organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Fluoro­benzyl (Z)-2-(2-oxoindolin-3-yl­­idene)hydrazine-1-carbodi­thio­ate

crossmark logo

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 11 March 2024; accepted 12 March 2024; online 19 March 2024)

The title compound, C16H12FN3OS, a fluorinated di­thio­carbazate imine derivative, was synthesized by the one-pot, multi-component condensation reaction of hydrazine hydrate, carbon di­sulfide, 4-fluoro­benzyl chloride and isatin. The compound demonstrates near-planarity across much of the mol­ecule in the solid state and a Z configuration for the azomethine C=N bond. The Z form is further stabilized by the presence of an intra­molecular N—H⋯O hydrogen bond. In the extended structure, mol­ecules are linked into dimers by N—H⋯O hydrogen bonds and further connected into chains along either [2[\overline{1}]0] or [100] by weak C—H⋯S and C—H⋯F hydrogen bonds, which further link into corrugated sheets and in combination form the overall three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Various sulfur-containing mol­ecules isolated from natural sources have been reported to exhibit a broad spectrum of biological activities (Wang et al., 2020[Wang, N., Saidhareddy, P. & Jiang, X. (2020). Nat. Prod. Rep. 37, 246-275.]; Chen & Li, 2023[Chen, X. & Li, B. (2023). Curr. Opin. Chem. Biol. 76, 102377.]). Some synthetic sulfur-containing drugs inspired by natural products include the anti­biotics dalfopristin and quinupristin, and the anti­cancer agents phthalascidin and ixabepilone (Mustafa & Winum, 2022[Mustafa, M. & Winum, J. Y. (2022). Exp. Opin. Drug. Discov. 17, 501-512.]; Hai et al., 2021[Hai, Y., Wei, M. Y., Wang, C. Y., Gu, Y. C. & Shao, C. L. (2021). Mar. Life Sci. Technol. 3, 488-518.]). The ubiquitous role of fluorine in the design of bioactive mol­ecules is expending rapidly, as a better understanding of the unique properties of this element is gained. The introduction of a fluorinated substituent atom can influence pKa, basicity, dipole moment, conformation, intrinsic potency, membrane permeability, metabolic stability and pharmacokinetic properties (Richardson, 2021[Richardson, P. (2021). Exp. Opin. Drug. Discov. 16, 1261-1286.]; Ali & Zhou, 2023[Ali, S. & Zhou, J. (2023). Eur. J. Med. Chem. 256, 115476.]). The literature reveals that various fluorine- and sulfur-containing drugs have been approved by the US Food and Drug Administration to combat diseases. Some examples are the recently reported lenacapavir for the treatment of HIV-1 infection (Paik, 2022[Paik, J. (2022). Drugs, 82, 1499-1504.]; Han & Lu, 2023[Han, S. & Lu, Y. (2023). Eur. J. Med. Chem. 258, 115586.]) and belzutifan for the treatment of kidney cancer (Deeks, 2021[Deeks, E. D. (2021). Drugs, 81, 1921-1927.]; Fallah et al., 2022[Fallah, J., Brave, M. H., Weinstock, C., Mehta, G. U., Bradford, D., Gittleman, H., Bloomquist, E. W., Charlab, R., Hamed, S. S., Miller, C. P., Dorff, S. E., Chambers, W. A., Mixter, B. D., Dinin, J., Pierce, W. F., Ricks, T. K., Tang, S., Donoghue, M., Pazdur, R., Amiri-Kordestani, L., Ibrahim, A. & Beaver, J. A. (2022). Clin. Cancer Res. 28, 4843-4848.]). As part of our ongoing studies in this area, we now describe the synthesis and structure of the title compound.

The title compound crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in asymmetric unit (Fig. 1[link]). Its conformation and geometric details are similar to those in three closely related compounds; namely (Z)-benzyl 2-(5-methyl-2-oxoindolin-3-yl­idene)hydrazinecarbodi­thio­ate, benzyl 2-(5-chloro-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazine­carbo­di­thio­ate and benzyl 2-(5-bromo-2-oxo-1,2-di­hydro-3H-indol-3-yldene)hydrazinecarbodi­thio­ate (Abdul Manan et al., 2011[Abdul Manan, M. A. F., Crouse, K. A., Tahir, M. I. M., Rosli, R., How, F. N. F., Watkin, D. J. & Slawin, A. M. (2011). J. Chem. Crystallogr. 41, 1630-1641.], 2023[Abdul Manan, M. A. F., Cordes, D. B., McKay, A. P., Mohammat, M. F., Mohd Aluwi, M. F. F. & Jumali, N. S. (2023). IUCrData, 8, x230782.]), the main difference being the dihedral angles between the aromatic rings and isatin moieties; 70.9° in the first, 72.6° in the second and 74.5° in the third compound, while in the title compound this dihedral angle is 82.6 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

