inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ilmenite-type Na2(Fe2/3Te4/3)O6

crossmark logo

aTU Wien, Institute for Chemical Technologies and Analytics, Division of Structural Chemistry, Getreidemarkt 9/E164-05-1, 1060 Vienna, Austria
*Correspondence e-mail: matthias.weil@tuwien.ac.at

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 17 May 2024; accepted 23 May 2024; online 31 May 2024)

Na2(Fe2/3Te4/3)O6 (Z = 3) or Na3(FeTe2)O9 (Z = 2), tris­odium iron(III) ditellurium(VI) nona­oxide, adopts the ilmenite (FeTiO3, Z = 6) structure type with the Ti site (site symmetry 3.) replaced by Na and the Fe site (site symmetry 3.) replaced by a mixed-occupied (FeIII,TeVI) site in a Fe:Te ratio of 1:2. Whereas the [(Fe,Te)O6] octa­hedron is only slightly distorted, the [NaO6] octa­hedron shows much stronger distortions, as revealed by a larger spread of the bond lengths and some distortion parameters.

3D view (loading...)
[Scheme 3D1]

Structure description

Crystals of Na2(Fe2/3Te4/3)O6 were inadvertently obtained during hydro­thermal synthesis attempts originally aiming at a phase with composition Na12FeIII6TeVI4O27·3H2O and for which possible relationships with the potassium phase K12FeIII6TeVI4O27·3H2O (Eder, 2023[Eder, F. (2023). Crystal engineering of Oxidotellurates. Dissertation, Technische Universität Wien, Austria. https://doi.org/10.34726/hss.2023,79182.]) were to be investigated.

Na2(Fe2/3Te4/3)O6 (Z = 3) or Na3(FeTe2)O9 (Z = 2) crystallizes in the ilmenite structure type (FeTiO3, Z = 6). The Na+ cations take the Ti sites and the occupationally disordered (FeIII/TeVI) atoms (ratio FeIII:TeVI = 1:2) take the Fe sites of the ilmenite structure. The latter is a twofold superstructure of the corundum structure where two-thirds of the octa­hedral voids of the hexa­gonal close packed (hcp) structure defined by O atoms are occupied (Wells, 1975[Wells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., p. 216. Oxford University Press.]). The two types of metal sites in the ilmenite structure, both with site symmetry 3. (multiplicity 6, Wyckoff letter c), have a distorted octa­hedral oxygen environment. The [(Fe,Te)O6] octa­hedron is only slightly distorted, the [NaO6] octa­hedron more clearly as evidenced by their bond lengths distribution [(Fe,Te)—O = 1.951 (3) Å (3×), 1.993 (3) Å (3×); Na—O1 = 2.297 (3) Å (3×), 2.545 (4) Å (3×)], and by qu­anti­tative distortion parameters (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]) [quadratic elongation: ([(Fe,Te)O6] = 1.018; [NaO6] = 1.062; angle variance: [(Fe,Te)O6] = 62.99°2; [NaO6] = 204.27°2]. The polyhedral volume of [(Fe,Te)O6] amounts to 9.950 Å3, and that of [NaO6] to 17.378 Å3 as calculated with the VOLCAL option in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

The only other Te-containing compounds adopting the ilmenite structure type deposited with the Inorganic Crystal Structure Database (ICSD, release 2023–1; Zagorac et al., 2019[Zagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918-925.]) are Na2(TiIVTeVI)O6 and α-Na2(GeIVTeVI)O6 (Woodward et al., 1999[Woodward, P. M., Sleight, A. W., Du, L.-S. & Grey, C. P. (1999). J. Solid State Chem. 147, 99-116.]).

The ilmenite-type crystal structure of Na2(Fe2/3Te4/3)O6 is shown in Figs. 1[link] and 2[link].

[Figure 1]
Figure 1
Crystal structure of ilmenite-type Na2(Fe2/3Te4/3)O6 in a projection along [[\overline{1}]00] showing the layer stacking along [001]. [(Fe,Te)O6] units are shown in the polyhedral representation (red octa­hedra), Na atoms (blue) with bonds to the O atoms. Displacement ellipsoids are drawn at the 74% probability level.
[Figure 2]
Figure 2
Projection of the crystal structure of Na2(Fe2/3Te4/3)O6 onto (001), showing only one layer of [(Fe,Te)O6] units (red polyhedra) and of Na atoms (blue). For clarity, Na—O bonds are omitted. Displacement ellipsoids are drawn at the 74% probability level.

