metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(SC,RS)-Bromido­(N-{4-methyl-1-[(4-methyl­phenyl)sul­fan­yl]­pentan-2-yl}-N′-(pyridin-2-yl)imidazol-2-yl­­idene)palladium(II) bromide

crossmark logo

aSchool of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: lryang@haut.edu.cn

Edited by M. Zeller, Purdue University, USA (Received 25 March 2024; accepted 21 April 2024; online 26 April 2024)

The mol­ecule of the title NCNHCS pincer N-heterocyclic carbene palladium(II) complex, [PdBr(C21H25N3S)]Br, exhibits a slightly distorted square-planar coordination at the palladium(II) atom, with the five-membered chelate ring nearly planar. The six-membered chelate ring adopts an envelope conformation. Upon chelation, the sulfur atom becomes a stereogenic centre with an RS configuration induced by the chiral carbon of the precursor imidazolium salt. There are intra­molecular C—H⋯Br—Pd hydrogen bonds in the structure. The two inter­stitial Br atoms, as the counter-anion of the structure, are both located on crystallographic twofold axes and are connected to the complex cations via C—H⋯·Br hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-Heterocyclic carbenes (NHCs) have been widely used as ancillary ligands in coord­ination chemistry and organic catalysis due to their characteristic electronic properties and easy structural modification (Hopkinson et al., 2014[Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485-496.]; Gardiner et al., 2018[Gardiner, M. G. & Ho, C. C. (2018). Coord. Chem. Rev. 375, 373-388.]). Introduction of a coordinating heteroatom functional group to the N-atom substituents of the NHCs leads to the formation of a potentially chelating ligand, and facilitates the formation of stable pincer NHC–metal complexes that can possess catalytic activities. Metal complexes containing heteroatom donors, such as P, N, O and S, have been synthesized, characterized and employed extensively as catalysts for a variety of organic transformations (Ahrens et al., 2006[Ahrens, S., Zeller, A., Taige, M. & Strassner, T. (2006). Organometallics, 25, 5409-5415.]; Bierenstiel & Cross, 2011[Bierenstiel, M. & Cross, E. D. (2011). Coord. Chem. Rev. 255, 574-590.]; Meyer et al., 2012[Meyer, D., Zeller, A. & Strassner, T. (2012). J. Organomet. Chem. 701, 56-61.]; Peris & Crabtree, 2004[Peris, E. & Crabtree, R. H. (2004). Coord. Chem. Rev. 248, 2239-2246.]). Our group has investigated the synthesis and catalytic performance of a series of chelating NHC–palladium complexes derived from natural amino alcohols (Yang et al., 2015[Yang, L., Yuan, J., Mao, P. & Guo, Q. (2015). RSC Adv. 5, 107601-107607.], 2023[Yang, L., Guo, M., Yuan, J., Wangx, J., Xia, Y., Xiao, Y. & Mao, P. (2023). Chin. J. Org. Chem. 43, 2002-2025.]; Yang, Zhang, Xiao & Mao, 2016[Yang, L., Zhang, W., Xiao, Y. & Mao, P. (2016). ChemistrySelect, 4, 680-684.]; Yang, Zhang, Yuan et al., 2016[Yang, L., Zhang, X., Yuan, J., Xiao, Y. & Mao, P. (2016). J. Organomet. Chem. 818, 179-184.]; Meng et al., 2022[Meng, X., Yang, L., Liu, Q., Dong, Z., Yuan, J., Xiao, Y. & Mao, P. (2022). Chin. J. Org. Chem. 42, 3747-3756.]). As part of our work on the study of NHC–metal complexes containing heteroatom-functionalized N-atom substituents, we present here the crystal structure of the title NCNHCS pincer NHC palladium(II) complex (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title complex, shown with 50% probability displacement ellipsoids.

In the title complex, the palladium(II) atom is coordinated to C8, N1, Br1, and S1, resulting in a slightly distorted square-planar coordination. The Pd1—C8, Pd1—N1, Pd1—Br1 and Pd1—S1 bond lengths are 1.946 (8), 2.093 (6), 2.4663 (10), and 2.2603 (17) Å, respectively. The five-membered chelate ring (C8/Pd1/N1/C5/N2) is almost planar, with Pd1—N1—C5—N2 and C5—N2—C8—Pd1 torsion angles of −0.3 (8) and 2.0 (8)°, respectively. The six-membered chelate ring (C8/Pd1/S1/C9/C10/N3) adopts an envelope conformation with puckering parameters of θ = 51.6 (6)° and φ= 125.4 (8)°, which are close to the expected values for this conformation (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]).