In the crystal of the title compound, individual mol­ecules form inversion dimers through pairwise N1—H1⋯O2 [H⋯O = 1.93 (6) Å, N⋯O = 2.844 (10) Å] hydrogen bonds (Table 1[link]) in the common R22(8) motif. A second set of dimers is formed through weak C6—H6⋯S11 [H⋯S = 2.944 (3) Å, C⋯S = 3.819 (11) Å] hydrogen bonds in an R22(18) motif, and the combination of the two dimeric inter­actions forms chains propagating along [2[\overline{1}]0] (Fig. 2[link]). A second set of chains is formed by two pairs of weak hydrogen bonds: two donors, C11—H11A and C17—H17, inter­act simultaneously with S10 [H⋯S 2.918 (2) and 3.028 (3) Å, C⋯S = 3.876 (10) and 3.908 (11) Å] and the donors C14—H14 and C16—H16 inter­act in an alternating fashion with F15 [H⋯F = 2.523 (6) and 2.685 (7) Å, C⋯F = 3.347 (11) and 3.540 (12) Å], forming R21(6) and R22(8) motifs, respectively. This results in flat, tape-like chains running along [100] (Fig. 3[link]), which can combine with either the N—H⋯O hydrogen-bonded dimers, or the weakly hydrogen-bonded dimer, giving corrugated sheets in both cases, lying in the (0[\overline{1}]2) or (0[\overline{1}]1) planes, respectively. The combination of these weaker inter­actions forms the overall three-dimensional structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.96 (3) 1.92 (5) 2.845 (10) 159 (9)
N4—H4⋯O2 0.96 (3) 2.02 (8) 2.725 (10) 128 (8)
C6—H6⋯S11ii 0.95 2.94 3.819 (11) 154
C11—H11A⋯S10iii 0.99 2.92 3.876 (10) 163
C14—H14⋯F15iv 0.95 2.52 3.347 (11) 145
C16—H16⋯F15v 0.95 2.68 3.540 (12) 150
C17—H17⋯S10iii 0.95 3.03 3.908 (11) 155
Symmetry codes: (i) [-x+3, -y, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x-1, y, z]; (iv) [-x+1, -y+2, -z+2]; (v) [-x, -y+2, -z+2].
[Figure 2]
Figure 2
View of the hydrogen-bonded chains along [2[\overline{1}]0] (left to right) formed from alternating N—H⋯O and C—H⋯S hydrogen-bonded dimers with R22(8) and R22(18) motifs, respectively.
[Figure 3]
Figure 3
View of the hydrogen-bonded chains along [100] (top to bottom) formed from a combination of weak C—H⋯S and C—H⋯F hydrogen bonds with R21(6) and R22(8) motifs, respectively.

Synthesis and crystallization

30 ml of an ethano­lic solution of KOH (1.68 g, 0.03 mol, 1.0 eq) was mixed with hydrazine hydrate (1.50 g, 0.03 mol, 99%, 1.0 eq) and stirred at 0°C. Carbon di­sulfide (2.28 g, 0.03 mol, 1.0 eq) followed by 4-fluoro­benzyl chloride (4.34 g, 0.03 mol, 1.0 eq) were added to the initial mixture with constant stirring. After 1 h, 40 ml of an ethano­lic solution of isatin (4.42 g, 0.03 mol, 1.0 eq) were added and the resulting mixture was heated under reflux for 3 h. A yellow solid product was formed, which was then filtered and dried over silica gel, yielding yellow crystals on recystallization from ethanol solution (yield: 8.1 g, 78%). m.p. 214–215°C; 1H (400 MHz, d6-DMSO) δ: (p.p.m.): 4.51 (s, 2H), 6.90 (d, J = 7.89 Hz, 1H) 7.03 (t, J = 7.21 Hz, 1H), 7.13 (t, J = 17.69 Hz, 2H), 7.36 (td, J = 14.25, 8.19 Hz, 1H), 7.44–7.49 (m, 3H), 11.32 (s, 1H), 13.92 (s, 1H); 19F{1H} (376 MHz, d6-DMSO) δ: (p.p.m): −114.82; HRMS m/z (ESI+), found: [M + H]+ 346.0480, C16H12FN3OS2 requires [M + H]+ 346.0484.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The structure was refined as a two component twin with component 2 rotated by −179.99° around [−0.00 − 0.00 1.00] (reciprocal) or [−0.31 0.02 0.95] (direct), and a refined twin fraction of 0.451 (3).

