organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

13-Nitro­benzo[a][1,4]benzo­thia­zino[3,2-c]phenoxazine

crossmark logo

aDepartment of Chemistry, College of Science, Alfasial University, Riyadh 11533, Saudi Arabia, bDepartment of Chemistry, Wilkes University, Wilkes Barre, PA, USA, cDepartment of Chemistry, Pennsylvania State University, Scranton, PA 18512, USA, and dDepartment of Physics, Wilkes University, Wilkes Barre, PA, USA
*Correspondence e-mail: mbader@alfaisal.edu

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 3 April 2024; accepted 7 April 2024; online 26 April 2024)

In the title compound, C22H11N3O3S, dihedral angle between the phenyl rings on the periphery of the molecule is 8.05 (18)°. In the crystal, aromatic ππ stacking distance and short C—H⋯O contacts are observed. The maximum absorption occurs at 688 nm.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

One area of inter­est in fused heterocyclic aromatic compounds is their potential to act as alternatives to oligoacenes for use in organic semiconducting devices (McLean et al., 1989[McLean, M. R., Badr, M., Dalton, L. R., Devine, L. R. S. & Steier, W. H. (1989). MRS Online Proceedings Library, 173, 563-566. https://doi.org/10.1557/PROC-173-563], 1990[McLean, M. R., Bader, M., Dalton, L. R., Devine, R. S. & Steier, W. H. (1990). J. Phys. Chem. 94, 4386-4387.]; Pham et al., 2008[Pham, P.-T., Xia, Y., Frisbie, C. D. & Bader, M. (2008). J. Phys. Chem. C, 112, 7968-7971.]). Surprisingly, despite this intensely researched area, structural studies of these materials are scarce. Pheno­thia­zine systems are readily obtained by reaction of halo-p-benzo­quinones and amino thio­phenols (Agarwal et al., 1980[Agarwal, N. L. & Schaefer, W. (1980). J. Org. Chem. 45, 2155-2161.]; Okafor et al., 1988[Okafor, C. O. (1988). Tetrahedron, 44, 1187-1194.]; Spangler et al., 1989[Spangler, C. W., Havelka, K., Bader, M. M., McLean, M. R. & Dalton, L. R. (1989). Proc. SPIE, 1147, 149.]; Faleh et al., 2008[Faleh, A. T., Pham, P.-T. T., Al-Maadeed, M. A. & Bader, M. M. (2008). MRS Online Proceedings Library, 1091, 10910769.]) The title compound, C22H11N3O3S, is an asymmetric mol­ecule with sulfur and oxygen bridging atoms (Fig. 1[link]) that was prepared in two steps.

[Figure 1]
Figure 1
Structure of title compound.with displacement ellipsoids drawn at the 50% probability level.

The mol­ecule is quasi-planar, as indicated by the torsion angles C8—C7—C22—N1 [−179.49 (19)°], S1—C7—C8—C15 [179.71 (16)°] and O2—N3—C11—C10 [−8.3 (3)°]. The nitro group subtends a dihedral angle of 8.0 (3)° with respect to its attached ring. A ππ-stacking distance of 3.290 (3) Å (Fig. 2[link]) and close C—H⋯O inter­actions [H19⋯O2(1 − x, [{3\over 2}] − y, [{1\over 2}] + z) = 2.44, H12⋯O2([{1\over 4}] + x, [{5\over 4}] − y, [{1\over 4}] + z) = 2.50 and H3⋯O3([{3\over 4}] − x, [{1\over 4}] + y, −[{1\over 4}] + z) 2.63 Å] are observed.

[Figure 2]
Figure 2
Stacking of molecules with shortest observed distances (atom to atom).