Upon chelation, the sulfur atom becomes a stereogenic centre, resulting in the formation of mol­ecules with an RS configuration. This can be attributed to the chiral induction of the chiral carbon C(5), which retains the same S configuration as in the precursor imidazolium salt. The environment of the sulfur atoms of the mol­ecule is approximately triangular pyramidal. This is indicated by the bond angles C9—S1—Pd1, C15—S1—Pd1 and C9—S1–15, which were found to be 106.2 (2), 111.0 (2), and 97.2 (3)°, respectively, with an average of 105.0°. In the crystal, intra- and inter­molecular C—H⋯Br hydrogen bonds occur (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1 0.93 2.90 3.510 (10) 124
C6—H6⋯Br2i 0.93 2.74 3.661 (9) 173
C10—H10⋯Br3 0.98 2.78 3.624 (7) 144
C16—H16⋯Br3ii 0.93 3.11 3.742 (7) 127
Symmetry codes: (i) [x, y+1, z]; (ii) [x, y-1, z].
[Figure 2]
Figure 2
The C—H⋯Br inter­actions in the structure.

Synthesis and crystallization

A mixture of (S)-N-(4-methyl-1-(p-tolyl­thio)­pentan-2-yl)-N′-(pyridin-2-yl)-1H-imidazolium bromide (1.0 mmol, 0.43 g), PdCl2 (1.0 mmol, 0.18 g), NaOAc (1.0 mmol, 0.10 g), and NaBr (4 mmol, 0.41 g) in CH3CN (10 ml) was heated at 80°C for 24 h, and then the volatiles were evaporated. Purification of the residue by column chromatography (silica gel, CH2Cl2/MeOH 15/1 ∼1:1, v/v) produced the title complex as a yellow solid (0.32 g, 60%). Crystallization of the solid from CH3CN afforded the title complex as yellow crystals, m.p. 269–277°C. HR—MS (ESI) m/z calculated for C21H25BrN3PdS+ (M – Br)+ 535.9987, found 535.9998. F T–IR (ATR mode): ν = 3388, 3012, 2910, 1681, 1496, 1376, 1316, 1144, 1014, 914, 806, 780, 738, 666, 448 cm−1. [α]15589: 8.3 (1.00, CH2Cl2).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [PdBr(C21H25N3S)]Br
Mr 617.72
Crystal system, space group Monoclinic, C2
Temperature (K) 293
a, b, c (Å) 25.8993 (7), 6.6206 (2), 13.4938 (3)
β (°) 96.425 (2)
V3) 2299.23 (12)
Z 4
Radiation type Cu Kα
μ (mm−1) 11.52
Crystal size (mm) 0.14 × 0.1 × 0.03
 
Data collection
Diffractometer Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.419, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20069, 3950, 3693
Rint 0.050
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 1.04
No. of reflections 3950
No. of parameters 258
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.38
Absolute structure Flack x determined using 1371 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.030 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

