organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethidium benzoate methanol monosolvate

crossmark logo

aDepartment of Applied Chemistry, Faculty of Science Division I, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
*Correspondence e-mail: sadakiyo@rs.tus.ac.jp

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 27 March 2024; accepted 8 April 2024; online 18 April 2024)

In the title salt solvate (systematic name: 8-amino-5-ethyl-6-phenyl­phenanthridin-5-ium benzoate methanol monosolvate), C21H20N3+·C6H5CO2·CH3OH, two ethidium cations, C21H20N3+, dimerize about a twofold axis through ππ inter­actions [inter-centroid separation = 3.6137 (4) Å]. The benzoate anions are connected through hydrogen bonding with the –NH2 groups of the ethidium cations and the –OH group of the MeOH mol­ecule. The MeOH mol­ecule also accepts a hydrogen bond from the –NH2 group of the ethidium cation. The result is a one-dimensional hydrogen-bonded chain along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ethidium salts have various applications such as an inter­calator for DNA (Chen et al., 2000[Chen, W., Turro, N. J. & Tomalia, D. A. (2000). Langmuir, 16, 15-19.]) and as a building block for covalent organic frameworks (Ma et al., 2016[Ma, H., Liu, B., Li, B., Zhang, L., Li, Y.-G., Tan, H.-Q., Zang, H.-Y. & Zhu, G. (2016). J. Am. Chem. Soc. 138, 5897-5903.]). In this study, the structure of a new ethidium salt solvate, C21H20N3+·C6H5CO2·MeOH, is reported (Fig. 1[link]). The dihedral angle between the pendant ring and the fused ring system is 77.01 (6)°. Two ethidium cations associate about a twofold axis via ππ stacking (Fig. 2[link]). The closest separation between the mol­ecular planes is approximately 3.4 Å [the CgCg separation is 3.6137 (4) Å], indicating the presence of ππ inter­actions. The three components of C21H20N3+·C6H5CO2·CH3OH are connected by hydrogen bonds (Table 1[link]) formed along the b-axis direction, resulting in the formation of a one-dimensional hydrogen-bonded chain (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.84 1.85 2.6636 (17) 163
N2—H2⋯O1ii 0.88 2.09 2.8741 (18) 148
N2—H2A⋯O2iii 0.88 2.06 2.9271 (17) 169
N3—H3A⋯O1 0.88 2.18 2.9264 (18) 142
N3—H3B⋯O3iv 0.88 2.09 2.939 (2) 162
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+1, y-1, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The structure of the crystallographically independent mol­ecules in C21H20N3+·C6H5CO2·CH3OH with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The dimer formed by two ethidium cations. The CgCg separations [inter-centroid separation: 3.6137 (4) Å] are indicated as purple dotted lines.
[Figure 3]
Figure 3
An illustration of the hydrogen-bonding network. Hydrogen bonds are shown as dotted lines.

Synthesis and crystallization

An aqueous solution (120 ml) of silver(I) benzoate (45.8 mg 0.20 mmol) was mixed with an aqueous solution (200 ml) of ethidium bromide (78.9 mg, 0.20 mmol) and then the mixture was stirred overnight at room temperature. After that, the precipitate was removed by centrifugation. The remaining solution was evaporated to obtain a crude powder. The powder was dissolved in methanol (4 ml) and the remaining precipitate was again removed by centrifugation. By evaporation of the remaining solution, a red powder was obtained. Red single crystals of [C21H20N3][C6H5CO2]·MeOH were obtained by slow evaporation (for 11 days) of a solution of the powder (7 mg) dissolved in 1 ml of a mixed solvent system, H2O/MeOH (1:1).

Refinement

Details of crystal data, data collection and structure refinement are given in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H20N3+·C7H5O2·CH4O
Mr 467.55
Crystal system, space group Monoclinic, C2/c
Temperature (K) 90
a, b, c (Å) 22.0407 (6), 12.4642 (3), 18.0706 (5)
β (°) 107.4952 (10)
V3) 4734.7 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.30 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker PHOTON II CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29963, 6087, 4736
Rint 0.064
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.150, 1.05
No. of reflections 6087
No. of parameters 319
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.27
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2019 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218-224.]).