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) on March 28, 2024 revealed no hits for this compound or any closely related structure. The closest is a structure from our group of the symmetrical mol­ecule 15,16-di­thia-5,10-di­aza­naphtho­[2,3-a]benzo[c]anthracene, (Pham et al., 2008[Pham, P.-T., Xia, Y., Frisbie, C. D. & Bader, M. (2008). J. Phys. Chem. C, 112, 7968-7971.]), which crystallizes in the monoclinic space group P21/c with four mol­ecules in the unit cell. This mol­ecule is also quasi-planar with dihedral angles between the three phenyl rings on the periphery of the mol­ecule ranging from 1.89 to 6.65° and close C—H⋯S and C—H⋯N contacts. In comparison, no C—H⋯S or C—H⋯N close contacts are observed in the title compound.

Synthesis and crystallization

The target mol­ecule was synthesized in a two-step process following published procedures (Agarwal et al., 1980[Agarwal, N. L. & Schaefer, W. (1980). J. Org. Chem. 45, 2155-2161.]; Okafor et al., 1988[Okafor, C. O. (1988). Tetrahedron, 44, 1187-1194.]; Fiester et al., 2023[Fiester, C., Pham, P.-T. T. & Bradley, A. (2023). MRS Advances, 889-893. https://doi.org/10.1557/s43580-023-00609-y]; Spangler et al., 1989[Spangler, C. W., Havelka, K., Bader, M. M., McLean, M. R. & Dalton, L. R. (1989). Proc. SPIE, 1147, 149.]) as shown in Fig. 3[link].

[Figure 3]
Figure 3
Reaction scheme for the preparation of the title compound.

Synthesis of the precursor 6-chloro-9-nitro-5-oxo-5H-benzo[a]phenoxazine (1)

2-Amino-5-nitro­phenol (5 mmol, 0.7612 g) and potassium acetate (5 mmol, 0.7740 g) were combined in 25 mL of ethanol. 2,3-Di­chloro-1,4-napthophenol (5 mmol, 1.120 g) was added to the solution, which was then heated gently for 2 h. The solution was cooled and filtered, resulting in an orange–red solid (1.0028 g, 77%), m.p. 255°C.

Synthesis of the title compound 13-nitro­benzo[a][1,4]benzo­thia­zino[3,2-c]phenoxazine

2-Amino­thio­phenol (excess) and potassium acetate were combined in 10 mL of ethanol. Precursor 1 (0.9781 g, 3.7 mmol) was added to the solution, which was then heated at 60°C for approximately 5 h. The solution was cooled and filtered, resulting in a dark-blue solid (0.4136 g, 33% yield), m.p. 340°C. The product was crystallized by slow evaporation from di­chloro­methane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C22H11N3O3S
Mr 397.40
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 130
a, b, c (Å) 6.7497 (9), 52.478 (7), 18.832 (3)
V3) 6670.5 (16)
Z 16
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.20 × 0.13 × 0.05
 
Data collection
Diffractometer Bruker PHOTON-III CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.681, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22321, 5093, 4718
Rint 0.034
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.03
No. of reflections 5093
No. of parameters 262
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.23
Absolute structure Flack x determined using 2109 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.01 (3)
Computer programs: APEX4 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

13-Nitrobenzo[a][1,4]benzothiazino[3,2-c]phenoxazine top
Crystal data top
C22H11N3O3SDx = 1.583 Mg m3
Mr = 397.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 2857 reflections
a = 6.7497 (9) Åθ = 2.3–30.0°
b = 52.478 (7) ŵ = 0.23 mm1
c = 18.832 (3) ÅT = 130 K
V = 6670.5 (16) Å3Needle, brown
Z = 160.20 × 0.13 × 0.05 mm
F(000) = 3264
Data collection top
Bruker PHOTON-III CPAD
diffractometer
4718 reflections with I > 2σ(I)
Radiation source: micro-focusRint = 0.034
φ and ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 69
Tmin = 0.681, Tmax = 0.746k = 7473
22321 measured reflectionsl = 2626
5093 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0596P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.003
S = 1.03Δρmax = 0.36 e Å3
5093 reflectionsΔρmin = 0.23 e Å3
262 parametersAbsolute structure: Flack x determined using 2109 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.01 (3)
Special details top