(SC,RS)-Bromido(N-{4-methyl-1-[(4-methylphenyl)sulfanyl]pentan-2-yl}-N'-(pyridin-2-yl)imidazol-2-ylidene)palladium(II) bromide top
Crystal data top
[PdBr(C21H25N3S)]BrF(000) = 1216
Mr = 617.72Dx = 1.785 Mg m3
Monoclinic, C2Cu Kα radiation, λ = 1.54184 Å
a = 25.8993 (7) ÅCell parameters from 8595 reflections
b = 6.6206 (2) Åθ = 4.5–70.1°
c = 13.4938 (3) ŵ = 11.52 mm1
β = 96.425 (2)°T = 293 K
V = 2299.23 (12) Å3Plate, colourless
Z = 40.14 × 0.1 × 0.03 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
3950 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source3693 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 16.2312 pixels mm-1θmax = 70.5°, θmin = 3.4°
ω scansh = 3131
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 86
Tmin = 0.419, Tmax = 1.000l = 1616
20069 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.033P)2 + 2.7656P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.030(Δ/σ)max < 0.001
wR(F2) = 0.072Δρmax = 0.36 e Å3
S = 1.04Δρmin = 0.38 e Å3
3950 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
258 parametersExtinction coefficient: 0.00034 (4)
1 restraintAbsolute structure: Flack x determined using 1371 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.030 (7)
Hydrogen site location: inferred from neighbouring sites
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms on the carbons were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.93 Å for aromatic and alkene C—H moieties, and to 0.98, 0.91 and 0.96 Å for aliphatic C—H, CH2 and CH3 moieties, respectively. Methyl CH3 H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3, and 1.2 for C—H and CH2 units, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.37598 (2)0.06095 (8)0.28758 (3)0.03701 (15)
S10.40637 (6)0.0902 (3)0.15555 (12)0.0381 (4)
N10.3574 (2)0.2356 (11)0.4079 (4)0.0443 (16)
N20.4255 (2)0.4165 (10)0.3607 (4)0.0413 (14)
N30.4680 (2)0.3203 (10)0.2419 (4)0.0381 (13)
C10.3187 (3)0.2026 (16)0.4635 (6)0.057 (2)
H10.29720.09120.45010.069*
C20.3100 (4)0.3329 (18)0.5414 (7)0.069 (3)
H20.28320.30850.58040.083*
C30.3414 (4)0.4954 (18)0.5587 (7)0.074 (3)
H30.33590.58400.60990.089*
C40.3813 (3)0.5318 (18)0.5021 (6)0.061 (2)
H40.40330.64220.51440.073*
C50.3873 (3)0.3975 (13)0.4263 (5)0.0450 (18)
C60.4650 (3)0.5562 (15)0.3556 (5)0.0478 (16)
H60.47190.66860.39630.057*
C70.4911 (3)0.4978 (13)0.2812 (6)0.049 (2)
H70.51950.56320.25930.059*
C80.4280 (2)0.2737 (13)0.2911 (5)0.0393 (16)
C90.4434 (2)0.1033 (12)0.0964 (5)0.0415 (18)
H9A0.45740.04390.03940.050*
H9B0.41990.21080.07200.050*
C100.4877 (3)0.1938 (11)0.1649 (5)0.0366 (15)
H100.50720.28210.12420.044*
C110.5255 (2)0.0360 (13)0.2122 (5)0.0397 (16)
H11A0.53250.05990.16100.048*
H11B0.50850.03730.26170.048*
C120.5777 (3)0.1161 (12)0.2623 (5)0.0441 (19)
H120.57070.21090.31500.053*
C130.6081 (3)0.0612 (16)0.3099 (7)0.065 (3)
H13A0.58920.12080.35980.097*
H13B0.64130.01500.34040.097*
H13C0.61320.15990.25980.097*
C140.6090 (3)0.2258 (18)0.1894 (7)0.072 (3)
H14A0.60920.14670.12980.108*
H14B0.64400.24480.21960.108*
H14C0.59350.35490.17290.108*
C150.3558 (3)0.1214 (13)0.0549 (5)0.0428 (18)
C160.3572 (3)0.2944 (13)0.0012 (6)0.0494 (19)