Synthesis and crystallization

Hydro­thermal synthesis conditions were the same as detailed for garnet-type Na3Te2(FeO4)3 (Eder & Weil, 2023[Eder, F. & Weil, M. (2023). Acta Cryst. E79, 328-330.]). Small amounts of yellowish (nearly colourless) crystals of Na2(Fe2/3Te4/3)O6 with a plate-like form were harvested from the reaction mixture that also contained very few colourless crystals of NaFeIII(TeIVO3)2 (Weil & Stöger, 2008[Weil, M. & Stöger, B. (2008). Acta Cryst. E64, i3.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula Na2(Fe2/3Te4/3)O6
Mr 349.33
Crystal system, space group Trigonal, R[\overline{3}]:H
Temperature (K) 300
a, c (Å) 5.2598 (8), 15.778 (3)
V3) 378.02 (14)
Z 3
Radiation type Mo Kα
μ (mm−1) 9.76
Crystal size (mm) 0.05 × 0.04 × 0.01
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (LANA; Koziskova et al., 2016[Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slovaca, 9, 136-140.])
Tmin, Tmax 0.519, 0.596
No. of measured, independent and observed [I > 2σ(I)] reflections 3266, 454, 383
Rint 0.043
(sin θ/λ)max−1) 0.731
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.066, 1.03
No. of reflections 454
No. of parameters 17
Δρmax, Δρmin (e Å−3) 1.64, −1.30
Computer programs: X-AREA (Stoe, 2021[Stoe (2021). X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

All crystals under investigation were systematically twinned with at least two twin domains present. During the integrating and scaling process of the finally chosen crystal, a pseudo-Laue class of [\overline{3}].m was suggested by X-AREA (Stoe, 2021[Stoe (2021). X-AREA. Stoe & Cie, Darmstadt, Germany.]) with similar Rint values compared to the Laue class corresponding to the actual structure ([\overline{3}]). From this pseudo-symmetry imposed by the twinning, one possible twin law (m(210)) with a transformation of a, −ab, c was derived. The intensity data were integrated on basis of a hexa­gonal primitive unit-cell of same dimensions to include the reflections of both twin domains (Fig. 3[link]). By applying the twin law given above, the ratios of the respective domains refined to values of 0.540:0.460 (2). For the sake of charge-neutrality, the mixed-occupied (FeIII/TeVI) site was constrained to a ratio of 1:2 for Fe:Te. The two atom types located at this site were refined with common displacement parameters.

[Figure 3]
Figure 3
(a) Reconstructed reciprocal h0l plane of Na2(Fe2/3Te4/3)O6; (b) reflections belonging to the two twin domains are marked in green squares (domain 1) and orange circles (domain 2); reflections of the two domains overlap in every third row h.

Structure data of Na2(Fe2/3Te4/3)O6 were standardized with STRUCTURE-TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Structural data