Experimental. Prof. M. Bader/C. Fiester

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51936 (8)0.77762 (2)0.36455 (3)0.02344 (12)
O10.4662 (2)0.73153 (2)0.43558 (7)0.0198 (3)
O20.3593 (2)0.64760 (3)0.32680 (8)0.0293 (3)
O30.4057 (3)0.62015 (3)0.41134 (8)0.0338 (4)
N10.5694 (3)0.82016 (3)0.48286 (9)0.0227 (3)
N20.4745 (3)0.72228 (3)0.58474 (9)0.0209 (3)
N30.3919 (3)0.64213 (3)0.38935 (9)0.0225 (3)
C10.5695 (3)0.81010 (4)0.35380 (11)0.0223 (4)
C20.5942 (3)0.81878 (4)0.28432 (12)0.0273 (4)
H20.5819850.8073100.2455380.033*
C30.6371 (3)0.84436 (4)0.27226 (13)0.0312 (4)
H30.6550280.8503280.2250730.037*
C40.6537 (3)0.86123 (4)0.32886 (13)0.0306 (5)
H40.6834670.8786530.3202570.037*
C50.6269 (3)0.85268 (4)0.39781 (13)0.0271 (4)
H50.6370670.8644100.4360660.033*
C60.5849 (3)0.82691 (4)0.41212 (11)0.0227 (4)
C70.5201 (3)0.77476 (3)0.45674 (10)0.0189 (3)
C80.4934 (3)0.75094 (3)0.48421 (10)0.0180 (3)
C90.4496 (3)0.70709 (3)0.46210 (9)0.0177 (3)
C100.4258 (3)0.68769 (3)0.41332 (9)0.0181 (3)
H100.4168430.6910180.3638370.022*
C110.4155 (3)0.66298 (3)0.44028 (10)0.0198 (3)
C120.4311 (3)0.65728 (4)0.51177 (10)0.0225 (4)
H120.4290630.6401180.5278180.027*
C130.4499 (3)0.67737 (4)0.55959 (10)0.0223 (4)
H130.4578680.6739080.6090210.027*
C140.4573 (3)0.70262 (4)0.53568 (10)0.0192 (4)
C150.4910 (3)0.74534 (4)0.55893 (10)0.0184 (3)
C160.5132 (3)0.76694 (4)0.60727 (11)0.0212 (4)
C170.5121 (3)0.76263 (4)0.68082 (11)0.0283 (4)
H170.4927640.7458720.6985690.034*
C180.5391 (4)0.78256 (5)0.72745 (12)0.0370 (5)
H180.5364870.7796040.7772120.044*
C190.5703 (4)0.80725 (5)0.70113 (12)0.0355 (5)
H190.5912780.8209460.7332590.043*
C200.5707 (4)0.81181 (4)0.62893 (11)0.0280 (4)
H200.5914660.8286160.6116900.034*
C210.5408 (3)0.79174 (4)0.58094 (10)0.0214 (4)
C220.5444 (3)0.79669 (4)0.50355 (10)0.0202 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0338 (3)0.01553 (18)0.02103 (19)0.00169 (18)0.00096 (19)0.00055 (17)
O10.0289 (7)0.0131 (5)0.0174 (6)0.0013 (5)0.0005 (5)0.0009 (5)
O20.0431 (9)0.0224 (7)0.0225 (7)0.0040 (7)0.0027 (6)0.0007 (5)
O30.0555 (10)0.0147 (6)0.0313 (8)0.0026 (7)0.0011 (7)0.0011 (6)
N10.0214 (8)0.0178 (7)0.0289 (8)0.0004 (6)0.0017 (7)0.0013 (6)
N20.0239 (8)0.0210 (8)0.0178 (7)0.0016 (6)0.0014 (6)0.0003 (6)
N30.0279 (9)0.0159 (7)0.0236 (7)0.0029 (6)0.0024 (7)0.0003 (6)
C10.0208 (9)0.0172 (8)0.0289 (10)0.0003 (7)0.0003 (7)0.0031 (7)
C20.0299 (10)0.0229 (9)0.0291 (10)0.0020 (8)0.0007 (8)0.0042 (7)
C30.0312 (11)0.0244 (9)0.0380 (11)0.0032 (8)0.0025 (9)0.0089 (8)