H160.38140.39490.01740.059*
C170.3221 (3)0.3171 (14)0.0853 (6)0.054 (2)
H170.32250.43530.12240.064*
C180.2862 (3)0.1665 (14)0.1157 (5)0.048 (2)
C190.2848 (3)0.0021 (14)0.0560 (5)0.051 (2)
H190.26010.10150.07340.061*
C200.3190 (3)0.0263 (14)0.0282 (5)0.049 (2)
H200.31760.14150.06720.059*
C210.2512 (3)0.1845 (17)0.2126 (6)0.067 (3)
H21A0.26840.12900.26590.101*
H21B0.21950.11160.20750.101*
H21C0.24330.32420.22610.101*
Br10.30979 (4)0.20451 (15)0.29589 (7)0.0603 (3)
Br20.50000.0140 (2)0.50000.0609 (4)
Br30.50000.61892 (17)0.00000.0480 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0397 (2)0.0390 (3)0.0327 (2)0.0004 (2)0.00594 (15)0.0005 (2)
S10.0391 (8)0.0388 (11)0.0362 (8)0.0001 (7)0.0032 (6)0.0042 (8)
N10.050 (3)0.054 (5)0.030 (3)0.012 (3)0.009 (2)0.007 (3)
N20.050 (3)0.036 (4)0.038 (3)0.007 (3)0.003 (2)0.007 (3)
N30.042 (3)0.031 (4)0.042 (3)0.003 (3)0.006 (2)0.002 (3)
C10.054 (4)0.073 (7)0.047 (4)0.009 (4)0.015 (3)0.002 (4)
C20.063 (5)0.091 (9)0.055 (5)0.018 (5)0.019 (4)0.003 (5)
C30.089 (7)0.087 (9)0.050 (4)0.020 (6)0.019 (4)0.017 (5)
C40.071 (5)0.058 (7)0.054 (4)0.012 (5)0.010 (3)0.019 (5)
C50.051 (4)0.043 (5)0.038 (4)0.010 (4)0.006 (3)0.007 (4)
C60.061 (4)0.030 (4)0.050 (4)0.001 (4)0.001 (3)0.008 (4)
C70.052 (4)0.038 (5)0.055 (4)0.011 (3)0.003 (3)0.000 (4)
C80.042 (3)0.037 (5)0.036 (3)0.005 (3)0.003 (3)0.002 (3)
C90.042 (3)0.047 (6)0.035 (3)0.001 (3)0.003 (2)0.001 (3)
C100.045 (3)0.031 (4)0.034 (3)0.002 (3)0.008 (3)0.001 (3)
C110.049 (3)0.032 (4)0.039 (3)0.002 (3)0.009 (2)0.000 (4)
C120.043 (3)0.048 (6)0.041 (3)0.005 (3)0.004 (3)0.001 (3)
C130.051 (4)0.073 (7)0.068 (5)0.007 (4)0.005 (4)0.010 (5)
C140.051 (5)0.096 (9)0.069 (6)0.019 (5)0.006 (4)0.022 (6)
C150.038 (3)0.051 (5)0.039 (3)0.001 (3)0.003 (3)0.009 (4)
C160.047 (4)0.038 (5)0.062 (5)0.003 (3)0.001 (3)0.009 (4)
C170.056 (4)0.051 (6)0.051 (4)0.001 (4)0.006 (3)0.020 (4)
C180.036 (3)0.058 (6)0.048 (4)0.011 (3)0.004 (3)0.006 (4)
C190.042 (4)0.060 (7)0.050 (4)0.007 (3)0.002 (3)0.000 (4)
C200.051 (4)0.046 (6)0.051 (4)0.014 (4)0.004 (3)0.011 (4)
C210.058 (5)0.079 (8)0.061 (5)0.003 (5)0.014 (4)0.006 (5)
Br10.0612 (5)0.0547 (7)0.0674 (5)0.0142 (4)0.0173 (4)0.0042 (5)
Br20.0953 (9)0.0421 (9)0.0444 (5)0.0000.0037 (5)0.000
Br30.0607 (6)0.0392 (8)0.0460 (5)0.0000.0141 (4)0.000
Geometric parameters (Å, º) top
Pd1—S12.2603 (17)C10—H100.9800
Pd1—N12.093 (6)C10—C111.522 (10)
Pd1—C81.946 (8)C11—H11A0.9700
Pd1—Br12.4663 (10)C11—H11B0.9700
S1—C91.836 (7)C11—C121.537 (9)
S1—C151.789 (7)C12—H120.9800
N1—C11.335 (9)C12—C131.517 (11)
N1—C51.330 (10)C12—C141.527 (10)
N2—C51.405 (9)C13—H13A0.9600
N2—C61.387 (10)C13—H13B0.9600
N2—C81.340 (9)C13—H13C0.9600
N3—C71.396 (10)C14—H14A0.9600
N3—C81.328 (9)C14—H14B0.9600
N3—C101.470 (9)C14—H14C0.9600
C1—H10.9300C15—C161.376 (11)
C1—C21.397 (13)C15—C201.384 (11)
C2—H20.9300C16—H160.9300
C2—C31.354 (15)C16—C171.380 (11)
C3—H30.9300C17—H170.9300
C3—C41.373 (12)C17—C181.393 (12)
C4—H40.9300C18—C191.379 (11)
C4—C51.376 (11)C18—C211.511 (10)
C6—H60.9300C19—H190.9300
C6—C71.329 (10)C19—C201.370 (10)
C7—H70.9300C20—H200.9300
C9—H9A0.9700C21—H21A0.9600
C9—H9B0.9700C21—H21B0.9600
C9—C101.513 (9)C21—H21C0.9600
S1—Pd1—Br191.46 (5)C9—C10—H10107.3
