metal-organic compounds
trans-Dichloridobis(secnidazole-κN3)copper(II)
aInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico, bFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, 72570 Puebla, Pue., Mexico, and cTecnológico Nacional de México, Instituto Tecnológico de Tijuana, Centro de Graduados e Investigación en Química, 22444 Tijuana BC, Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com
The use of acetic acid (HOAc) in a reaction between CuCl2·2H2O and secnidazole, an active pharmaceutical ingredient useful in the treatment against a variety of anaerobic Gram-positive and Gram-negative bacteria, affords the title complex, [CuCl2(C7H11N3O3)2]. This compound was previously synthesized using ethanol as solvent, although its was not reported [Betanzos-Lara et al. (2013). Inorg. Chim. Acta, 397, 94–100]. In the molecular complex, the Cu2+ cation is situated at an inversion centre and displays a square-planar coordination environment. There is a hydrogen-bonded framework based on intermolecular O—H⋯Cl interactions, characterized by H⋯Cl separations of 2.28 (4) Å and O—H⋯Cl angles of 175 (3)°. The resulting supramolecular network is based on R22(18) ring motifs, forming chains in the [010] direction.
Keywords: crystal structure; coordination compound; secnidazole; supramolecular structure; hydrogen bonds.
CCDC reference: 2350906
Structure description
Secnidazole [C7H11N3O3, IUPAC name: 1-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ol, abbreviated secnim] is an active pharmaceutical ingredient used in the treatment against a variety of anaerobic Gram-positive and Gram-negative bacteria (Gillis & Wiseman, 1996). Some coordination complexes including secnidazole as a ligand were synthesized with late transition metals, Co2+, Ni2+, Cu2+ and Zn2+ (Betanzos-Lara et al., 2013). Following the ideas of that group, the aim of this study is to obtain new complexes, to evaluate the synergistic effect of coordination of secnidazole to copper(II) on the antimicrobial activity.
In the literature, only one et al., 2013). The complex consists of a dinuclear cluster of Cu2+ surrounded by four acetate anions OAc− and two secnidazole molecules bonded in terminal positions, to give [Cu2(secnim)2(μ2-OAc)4]. The same authors synthesized [Cu(secnim)2Cl2], although they did not determine its We have now obtained the same mononuclear complex using a simple synthetic route (see Experimental), and determined its molecular and crystal structure.
of a secnidazole metallic complex has been reported (CSD refcode KICFUZ; Betanzos-LaraThe mononuclear Cu2+ ion is surrounded by two secnim molecules trans-coordinated through the imidazolic nitrogen atom N3, and two chloride ions, giving a distorted square-plane geometry for CuII, with Cu1—N3 and Cu1—Cl1 bond lengths being 1.9953 (19) Å and 2.2586 (6) Å, respectively. The metal is located at an inversion centre in P, and the contains half a molecule (Fig. 1). A molecular overlay shows that the global conformation of the secnim free ligand (Novoa de Armas et al., 1997) is not altered by coordination to the central metal (Fig. 2). The most significant modification is related to the of the NO2 group bonded to C5 in the ligand. The dihedral angle between the nitro group and the mean plane of the imidazole ring is 1.0° in the non-coordinating ligand, while this angle is 15.2 (4)° in the complex. Such a rotation could be a consequence of a between the nitro group and the propan-2-ol lateral chain in a neighbouring molecule in the crystal (Table 1, entry 2).
|
The orientation of the hydroxy group promotes the formation of intermolecular hydrogen bonds and acts as a donor to the chloride ion, which acts as an acceptor (Table 1, entry 1). The features centrosymmetric (18) ring motifs formed by the interaction between the non-coordinating hydroxy group and the chloride ion of a symmetry-related complex. A periodic framework is created, based on chains running in the [010] direction (Fig. 3). These chains are parallel in the crystal, and interact poorly, through weak C—H⋯O contacts involving the hydroxy and nitro groups as acceptors (Table 1, entries 2 and 3).
