1 (3)C2—N1—C5—N2176.6 (3)
Cu1—N3—C2—C610.9 (4)C7—N1—C5—N27.4 (4)
C5—N1—C2—N31.7 (3)O1—N2—C5—C4162.4 (3)
C7—N1—C2—N3178.0 (2)O2—N2—C5—C416.9 (5)
C5—N1—C2—C6177.9 (2)O1—N2—C5—N112.1 (4)
C7—N1—C2—C61.6 (4)O2—N2—C5—N1168.5 (3)
C2—N3—C4—C50.8 (3)C2—N1—C7—C8103.5 (3)
Cu1—N3—C4—C5170.60 (19)C5—N1—C7—C871.9 (3)
N3—C4—C5—N10.3 (3)N1—C7—C8—O351.0 (3)
N3—C4—C5—N2175.6 (3)N1—C7—C8—C9176.9 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···Cl1ii0.97 (4)2.28 (4)3.252 (2)175 (3)
C4—H4···Cl1iii0.932.813.537 (3)136
C6—H6A···Cl1ii0.962.923.793 (3)152
C6—H6B···Cl1iv0.962.793.546 (3)136
C7—H7A···O3v0.972.403.327 (3)160
C7—H7B···O1vi0.972.513.436 (3)159
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z; (iv) x, y, z+1; (v) x1, y, z; (vi) x+1, y+1, z.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (scholarship No. 928228; grant No. INFRA-2014-224405); VIEP-BUAP, Vicerrectoría de Investigación y Estudios de Posgrado (grant No. Proyecto 00030 de grupos de investigación interdisciplinaria 2023).

References

First citationBetanzos-Lara, S., Gracia-Mora, I., Granada-Macías, P., Flores-Álamo, M. & Barba-Behrens, N. (2013). Inorg. Chim. Acta, 397, 94–100.  CAS Google Scholar
First citationGillis, J. C. & Wiseman, L. R. (1996). Drugs, 51, 621–638.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNovoa de Armas, H., Dago Morales, A., González Hernández, R., Li, N. & Pomés Hernández, R. (1997). Revista CENIC Ciencias Químicas, 28, 89–92.  CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146