Structural data


Computing details top

8-Amino-5-ethyl-6-phenylphenanthridin-5-ium benzoate methanol monosolvate top
Crystal data top
C21H20N3+·C7H5O2·CH4OF(000) = 1984
Mr = 467.55Dx = 1.312 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
a = 22.0407 (6) ÅCell parameters from 6092 reflections
b = 12.4642 (3) Åθ = 2.8–28.6°
c = 18.0706 (5) ŵ = 0.09 mm1
β = 107.4952 (10)°T = 90 K
V = 4734.7 (2) Å3Block, red
Z = 80.30 × 0.15 × 0.10 mm
Data collection top
Bruker PHOTON II CPAD
diffractometer
4736 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.064
φ and ω scansθmax = 29.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2927
Tmin = 0.691, Tmax = 0.746k = 1615
29963 measured reflectionsl = 2424
6087 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0683P)2 + 4.3384P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6087 reflectionsΔρmax = 0.51 e Å3
319 parametersΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All hydrogen atoms are geometrically fixed using a riding-model approximation with C—H = 0.95 (for phenyl), 0.98 (for methyl), 0.99 (for methylene), O—H = 0.84 and N—H = 0.88 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.41329 (6)0.45032 (9)0.33925 (7)0.0185 (3)
O10.69273 (5)0.72829 (8)0.31166 (7)0.0271 (3)
C10.52679 (7)0.33972 (11)0.35270 (8)0.0188 (3)
C20.52645 (7)0.45352 (11)0.35874 (8)0.0187 (3)
C30.46802 (7)0.28272 (11)0.33491 (8)0.0189 (3)
O20.69837 (6)0.89712 (9)0.27351 (7)0.0308 (3)
C40.41035 (7)0.33857 (11)0.32620 (8)0.0190 (3)
C50.58308 (7)0.51335 (11)0.36914 (8)0.0203 (3)
H50.5819260.5893380.3725570.024*
C60.46801 (7)0.50549 (11)0.35457 (8)0.0184 (3)
O30.29255 (6)0.86288 (10)0.36827 (7)0.0333 (3)
H30.2975560.8607860.3240120.050*
N20.29253 (6)0.12236 (10)0.26776 (8)0.0271 (3)
H20.2567740.1577190.2614510.033*
H2A0.2916880.0528190.2590980.033*
C70.35174 (7)0.28527 (12)0.30498 (9)0.0209 (3)
H70.3137400.3243330.3002200.025*
C80.58634 (7)0.28949 (12)0.36280 (8)0.0209 (3)
H80.5885370.2133960.3619850.025*
C90.40670 (7)0.11801 (12)0.30101 (9)0.0230 (3)
H90.4056050.0426530.2928100.028*
C100.64007 (7)0.46248 (12)0.37438 (8)0.0206 (3)
N30.69510 (7)0.51611 (11)0.38180 (9)0.0291 (3)
H3A0.6957080.5866760.3834930.035*
H3B0.7302140.4803610.3849300.035*
C110.64045 (7)0.34775 (12)0.37364 (8)0.0217 (3)
H110.6796460.3112160.3809300.026*