Synthesis and crystallization
Two ethanolic solutions of secnim (185 mg, 1 mmol in 15 ml) and CuCl2·2H2O (170 mg, 1 mmol, in 15 ml) were prepared at ambient conditions. Acetic acid (5 ml) was added to the CuCl2·2H2O solution. The solutions were combined under stirring for 1 h at 333 K. The resulting solution was then filtered and allowed to evaporate at 298 K over 2 days, affording blue single crystals suitable for X-ray crystallography.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2350906
https://doi.org/10.1107/S2414314624003766/bx4028sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624003766/bx4028Isup2.hkl
[CuCl2(C7H11N3O3)2] | Z = 1 |
Mr = 504.81 | F(000) = 259 |
Triclinic, P1 | Dx = 1.646 Mg m−3 |
a = 4.6536 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.2542 (3) Å | Cell parameters from 4331 reflections |
c = 13.6820 (6) Å | θ = 4.3–28.4° |
α = 78.092 (4)° | µ = 1.38 mm−1 |
β = 82.801 (4)° | T = 298 K |
γ = 85.469 (4)° | Plate, blue |
V = 509.42 (4) Å3 | 0.28 × 0.21 × 0.10 mm |
SuperNova, Dual, AtlasS2 diffractometer | 2582 independent reflections |
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source | 1956 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.066 |
Detector resolution: 5.1970 pixels mm-1 | θmax = 29.5°, θmin = 3.2° |
ω scans | h = −6→5 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −11→11 |
Tmin = 0.879, Tmax = 1.000 | l = −18→18 |
11147 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: mixed |
wR(F2) = 0.108 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0399P)2 + 0.261P] where P = (Fo2 + 2Fc2)/3 |
2582 reflections | (Δ/σ)max < 0.001 |
139 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
0 constraints |
Refinement. Methine, methylene and methyl H atoms were refined using a riding model and calculated displacement parameters, while hydroxy H atom (H3) was refined with free coordinates and isotropic displacement parameter. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.500000 | 0.000000 | 0.500000 | 0.04075 (17) | |
Cl1 | 0.26976 (17) | −0.14756 (8) | 0.41467 (5) | 0.0491 (2) | |
O1 | 0.7606 (6) | 0.3821 (3) | 0.04775 (15) | 0.0687 (7) | |
O2 | 1.0650 (7) | 0.1867 (4) | 0.0998 (2) | 0.1057 (12) | |
O3 | 0.7513 (5) | 0.6770 (3) | 0.27030 (16) | 0.0542 (5) | |
N1 | 0.5217 (4) | 0.3783 (2) | 0.24801 (14) | 0.0310 (4) | |
N2 | 0.8580 (6) | 0.2806 (3) | 0.11389 (17) | 0.0495 (6) | |
N3 | 0.5786 (5) | 0.1665 (2) | 0.37287 (15) | 0.0381 (5) | |
C2 | 0.4408 (5) | 0.3135 (3) | 0.34601 (17) | 0.0324 (5) | |
C4 | 0.7580 (7) | 0.1368 (3) | 0.29152 (19) | 0.0446 (7) | |
H4 | 0.882134 | 0.043325 | 0.289156 | 0.054* | |
C5 | 0.7251 (6) | 0.2663 (3) | 0.21463 (18) | 0.0371 (6) | |
C6 | 0.2311 (6) | 0.3957 (4) | 0.4130 (2) | 0.0488 (7) | |