C40.0281 (11)0.0201 (9)0.0437 (12)0.0024 (8)0.0029 (9)0.0073 (8)
C50.0230 (10)0.0175 (8)0.0409 (11)0.0015 (7)0.0027 (8)0.0002 (8)
C60.0182 (8)0.0175 (8)0.0323 (10)0.0002 (7)0.0011 (8)0.0011 (7)
C70.0193 (9)0.0164 (8)0.0209 (8)0.0007 (6)0.0008 (6)0.0012 (6)
C80.0185 (8)0.0166 (8)0.0190 (8)0.0012 (6)0.0009 (6)0.0022 (6)
C90.0192 (8)0.0147 (7)0.0191 (8)0.0010 (6)0.0004 (6)0.0022 (6)
C100.0215 (8)0.0145 (7)0.0185 (7)0.0005 (6)0.0001 (7)0.0009 (6)
C110.0214 (9)0.0154 (7)0.0226 (8)0.0013 (7)0.0007 (7)0.0011 (6)
C120.0276 (9)0.0174 (8)0.0223 (9)0.0000 (7)0.0002 (7)0.0030 (6)
C130.0277 (10)0.0198 (9)0.0193 (8)0.0007 (7)0.0003 (7)0.0030 (6)
C140.0202 (8)0.0176 (8)0.0198 (8)0.0008 (6)0.0003 (6)0.0002 (6)
C150.0183 (8)0.0177 (8)0.0193 (8)0.0017 (6)0.0015 (6)0.0005 (6)
C160.0218 (9)0.0215 (8)0.0202 (8)0.0026 (7)0.0026 (7)0.0031 (7)
C170.0381 (11)0.0242 (10)0.0227 (9)0.0014 (8)0.0020 (8)0.0032 (8)
C180.0572 (15)0.0331 (11)0.0208 (9)0.0032 (11)0.0047 (10)0.0081 (9)
C190.0500 (14)0.0286 (11)0.0280 (10)0.0029 (10)0.0051 (10)0.0108 (8)
C200.0322 (11)0.0218 (9)0.0302 (10)0.0005 (8)0.0026 (8)0.0082 (8)
C210.0202 (9)0.0198 (8)0.0244 (9)0.0032 (7)0.0022 (7)0.0049 (7)
C220.0178 (8)0.0184 (8)0.0242 (8)0.0011 (6)0.0006 (6)0.0028 (6)
Geometric parameters (Å, º) top
S1—C71.743 (2)C8—C151.437 (2)
S1—C11.750 (2)C9—C101.381 (2)
O1—C91.381 (2)C9—C141.407 (2)
O1—C81.382 (2)C10—C111.395 (2)
O2—N31.232 (2)C10—H100.9500
O3—N31.229 (2)C11—C121.383 (3)
N1—C221.303 (3)C12—C131.392 (3)
N1—C61.382 (3)C12—H120.9500
N2—C151.309 (2)C13—C141.400 (3)
N2—C141.390 (2)C13—H130.9500
N3—C111.464 (2)C15—C161.461 (3)
C1—C21.396 (3)C16—C171.403 (3)
C1—C61.412 (3)C16—C211.405 (3)
C2—C31.392 (3)C17—C181.378 (3)
C2—H20.9500C17—H170.9500
C3—C41.390 (3)C18—C191.403 (4)
C3—H30.9500C18—H180.9500
C4—C51.385 (3)C19—C201.381 (3)
C4—H40.9500C19—H190.9500
C5—C61.408 (3)C20—C211.403 (3)
C5—H50.9500C20—H200.9500
C7—C81.365 (2)C21—C221.480 (3)
C7—C221.459 (3)
C7—S1—C1101.44 (9)C12—C11—C10123.48 (17)
C9—O1—C8117.11 (14)C12—C11—N3118.98 (16)
C22—N1—C6122.71 (17)C10—C11—N3117.52 (16)
C15—N2—C14116.53 (17)C11—C12—C13118.21 (18)
O3—N3—O2123.65 (18)C11—C12—H12120.9
O3—N3—C11118.20 (17)C13—C12—H12120.9
O2—N3—C11118.16 (17)C12—C13—C14120.79 (18)
C2—C1—C6121.09 (18)C12—C13—H13119.6
C2—C1—S1116.71 (16)C14—C13—H13119.6
C6—C1—S1122.20 (15)N2—C14—C13119.46 (17)
C3—C2—C1119.5 (2)N2—C14—C9122.28 (17)
C3—C2—H2120.2C13—C14—C9118.26 (17)
C1—C2—H2120.2N2—C15—C8123.61 (17)
C4—C3—C2120.4 (2)N2—C15—C16119.62 (18)
C4—C3—H3119.8C8—C15—C16116.75 (17)