C120.46366 (7)0.17005 (12)0.32241 (9)0.0213 (3)
H120.5015700.1298710.3291740.026*
C130.34882 (7)0.17493 (12)0.29078 (8)0.0213 (3)
C140.35344 (7)0.50599 (12)0.33950 (9)0.0218 (3)
H140.3175460.4783660.2964210.026*
H14A0.3575630.5838360.3312710.026*
C150.46851 (7)0.62318 (11)0.36976 (8)0.0195 (3)
C160.68832 (7)0.82758 (12)0.31927 (9)0.0223 (3)
C170.67009 (7)0.86787 (12)0.38850 (9)0.0236 (3)
C180.49149 (8)0.66099 (13)0.44535 (9)0.0255 (3)
H180.5038790.6118050.4873790.031*
C190.33973 (8)0.48795 (14)0.41613 (10)0.0298 (4)
H190.3402120.4108520.4269400.045*
H19A0.2978110.5174640.4129630.045*
H19B0.3723240.5238970.4578910.045*
C200.65307 (9)0.97436 (14)0.39351 (10)0.0342 (4)
H200.6520141.0225970.3524410.041*
C210.45042 (8)0.69580 (12)0.30839 (9)0.0240 (3)
H210.4344560.6704720.2565660.029*
C220.49639 (9)0.77075 (13)0.45959 (10)0.0300 (4)
H220.5118660.7963410.5114000.036*
C230.47885 (8)0.84285 (13)0.39869 (10)0.0289 (4)
H230.4825780.9178110.4085180.035*
C240.67216 (9)0.79923 (14)0.44987 (10)0.0324 (4)
H240.6834120.7260780.4471660.039*
C250.45578 (8)0.80517 (13)0.32318 (10)0.0278 (3)
H250.4435640.8546010.2812900.033*
C260.64006 (9)0.94195 (15)0.51899 (10)0.0340 (4)
H260.6294930.9670490.5632070.041*
C270.63763 (10)1.01061 (15)0.45818 (11)0.0374 (4)
H270.6252791.0832220.4606470.045*
C280.65795 (10)0.83670 (15)0.51494 (11)0.0391 (4)
H280.6605630.7894930.5570560.047*
C290.30916 (9)0.76352 (14)0.40501 (11)0.0351 (4)
H290.3542490.7491240.4120050.053*
H29A0.2832180.7069410.3729690.053*
H29B0.3016190.7649850.4557540.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0208 (6)0.0152 (6)0.0197 (6)0.0019 (4)0.0063 (5)0.0003 (4)
O10.0308 (6)0.0187 (5)0.0341 (6)0.0025 (4)0.0133 (5)0.0023 (4)
C10.0236 (7)0.0166 (7)0.0165 (6)0.0012 (5)0.0064 (5)0.0007 (5)
C20.0223 (7)0.0171 (7)0.0160 (6)0.0022 (5)0.0048 (5)0.0008 (5)
C30.0224 (7)0.0166 (7)0.0188 (7)0.0010 (5)0.0077 (6)0.0001 (5)
O20.0429 (7)0.0208 (6)0.0331 (6)0.0014 (5)0.0181 (5)0.0030 (4)
C40.0244 (7)0.0146 (7)0.0179 (6)0.0012 (5)0.0064 (5)0.0007 (5)
C50.0243 (7)0.0152 (7)0.0212 (7)0.0007 (5)0.0065 (6)0.0011 (5)
C60.0234 (7)0.0155 (7)0.0162 (6)0.0011 (5)0.0056 (5)0.0010 (5)
O30.0448 (7)0.0262 (6)0.0324 (6)0.0095 (5)0.0169 (6)0.0010 (5)
N20.0233 (7)0.0180 (6)0.0405 (8)0.0020 (5)0.0102 (6)0.0053 (5)