N1—Pd1—S1170.64 (19)C9—C10—C11113.1 (6)
N1—Pd1—Br197.90 (19)C11—C10—H10107.3
C8—Pd1—S192.2 (2)C10—C11—H11A108.3
C8—Pd1—N178.4 (3)C10—C11—H11B108.3
C8—Pd1—Br1175.9 (2)C10—C11—C12116.1 (7)
C9—S1—Pd1106.2 (2)H11A—C11—H11B107.4
C15—S1—Pd1111.0 (2)C12—C11—H11A108.3
C15—S1—C997.2 (3)C12—C11—H11B108.3
C1—N1—Pd1126.7 (6)C11—C12—H12108.5
C5—N1—Pd1114.3 (5)C13—C12—C11108.0 (7)
C5—N1—C1119.0 (7)C13—C12—H12108.5
C6—N2—C5131.8 (6)C13—C12—C14110.6 (7)
C8—N2—C5118.1 (7)C14—C12—C11112.7 (6)
C8—N2—C6110.0 (6)C14—C12—H12108.5
C7—N3—C10125.5 (6)C12—C13—H13A109.5
C8—N3—C7109.3 (6)C12—C13—H13B109.5
C8—N3—C10124.9 (6)C12—C13—H13C109.5
N1—C1—H1119.5H13A—C13—H13B109.5
N1—C1—C2121.1 (9)H13A—C13—H13C109.5
C2—C1—H1119.5H13B—C13—H13C109.5
C1—C2—H2120.8C12—C14—H14A109.5
C3—C2—C1118.4 (8)C12—C14—H14B109.5
C3—C2—H2120.8C12—C14—H14C109.5
C2—C3—H3119.4H14A—C14—H14B109.5
C2—C3—C4121.3 (9)H14A—C14—H14C109.5
C4—C3—H3119.4H14B—C14—H14C109.5
C3—C4—H4121.5C16—C15—S1116.9 (6)
C3—C4—C5117.0 (10)C16—C15—C20120.2 (7)
C5—C4—H4121.5C20—C15—S1122.7 (6)
N1—C5—N2113.0 (6)C15—C16—H16120.4
N1—C5—C4123.2 (8)C15—C16—C17119.2 (8)
C4—C5—N2123.8 (8)C17—C16—H16120.4
N2—C6—H6126.8C16—C17—H17119.3
C7—C6—N2106.5 (7)C16—C17—C18121.4 (8)
C7—C6—H6126.8C18—C17—H17119.3
N3—C7—H7126.3C17—C18—C21121.0 (8)
C6—C7—N3107.4 (7)C19—C18—C17117.9 (7)
C6—C7—H7126.3C19—C18—C21121.1 (8)
N2—C8—Pd1116.1 (5)C18—C19—H19119.3
N3—C8—Pd1137.2 (6)C20—C19—C18121.5 (8)
N3—C8—N2106.7 (7)C20—C19—H19119.3
S1—C9—H9A108.7C15—C20—H20120.1
S1—C9—H9B108.7C19—C20—C15119.7 (8)
H9A—C9—H9B107.6C19—C20—H20120.1
C10—C9—S1114.1 (5)C18—C21—H21A109.5
C10—C9—H9A108.7C18—C21—H21B109.5
C10—C9—H9B108.7C18—C21—H21C109.5
N3—C10—C9111.0 (5)H21A—C21—H21B109.5
N3—C10—H10107.3H21A—C21—H21C109.5
N3—C10—C11110.6 (5)H21B—C21—H21C109.5
Pd1—S1—C9—C1058.1 (5)C7—N3—C8—Pd1179.7 (6)
Pd1—S1—C15—C16143.9 (5)C7—N3—C8—N20.4 (8)
Pd1—S1—C15—C2041.2 (7)C7—N3—C10—C9144.6 (7)
Pd1—N1—C1—C2179.1 (6)C7—N3—C10—C1189.0 (8)
Pd1—N1—C5—N20.3 (8)C8—N2—C5—N11.1 (9)
Pd1—N1—C5—C4179.8 (6)C8—N2—C5—C4178.8 (8)
S1—C9—C10—N369.7 (7)C8—N2—C6—C70.8 (9)
S1—C9—C10—C1155.2 (7)C8—N3—C7—C60.9 (9)
S1—C15—C16—C17173.9 (6)C8—N3—C10—C941.5 (9)
S1—C15—C20—C19173.0 (6)C8—N3—C10—C1184.8 (8)
N1—C1—C2—C30.7 (14)C9—S1—C15—C16105.7 (6)
N2—C6—C7—N31.0 (9)C9—S1—C15—C2069.3 (7)
N3—C10—C11—C1268.7 (7)C9—C10—C11—C12166.1 (5)
C1—N1—C5—N2178.3 (7)C10—N3—C7—C6173.7 (7)
C1—N1—C5—C41.8 (12)C10—N3—C8—Pd15.0 (11)
C1—C2—C3—C40.5 (15)C10—N3—C8—N2174.3 (6)
C2—C3—C4—C50.9 (15)C10—C11—C12—C13176.6 (6)
C3—C4—C5—N11.6 (13)C10—C11—C12—C1460.9 (9)
C3—C4—C5—N2178.6 (8)C15—S1—C9—C10172.5 (5)
C5—N1—C1—C21.3 (12)C15—C16—C17—C181.5 (13)
C5—N2—C6—C7177.4 (7)C16—C15—C20—C191.8 (12)
C5—N2—C8—Pd12.0 (8)C16—C17—C18—C193.5 (12)
C5—N2—C8—N3177.4 (6)C16—C17—C18—C21174.6 (8)
C6—N2—C5—N1177.5 (7)C17—C18—C19—C202.9 (12)
C6—N2—C5—C42.4 (13)C18—C19—C20—C150.3 (12)
C6—N2—C8—Pd1179.2 (5)C20—C15—C16—C171.2 (12)
C6—N2—C8—N30.2 (8)C21—C18—C19—C20175.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br10.932.903.510 (10)124
C6—H6···Br2i0.932.743.661 (9)173
C10—H10···Br30.982.783.624 (7)144
C16—H16···Br3ii0.933.113.742 (7)127
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