C2—C3—H3119.8C17—C16—C21119.87 (19)
C5—C4—C3120.12 (19)C17—C16—C15119.31 (19)
C5—C4—H4119.9C21—C16—C15120.80 (18)
C3—C4—H4119.9C18—C17—C16120.4 (2)
C4—C5—C6121.1 (2)C18—C17—H17119.8
C4—C5—H5119.4C16—C17—H17119.8
C6—C5—H5119.4C17—C18—C19119.7 (2)
N1—C6—C5116.49 (18)C17—C18—H18120.1
N1—C6—C1125.70 (17)C19—C18—H18120.1
C5—C6—C1117.77 (19)C20—C19—C18120.6 (2)
C8—C7—C22120.54 (18)C20—C19—H19119.7
C8—C7—S1117.13 (14)C18—C19—H19119.7
C22—C7—S1122.32 (14)C19—C20—C21120.3 (2)
C7—C8—O1116.19 (16)C19—C20—H20119.9
C7—C8—C15124.04 (17)C21—C20—H20119.9
O1—C8—C15119.76 (16)C20—C21—C16119.16 (19)
C10—C9—O1116.98 (16)C20—C21—C22120.02 (19)
C10—C9—C14122.47 (16)C16—C21—C22120.79 (17)
O1—C9—C14120.55 (16)N1—C22—C7125.41 (18)
C9—C10—C11116.70 (16)N1—C22—C21117.54 (18)
C9—C10—H10121.6C7—C22—C21117.06 (17)
C11—C10—H10121.6
C7—S1—C1—C2175.38 (16)C12—C13—C14—N2179.45 (19)
C7—S1—C1—C64.46 (19)C12—C13—C14—C91.4 (3)
C6—C1—C2—C30.7 (3)C10—C9—C14—N2177.73 (18)
S1—C1—C2—C3179.14 (16)O1—C9—C14—N22.4 (3)
C1—C2—C3—C40.5 (3)C10—C9—C14—C133.1 (3)
C2—C3—C4—C50.2 (3)O1—C9—C14—C13176.79 (17)
C3—C4—C5—C60.7 (3)C14—N2—C15—C80.4 (3)
C22—N1—C6—C5175.21 (19)C14—N2—C15—C16178.93 (16)
C22—N1—C6—C12.4 (3)C7—C8—C15—N2176.72 (19)
C4—C5—C6—N1177.30 (19)O1—C8—C15—N23.7 (3)
C4—C5—C6—C10.5 (3)C7—C8—C15—C161.9 (3)
C2—C1—C6—N1177.8 (2)O1—C8—C15—C16177.73 (16)
S1—C1—C6—N12.0 (3)N2—C15—C16—C171.3 (3)
C2—C1—C6—C50.2 (3)C8—C15—C16—C17179.96 (19)
S1—C1—C6—C5179.61 (15)N2—C15—C16—C21176.93 (18)
C1—S1—C7—C8177.22 (15)C8—C15—C16—C211.7 (3)
C1—S1—C7—C223.86 (19)C21—C16—C17—C180.3 (3)
C22—C7—C8—O1178.25 (16)C15—C16—C17—C18177.9 (2)
S1—C7—C8—O10.7 (2)C16—C17—C18—C190.8 (4)
C22—C7—C8—C151.4 (3)C17—C18—C19—C201.2 (4)
S1—C7—C8—C15179.71 (16)C18—C19—C20—C210.3 (4)
C9—O1—C8—C7176.59 (17)C19—C20—C21—C160.9 (3)
C9—O1—C8—C153.8 (2)C19—C20—C21—C22179.1 (2)
C8—O1—C9—C10178.95 (17)C17—C16—C21—C201.2 (3)
C8—O1—C9—C141.0 (2)C15—C16—C21—C20177.03 (19)
O1—C9—C10—C11178.00 (16)C17—C16—C21—C22179.4 (2)
C14—C9—C10—C111.9 (3)C15—C16—C21—C221.1 (3)
C9—C10—C11—C121.1 (3)C6—N1—C22—C73.1 (3)
C9—C10—C11—N3179.50 (16)C6—N1—C22—C21176.77 (18)
O3—N3—C11—C126.8 (3)C8—C7—C22—N1179.49 (19)
O2—N3—C11—C12173.20 (19)S1—C7—C22—N10.6 (3)
O3—N3—C11—C10171.68 (18)C8—C7—C22—C210.6 (3)
O2—N3—C11—C108.3 (3)S1—C7—C22—C21179.50 (15)
C10—C11—C12—C132.7 (3)C20—C21—C22—N12.3 (3)
N3—C11—C12—C13178.88 (18)C16—C21—C22—N1179.57 (18)
C11—C12—C13—C141.4 (3)C20—C21—C22—C7177.60 (19)
C15—N2—C14—C13176.55 (18)C16—C21—C22—C70.5 (3)
C15—N2—C14—C92.6 (3)
 