H6A | 0.308953 | 0.495324 | 0.422023 | 0.073* | |
H6B | 0.195815 | 0.322391 | 0.477062 | 0.073* | |
H6C | 0.052384 | 0.422977 | 0.383621 | 0.073* | |
C7 | 0.4181 (5) | 0.5424 (3) | 0.19434 (19) | 0.0367 (6) | |
H7A | 0.243775 | 0.579365 | 0.232279 | 0.044* | |
H7B | 0.367519 | 0.531933 | 0.129350 | 0.044* | |
C8 | 0.6415 (6) | 0.6722 (3) | 0.17891 (19) | 0.0408 (6) | |
H8 | 0.804035 | 0.640327 | 0.132601 | 0.049* | |
C9 | 0.5105 (8) | 0.8384 (4) | 0.1286 (2) | 0.0617 (9) | |
H9A | 0.350851 | 0.873264 | 0.172485 | 0.093* | |
H9B | 0.442936 | 0.827624 | 0.066869 | 0.093* | |
H9C | 0.655143 | 0.919358 | 0.114551 | 0.093* | |
H3 | 0.598 (9) | 0.730 (5) | 0.310 (3) | 0.084 (12)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0753 (4) | 0.0250 (2) | 0.0210 (2) | −0.0102 (2) | −0.0118 (2) | 0.00433 (16) |
Cl1 | 0.0764 (5) | 0.0412 (4) | 0.0320 (3) | −0.0149 (3) | −0.0117 (3) | −0.0050 (3) |
O1 | 0.1028 (18) | 0.0693 (15) | 0.0242 (10) | 0.0088 (13) | 0.0001 (11) | 0.0037 (10) |
O2 | 0.133 (3) | 0.096 (2) | 0.0610 (17) | 0.056 (2) | 0.0316 (16) | −0.0013 (15) |
O3 | 0.0585 (13) | 0.0574 (13) | 0.0476 (12) | 0.0023 (10) | −0.0117 (10) | −0.0113 (10) |
N1 | 0.0391 (11) | 0.0283 (10) | 0.0222 (10) | −0.0017 (8) | −0.0046 (8) | 0.0037 (8) |
N2 | 0.0718 (17) | 0.0423 (13) | 0.0300 (12) | 0.0029 (12) | 0.0036 (11) | −0.0051 (10) |
N3 | 0.0633 (14) | 0.0253 (10) | 0.0229 (10) | −0.0046 (9) | −0.0065 (9) | 0.0030 (8) |
C2 | 0.0423 (13) | 0.0289 (12) | 0.0237 (11) | −0.0070 (10) | −0.0049 (9) | 0.0024 (9) |
C4 | 0.0704 (19) | 0.0309 (13) | 0.0300 (14) | 0.0092 (12) | −0.0083 (12) | −0.0032 (11) |
C5 | 0.0540 (15) | 0.0312 (12) | 0.0230 (12) | 0.0018 (11) | −0.0028 (10) | −0.0006 (10) |
C6 | 0.0539 (17) | 0.0496 (16) | 0.0347 (15) | −0.0017 (13) | 0.0105 (12) | 0.0007 (12) |
C7 | 0.0405 (13) | 0.0358 (13) | 0.0273 (12) | 0.0044 (10) | −0.0069 (10) | 0.0082 (10) |
C8 | 0.0559 (16) | 0.0334 (13) | 0.0297 (13) | 0.0002 (12) | −0.0048 (11) | 0.0006 (10) |
C9 | 0.097 (3) | 0.0335 (15) | 0.0472 (18) | 0.0074 (15) | −0.0099 (17) | 0.0058 (13) |
Cu1—N3 | 1.9953 (19) | C2—C6 | 1.477 (4) |
Cu1—N3i | 1.9953 (19) | C4—C5 | 1.350 (3) |
Cu1—Cl1 | 2.2586 (6) | C4—H4 | 0.9300 |
Cu1—Cl1i | 2.2586 (6) | C6—H6A | 0.9600 |
O1—N2 | 1.207 (3) | C6—H6B | 0.9600 |
O2—N2 | 1.210 (3) | C6—H6C | 0.9600 |
O3—C8 | 1.417 (3) | C7—C8 | 1.517 (4) |
O3—H3 | 0.97 (4) | C7—H7A | 0.9700 |
N1—C2 | 1.355 (3) | C7—H7B | 0.9700 |
N1—C5 | 1.373 (3) | C8—C9 | 1.520 (4) |
N1—C7 | 1.478 (3) | C8—H8 | 0.9800 |
N2—C5 | 1.424 (3) | C9—H9A | 0.9600 |
N3—C2 | 1.331 (3) | C9—H9B | 0.9600 |
N3—C4 | 1.358 (3) | C9—H9C | 0.9600 |
N3—Cu1—N3i | 180.0 | C2—C6—H6A | 109.5 |
N3—Cu1—Cl1 | 88.73 (6) | C2—C6—H6B | 109.5 |
N3i—Cu1—Cl1 | 91.27 (6) | H6A—C6—H6B | 109.5 |