The authors thank Ms Y. Zhu for technical assistance.

Funding information

Funding for this research was provided by: the Natural Science Foundation of Henan Province (grant No. 242300420186).

References

First citationAhrens, S., Zeller, A., Taige, M. & Strassner, T. (2006). Organometallics, 25, 5409–5415.  Web of Science CSD CrossRef CAS Google Scholar
First citationBierenstiel, M. & Cross, E. D. (2011). Coord. Chem. Rev. 255, 574–590.  Web of Science CrossRef CAS Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGardiner, M. G. & Ho, C. C. (2018). Coord. Chem. Rev. 375, 373–388.  CrossRef CAS Google Scholar
First citationHopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. (2014). Nature, 510, 485–496.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMeng, X., Yang, L., Liu, Q., Dong, Z., Yuan, J., Xiao, Y. & Mao, P. (2022). Chin. J. Org. Chem. 42, 3747–3756.  CrossRef CAS Google Scholar
First citationMeyer, D., Zeller, A. & Strassner, T. (2012). J. Organomet. Chem. 701, 56–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPeris, E. & Crabtree, R. H. (2004). Coord. Chem. Rev. 248, 2239–2246.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, L., Guo, M., Yuan, J., Wangx, J., Xia, Y., Xiao, Y. & Mao, P. (2023). Chin. J. Org. Chem. 43, 2002–2025.  CrossRef CAS Google Scholar
First citationYang, L., Yuan, J., Mao, P. & Guo, Q. (2015). RSC Adv. 5, 107601–107607.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, L., Zhang, W., Xiao, Y. & Mao, P. (2016). ChemistrySelect, 4, 680–684.  Web of Science CSD CrossRef Google Scholar
First citationYang, L., Zhang, X., Yuan, J., Xiao, Y. & Mao, P. (2016). J. Organomet. Chem. 818, 179–184.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146