C70.0209 (7)0.0184 (7)0.0247 (7)0.0018 (5)0.0085 (6)0.0003 (5)
C80.0241 (7)0.0159 (7)0.0220 (7)0.0031 (5)0.0057 (6)0.0001 (5)
C90.0289 (8)0.0157 (7)0.0254 (7)0.0003 (6)0.0099 (6)0.0015 (5)
C100.0222 (7)0.0201 (7)0.0194 (7)0.0001 (5)0.0061 (6)0.0016 (5)
N30.0231 (7)0.0198 (6)0.0457 (9)0.0012 (5)0.0122 (6)0.0026 (6)
C110.0218 (7)0.0209 (7)0.0225 (7)0.0039 (5)0.0066 (6)0.0013 (5)
C120.0236 (7)0.0174 (7)0.0232 (7)0.0023 (5)0.0077 (6)0.0002 (5)
C130.0248 (7)0.0192 (7)0.0209 (7)0.0012 (5)0.0085 (6)0.0014 (5)
C140.0209 (7)0.0158 (7)0.0294 (8)0.0030 (5)0.0086 (6)0.0010 (5)
C150.0195 (7)0.0157 (7)0.0237 (7)0.0012 (5)0.0069 (6)0.0008 (5)
C160.0204 (7)0.0200 (7)0.0260 (7)0.0001 (5)0.0062 (6)0.0009 (6)
C170.0238 (7)0.0222 (7)0.0239 (7)0.0019 (6)0.0059 (6)0.0005 (6)
C180.0320 (8)0.0208 (7)0.0221 (7)0.0018 (6)0.0059 (6)0.0005 (6)
C190.0331 (9)0.0253 (8)0.0361 (9)0.0038 (6)0.0178 (7)0.0020 (6)
C200.0497 (11)0.0247 (8)0.0302 (9)0.0074 (7)0.0153 (8)0.0053 (7)
C210.0282 (8)0.0194 (7)0.0225 (7)0.0026 (6)0.0048 (6)0.0007 (5)
C220.0408 (10)0.0232 (8)0.0240 (8)0.0001 (7)0.0068 (7)0.0048 (6)
C230.0345 (9)0.0161 (7)0.0347 (9)0.0008 (6)0.0082 (7)0.0033 (6)
C240.0453 (10)0.0225 (8)0.0312 (9)0.0001 (7)0.0140 (8)0.0025 (6)
C250.0335 (9)0.0185 (7)0.0296 (8)0.0043 (6)0.0070 (7)0.0036 (6)
C260.0395 (10)0.0354 (9)0.0285 (8)0.0029 (7)0.0125 (7)0.0045 (7)
C270.0518 (12)0.0271 (9)0.0335 (9)0.0075 (8)0.0133 (8)0.0013 (7)
C280.0572 (12)0.0304 (9)0.0322 (9)0.0039 (8)0.0174 (9)0.0040 (7)
C290.0366 (10)0.0297 (9)0.0391 (10)0.0067 (7)0.0117 (8)0.0031 (7)
Geometric parameters (Å, º) top
N1—C61.3428 (19)C12—H120.9500
N1—C41.4109 (18)C14—C191.520 (2)
N1—C141.4917 (18)C14—H140.9900
O1—C161.2523 (18)C14—H14A0.9900
C1—C81.416 (2)C15—C181.389 (2)
C1—C21.423 (2)C15—C211.394 (2)
C1—C31.427 (2)C16—C171.510 (2)
C2—C51.417 (2)C17—C201.390 (2)
C2—C61.423 (2)C17—C241.390 (2)
C3—C41.416 (2)C18—C221.390 (2)
C3—C121.421 (2)C18—H180.9500
O2—C161.2626 (19)C19—H190.9800
C4—C71.400 (2)C19—H19A0.9800
C5—C101.385 (2)C19—H19B0.9800
C5—H50.9500C20—C271.387 (3)
C6—C151.4918 (19)C20—H200.9500
O3—C291.401 (2)C21—C251.387 (2)
O3—H30.8400C21—H210.9500
N2—C131.353 (2)C22—C231.383 (2)
N2—H20.8800C22—H220.9500
N2—H2A0.8800C23—C251.387 (2)
C7—C131.397 (2)C23—H230.9500
C7—H70.9500C24—C281.386 (3)
C8—C111.359 (2)C24—H240.9500
C8—H80.9500C25—H250.9500