Computing details top

Trisodium iron(III) ditellurium(VI) nonaoxide top
Crystal data top
Na2Fe0.6666Te1.3333O6Dx = 4.604 Mg m3
Mr = 349.33Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3:HCell parameters from 3735 reflections
a = 5.2598 (8) Åθ = 3.9–31.3°
c = 15.778 (3) ŵ = 9.76 mm1
V = 378.02 (14) Å3T = 300 K
Z = 3Plate, yellowish
F(000) = 4700.05 × 0.04 × 0.01 mm
Data collection top
Stoe Stadivari
diffractometer
383 reflections with I > 2σ(I)
Radiation source: Axo_MoRint = 0.043
rotation method, ω scansθmax = 31.3°, θmin = 4.7°
Absorption correction: multi-scan
(LANA; Koziskova et al., 2016)
h = 47
Tmin = 0.519, Tmax = 0.596k = 75
3266 measured reflectionsl = 2223
454 independent reflections
Refinement top
Refinement on F217 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0446P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.066(Δ/σ)max < 0.001
S = 1.03Δρmax = 1.64 e Å3
454 reflectionsΔρmin = 1.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Te0.0000000.0000000.16114 (4)0.0138 (2)0.6667
Fe0.0000000.0000000.16114 (4)0.0138 (2)0.3333
Na0.0000000.0000000.3619 (2)0.0215 (6)
O0.3411 (6)0.0563 (7)0.0969 (2)0.0181 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Te0.0101 (2)0.0101 (2)0.0212 (3)0.00503 (11)0.0000.000
Fe0.0101 (2)0.0101 (2)0.0212 (3)0.00503 (11)0.0000.000
Na0.0183 (9)0.0183 (9)0.0278 (15)0.0091 (4)0.0000.000
O0.0126 (14)0.0156 (13)0.0260 (15)0.0068 (11)0.0020 (11)0.0026 (12)
Geometric parameters (Å, º) top
Te—O1.951 (3)Na—Ovi2.297 (3)
Te—Oi1.951 (3)Na—Ovii2.297 (3)
Te—Oii1.951 (3)Na—Oviii2.297 (3)
Te—Oiii1.993 (3)Na—Oiii2.545 (4)
Te—Oiv1.993 (3)Na—Oiv2.545 (4)
Te—Ov1.993 (3)Na—Ov2.545 (4)
O—Te—Oi95.42 (13)Ovi—Na—Oiii98.45 (11)
O—Te—Oii95.42 (13)Ovii—Na—Oiii91.78 (15)
Oi—Te—Oii95.42 (13)Oviii—Na—Oiii156.33 (16)
O—Te—Oiii98.82 (19)Ovi—Na—Oiv91.78 (15)
Oi—Te—Oiii79.08 (15)Ovii—Na—Oiv156.34 (16)
Oii—Te—Oiii165.14 (16)Oviii—Na—Oiv98.45 (11)
O—Te—Oiv79.08 (15)Oiii—Na—Oiv65.98 (14)
Oi—Te—Oiv165.15 (16)Ovi—Na—Ov156.34 (16)
Oii—Te—Oiv98.82 (19)Ovii—Na—Ov98.45 (11)
Oiii—Te—Oiv88.08 (14)Oviii—Na—Ov91.77 (15)
O—Te—Ov165.14 (16)Oiii—Na—Ov65.98 (14)
Oi—Te—Ov98.82 (19)Oiv—Na—Ov65.98 (14)
Oii—Te—Ov79.08 (15)Te—O—Teiv100.92 (15)
Oiii—Te—Ov88.08 (14)Te—O—Naix120.25 (14)
Oiv—Te—Ov88.08 (14)Teiv—O—Naix123.88 (14)
Ovi—Na—Ovii99.80 (15)Te—O—Naiv142.72 (16)
Ovi—Na—Oviii99.80 (15)Teiv—O—Naiv87.65 (11)
Ovii—Na—Oviii99.80 (15)Naix—O—Naiv81.55 (11)
Symmetry codes: (i) x+y, x, z; (ii) y, xy, z; (iii) xy1/3, x2/3, z+1/3; (iv) x+2/3, y+1/3, z+1/3; (v) y1/3, x+y+1/3, z+1/3; (vi) x+y+2/3, x+1/3, z+1/3; (vii) y1/3, xy2/3, z+1/3; (viii) x1/3, y+1/3, z+1/3; (ix) x+1/3, y1/3, z1/3.
 

Footnotes

Present address: Department of Quantum Matter Physics, Ecole de Physique, University of Geneva, 24, Quai Ernest-Ansermet, CH – 1211 Geneva 4, Switzerland.

Acknowledgements

The X-ray centre of the TU Wien is acknowledged for granting free access to the X-ray diffraction instruments. We thank TU Wien Bibliothek for financial support through its Open Access Funding Programme.

References

First citationDowty, E. (2006). ATOMS for Windows. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.  Google Scholar
First citationEder, F. (2023). Crystal engineering of Oxidotellurates. Dissertation, Technische Universität Wien, Austria. https://doi.org/10.34726/hss.2023,79182.  Google Scholar
First citationEder, F. & Weil, M. (2023). Acta Cryst. E79, 328–330.  CrossRef IUCr Journals Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKoziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slovaca, 9, 136–140.  CrossRef CAS Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2021). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWeil, M. & Stöger, B. (2008). Acta Cryst. E64, i3.  CrossRef IUCr Journals Google Scholar
First citationWells, A. F. (1975). Structural Inorganic Chemistry, 4th ed., p. 216. Oxford University Press.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoodward, P. M., Sleight, A. W., Du, L.-S. & Grey, C. P. (1999). J. Solid State Chem. 147, 99–116.  Web of Science CrossRef ICSD CAS Google Scholar
First citationZagorac, D., Müller, H., Ruehl, S., Zagorac, J. & Rehme, S. (2019). J. Appl. Cryst. 52, 918–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146