N3—Cu1—Cl1i | 91.27 (6) | C2—C6—H6C | 109.5 |
N3i—Cu1—Cl1i | 88.73 (6) | H6A—C6—H6C | 109.5 |
Cl1—Cu1—Cl1i | 180.00 (4) | H6B—C6—H6C | 109.5 |
C8—O3—H3 | 106 (2) | N1—C7—C8 | 112.9 (2) |
C2—N1—C5 | 105.98 (19) | N1—C7—H7A | 109.0 |
C2—N1—C7 | 124.6 (2) | C8—C7—H7A | 109.0 |
C5—N1—C7 | 129.3 (2) | N1—C7—H7B | 109.0 |
O1—N2—O2 | 123.5 (3) | C8—C7—H7B | 109.0 |
O1—N2—C5 | 119.7 (2) | H7A—C7—H7B | 107.8 |
O2—N2—C5 | 116.8 (2) | O3—C8—C7 | 111.3 (2) |
C2—N3—C4 | 107.4 (2) | O3—C8—C9 | 113.4 (2) |
C2—N3—Cu1 | 127.62 (18) | C7—C8—C9 | 109.2 (2) |
C4—N3—Cu1 | 124.32 (17) | O3—C8—H8 | 107.6 |
N3—C2—N1 | 110.2 (2) | C7—C8—H8 | 107.6 |
N3—C2—C6 | 125.2 (2) | C9—C8—H8 | 107.6 |
N1—C2—C6 | 124.6 (2) | C8—C9—H9A | 109.5 |
C5—C4—N3 | 108.2 (2) | C8—C9—H9B | 109.5 |
C5—C4—H4 | 125.9 | H9A—C9—H9B | 109.5 |
N3—C4—H4 | 125.9 | C8—C9—H9C | 109.5 |
C4—C5—N1 | 108.2 (2) | H9A—C9—H9C | 109.5 |
C4—C5—N2 | 126.7 (2) | H9B—C9—H9C | 109.5 |
N1—C5—N2 | 125.0 (2) | ||
C4—N3—C2—N1 | 1.5 (3) | C2—N1—C5—C4 | 1.2 (3) |
Cu1—N3—C2—N1 | −169.46 (16) | C7—N1—C5—C4 | 177.2 (2) |
C4—N3—C2—C6 | −178.1 (3) | C2—N1—C5—N2 | 176.6 (3) |
Cu1—N3—C2—C6 | 10.9 (4) | C7—N1—C5—N2 | −7.4 (4) |
C5—N1—C2—N3 | −1.7 (3) | O1—N2—C5—C4 | 162.4 (3) |
C7—N1—C2—N3 | −178.0 (2) | O2—N2—C5—C4 | −16.9 (5) |
C5—N1—C2—C6 | 177.9 (2) | O1—N2—C5—N1 | −12.1 (4) |
C7—N1—C2—C6 | 1.6 (4) | O2—N2—C5—N1 | 168.5 (3) |
C2—N3—C4—C5 | −0.8 (3) | C2—N1—C7—C8 | 103.5 (3) |
Cu1—N3—C4—C5 | 170.60 (19) | C5—N1—C7—C8 | −71.9 (3) |
N3—C4—C5—N1 | −0.3 (3) | N1—C7—C8—O3 | −51.0 (3) |
N3—C4—C5—N2 | −175.6 (3) | N1—C7—C8—C9 | −176.9 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···Cl1ii | 0.97 (4) | 2.28 (4) | 3.252 (2) | 175 (3) |
C4—H4···Cl1iii | 0.93 | 2.81 | 3.537 (3) | 136 |
C6—H6A···Cl1ii | 0.96 | 2.92 | 3.793 (3) | 152 |
C6—H6B···Cl1iv | 0.96 | 2.79 | 3.546 (3) | 136 |
C7—H7A···O3v | 0.97 | 2.40 | 3.327 (3) | 160 |
C7—H7B···O1vi | 0.97 | 2.51 | 3.436 (3) | 159 |
Symmetry codes: (ii) x, y+1, z; (iii) x+1, y, z; (iv) −x, −y, −z+1; (v) x−1, y, z; (vi) −x+1, −y+1, −z. |
Funding information
Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (scholarship No. 928228; grant No. INFRA-2014-224405); VIEP-BUAP, Vicerrectoría de Investigación y Estudios de Posgrado (grant No. Proyecto 00030 de grupos de investigación interdisciplinaria 2023).
References
Betanzos-Lara, S., Gracia-Mora, I., Granada-Macías, P., Flores-Álamo, M. & Barba-Behrens, N. (2013). Inorg. Chim. Acta, 397, 94–100. CAS Google Scholar
Gillis, J. C. & Wiseman, L. R. (1996). Drugs, 51, 621–638. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Novoa de Armas, H., Dago Morales, A., González Hernández, R., Li, N. & Pomés Hernández, R. (1997). Revista CENIC Ciencias Químicas, 28, 89–92. CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.