C9—C121.362 (2)C26—C281.378 (3)
C9—C131.422 (2)C26—C271.381 (3)
C9—H90.9500C26—H260.9500
C10—N31.356 (2)C27—H270.9500
C10—C111.430 (2)C28—H280.9500
N3—H3A0.8800C29—H290.9800
N3—H3B0.8800C29—H29A0.9800
C11—H110.9500C29—H29B0.9800
C6—N1—C4122.23 (12)C19—C14—H14A109.5
C6—N1—C14120.09 (12)H14—C14—H14A108.1
C4—N1—C14117.61 (12)C18—C15—C21119.65 (14)
C8—C1—C2117.20 (13)C18—C15—C6119.68 (13)
C8—C1—C3123.55 (13)C21—C15—C6120.51 (13)
C2—C1—C3119.23 (13)O1—C16—O2124.88 (15)
C5—C2—C1120.66 (13)O1—C16—C17117.93 (13)
C5—C2—C6120.96 (13)O2—C16—C17117.19 (13)
C1—C2—C6118.38 (13)C20—C17—C24118.72 (15)
C4—C3—C12116.91 (13)C20—C17—C16121.05 (14)
C4—C3—C1120.27 (13)C24—C17—C16120.19 (14)
C12—C3—C1122.78 (13)C15—C18—C22120.07 (14)
C7—C4—N1120.44 (13)C15—C18—H18120.0
C7—C4—C3121.39 (13)C22—C18—H18120.0
N1—C4—C3118.17 (13)C14—C19—H19109.5
C10—C5—C2120.85 (13)C14—C19—H19A109.5
C10—C5—H5119.6H19—C19—H19A109.5
C2—C5—H5119.6C14—C19—H19B109.5
N1—C6—C2121.34 (13)H19—C19—H19B109.5
N1—C6—C15119.87 (13)H19A—C19—H19B109.5
C2—C6—C15118.77 (13)C27—C20—C17120.36 (16)
C29—O3—H3109.5C27—C20—H20119.8
C13—N2—H2120.0C17—C20—H20119.8
C13—N2—H2A120.0C25—C21—C15119.84 (14)
H2—N2—H2A120.0C25—C21—H21120.1
C13—C7—C4120.35 (13)C15—C21—H21120.1
C13—C7—H7119.8C23—C22—C18120.30 (15)
C4—C7—H7119.8C23—C22—H22119.8
C11—C8—C1121.44 (14)C18—C22—H22119.8
C11—C8—H8119.3C22—C23—C25119.67 (15)
C1—C8—H8119.3C22—C23—H23120.2
C12—C9—C13120.90 (14)C25—C23—H23120.2
C12—C9—H9119.5C28—C24—C17120.51 (16)
C13—C9—H9119.5C28—C24—H24119.7
N3—C10—C5123.17 (14)C17—C24—H24119.7
N3—C10—C11119.10 (14)C23—C25—C21120.46 (15)
C5—C10—C11117.71 (13)C23—C25—H25119.8
C10—N3—H3A120.0C21—C25—H25119.8
C10—N3—H3B120.0C28—C26—C27119.40 (17)
H3A—N3—H3B120.0C28—C26—H26120.3
C8—C11—C10121.88 (14)C27—C26—H26120.3
C8—C11—H11119.1C26—C27—C20120.51 (17)
C10—C11—H11119.1C26—C27—H27119.7
C9—C12—C3121.90 (14)C20—C27—H27119.7
C9—C12—H12119.1C26—C28—C24120.48 (17)
C3—C12—H12119.1C26—C28—H28119.8
N2—C13—C7121.36 (14)C24—C28—H28119.8
N2—C13—C9120.13 (13)O3—C29—H29109.5
C7—C13—C9118.51 (13)O3—C29—H29A109.5
N1—C14—C19110.62 (12)H29—C29—H29A109.5
N1—C14—H14109.5O3—C29—H29B109.5
C19—C14—H14109.5H29—C29—H29B109.5
N1—C14—H14A109.5H29A—C29—H29B109.5
C8—C1—C2—C54.2 (2)C5—C10—C11—C84.5 (2)
C3—C1—C2—C5174.09 (13)C13—C9—C12—C30.4 (2)
C8—C1—C2—C6175.42 (12)C4—C3—C12—C91.7 (2)