Acknowledgements

We are very grateful for the help of Dr Victor Young Jr, director of the X-ray facility at the Department of Chemistry, University of Minnesota, with solving the crystal structure reported. We would like to thank the funding from Wilkes University Department of Chemistry and Biochemistry and the Department of Electrical Engineering and Physics for funding of the project. P-TTP acknowledges support from Penn State Scranton for Professional and Research Development funding.

References

First citationAgarwal, N. L. & Schaefer, W. (1980). J. Org. Chem. 45, 2155–2161.  CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaleh, A. T., Pham, P.-T. T., Al-Maadeed, M. A. & Bader, M. M. (2008). MRS Online Proceedings Library, 1091, 10910769.  Google Scholar
First citationFiester, C., Pham, P.-T. T. & Bradley, A. (2023). MRS Advances, 889–893. https://doi.org/10.1557/s43580-023-00609-y  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcLean, M. R., Bader, M., Dalton, L. R., Devine, R. S. & Steier, W. H. (1990). J. Phys. Chem. 94, 4386–4387.  CrossRef CAS Google Scholar
First citationMcLean, M. R., Badr, M., Dalton, L. R., Devine, L. R. S. & Steier, W. H. (1989). MRS Online Proceedings Library, 173, 563–566. https://doi.org/10.1557/PROC-173-563  Google Scholar
First citationOkafor, C. O. (1988). Tetrahedron, 44, 1187–1194.  CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPham, P.-T., Xia, Y., Frisbie, C. D. & Bader, M. (2008). J. Phys. Chem. C, 112, 7968–7971.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpangler, C. W., Havelka, K., Bader, M. M., McLean, M. R. & Dalton, L. R. (1989). Proc. SPIE, 1147, 149.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146