C3—C1—C2—C66.3 (2)C1—C3—C12—C9176.06 (14)
C8—C1—C3—C4179.54 (13)C4—C7—C13—N2177.83 (14)
C2—C1—C3—C42.3 (2)C4—C7—C13—C92.2 (2)
C8—C1—C3—C122.8 (2)C12—C9—C13—N2178.47 (14)
C2—C1—C3—C12175.40 (13)C12—C9—C13—C71.5 (2)
C6—N1—C4—C7175.44 (13)C6—N1—C14—C1998.78 (15)
C14—N1—C4—C77.59 (19)C4—N1—C14—C1978.27 (16)
C6—N1—C4—C34.3 (2)N1—C6—C15—C18103.00 (17)
C14—N1—C4—C3172.63 (12)C2—C6—C15—C1875.35 (19)
C12—C3—C4—C71.0 (2)N1—C6—C15—C2181.64 (18)
C1—C3—C4—C7176.79 (13)C2—C6—C15—C21100.00 (17)
C12—C3—C4—N1179.18 (12)O1—C16—C17—C20168.22 (16)
C1—C3—C4—N13.0 (2)O2—C16—C17—C2012.2 (2)
C1—C2—C5—C100.6 (2)O1—C16—C17—C2414.0 (2)
C6—C2—C5—C10178.99 (13)O2—C16—C17—C24165.61 (16)
C4—N1—C6—C20.2 (2)C21—C15—C18—C220.0 (2)
C14—N1—C6—C2176.68 (12)C6—C15—C18—C22175.40 (15)
C4—N1—C6—C15178.53 (12)C24—C17—C20—C270.9 (3)
C14—N1—C6—C151.6 (2)C16—C17—C20—C27178.76 (17)
C5—C2—C6—N1175.22 (13)C18—C15—C21—C250.3 (2)
C1—C2—C6—N15.2 (2)C6—C15—C21—C25175.05 (14)
C5—C2—C6—C156.5 (2)C15—C18—C22—C230.4 (3)
C1—C2—C6—C15173.15 (12)C18—C22—C23—C250.5 (3)
N1—C4—C7—C13178.89 (13)C20—C17—C24—C280.5 (3)
C3—C4—C7—C130.9 (2)C16—C17—C24—C28177.42 (16)
C2—C1—C8—C113.5 (2)C22—C23—C25—C210.2 (3)
C3—C1—C8—C11174.73 (14)C15—C21—C25—C230.2 (3)
C2—C5—C10—N3177.79 (14)C28—C26—C27—C200.1 (3)
C2—C5—C10—C113.7 (2)C17—C20—C27—C261.2 (3)
C1—C8—C11—C100.9 (2)C27—C26—C28—C241.3 (3)
N3—C10—C11—C8176.92 (14)C17—C24—C28—C261.6 (3)
Hydrogen-bond geometry (Å, º) top
Hydrogen-bond geometry (Å, °).
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.841.852.6636 (17)163
N2—H2···O1ii0.882.092.8741 (18)148
N2—H2A···O2iii0.882.062.9271 (17)169
N3—H3A···O10.882.182.9264 (18)142
N3—H3B···O3iv0.882.092.939 (2)162
Symmetry codes: (i) x+1, y, z+1/2; (ii) x1/2, y1/2, z; (iii) x+1, y1, z+1/2; (iv) x+1/2, y1/2, z.
 

Funding information

Financial support from a JSPS Grant-in-Aid for Scientific Research (grant No. 21 K05089) is gratefully acknowledged.

References

First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChen, W., Turro, N. J. & Tomalia, D. A. (2000). Langmuir, 16, 15–19.  Web of Science CrossRef Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, H., Liu, B., Li, B., Zhang, L., Li, Y.-G., Tan, H.-Q., Zang, H.-Y. & Zhu, G. (2016). J. Am. Chem. Soc. 138, 5897–5903.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146