Table 2
Experimental details

Crystal data
Chemical formula C16H12FN3OS2
Mr 345.41
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 125
a, b, c (Å) 6.7949 (2), 6.9491 (2), 16.7080 (8)
α, β, γ (°) 89.525 (3), 82.547 (3), 82.347 (3)
V3) 775.25 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.28
Crystal size (mm) 0.13 × 0.03 × 0.01
 
Data collection
Diffractometer Rigaku XtaLAB P200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.651, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21967, 7828, 6291
Rint 0.072
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.106, 0.268, 1.00
No. of reflections 7828
No. of parameters 215
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.94
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

4-Fluorobenzyl (Z)-2-(2-oxoindolin-3-ylidene)hydrazine-1-carbodithioate top
Crystal data top
C16H12FN3OS2Z = 2
Mr = 345.41F(000) = 356
Triclinic, P1Dx = 1.480 Mg m3
a = 6.7949 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 6.9491 (2) ÅCell parameters from 4435 reflections
c = 16.7080 (8) Åθ = 6.6–75.3°
α = 89.525 (3)°µ = 3.28 mm1
β = 82.547 (3)°T = 125 K
γ = 82.347 (3)°Needle, yellow
V = 775.25 (5) Å30.13 × 0.03 × 0.01 mm
Data collection top
Rigaku XtaLAB P200K
diffractometer
7828 independent reflections
Radiation source: Rotating Anode, Rigaku MM-007HF6291 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.072
Detector resolution: 5.8140 pixels mm-1θmax = 76.0°, θmin = 2.7°
shutterless scansh = 88
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 88
Tmin = 0.651, Tmax = 1.000l = 2020
21967 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.106H-atom parameters constrained
wR(F2) = 0.268 w = 1/[σ2(Fo2) + (0.020P)2 + 9.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
7828 reflectionsΔρmax = 0.89 e Å3
215 parametersΔρmin = 0.94 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S100.9380 (4)0.0909 (4)0.82867 (14)0.0439 (6)
S110.5880 (4)0.2351 (4)0.73604 (14)0.0429 (6)
F150.2547 (9)0.9804 (10)0.9766 (3)0.0562 (16)
O21.3272 (9)0.0761 (10)0.5848 (4)0.0400 (15)
N11.2988 (12)0.1631 (13)0.4524 (5)0.0385 (18)
H11.430 (7)0.105 (13)0.430 (5)0.046*
N30.8885 (11)0.2295 (11)0.6073 (5)0.0373 (18)
N40.9629 (12)0.1679 (13)0.6748 (5)0.0405 (19)
H41.103 (6)0.123 (14)0.677 (6)0.049*
C21.2330 (14)0.1453 (14)0.5322 (6)0.038 (2)
C31.0120 (13)0.2237 (14)0.5419 (6)0.037 (2)
C40.9678 (15)0.2821 (14)0.4622 (6)0.042 (2)
C50.7917 (16)0.3639 (15)0.4326 (6)0.045 (2)
H50.6701880.3931440.4679680.053*
C60.7985 (17)0.4011 (15)0.3513 (6)0.048 (3)
H60.6791270.4529490.3304860.058*
C70.9757 (17)0.3643 (15)0.2992 (6)0.049 (3)
H70.9765630.3922050.2434340.059*
C81.1512 (17)0.2875 (15)0.3280 (6)0.048 (3)
H81.2732950.2635800.2926390.057*
C91.1449 (15)0.2465 (15)0.4086 (6)0.041 (2)
C100.8446 (14)0.1609 (15)0.7460 (6)0.042 (2)
C110.4666 (14)0.2322 (15)0.8402 (5)0.043 (2)
H11A0.3442410.1685520.8417320.051*
H11B0.5581020.1544450.8733650.051*
C120.4107 (14)0.4338 (15)0.8764 (5)0.041 (2)
C130.5556 (15)0.5522 (16)0.8848 (6)0.046 (3)
H130.6920850.5065350.8667800.055*
C140.5052 (16)0.7368 (16)0.9192 (6)0.047 (2)
H140.6046310.8175430.9254520.056*
C150.3072 (16)0.7973 (17)0.9436 (6)0.047 (3)
C160.1582 (15)0.6873 (16)0.9379 (5)0.042 (2)
H160.0224360.7349700.9564360.051*
C170.2117 (15)0.5020 (17)0.9037 (6)0.046 (3)
H170.1110060.4216220.8990650.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S100.0359 (12)0.0552 (17)0.0425 (12)0.0080 (12)0.0098 (10)0.0027 (11)
S110.0303 (11)0.0540 (16)0.0450 (12)0.0058 (11)0.0070 (10)0.0004 (11)
F150.060 (4)0.058 (4)0.051 (3)0.015 (3)0.002 (3)0.008 (3)
O20.032 (3)0.047 (4)0.042 (3)0.003 (3)0.009 (3)0.002 (3)
N10.032 (4)0.042 (5)0.041 (4)0.004 (4)0.006 (3)0.001 (3)
N30.029 (4)0.032 (5)0.052 (4)0.005 (3)0.007 (3)0.005 (4)
N40.039 (5)0.043 (5)0.043 (4)0.014 (4)0.007 (3)0.000 (4)
C20.040 (5)0.030 (5)0.045 (5)0.011 (4)0.007 (4)0.007 (4)
C30.032 (5)0.032 (5)0.049 (5)0.008 (4)0.010 (4)0.004 (4)
C40.045 (6)0.032 (5)0.054 (5)0.017 (5)0.016 (4)0.001 (4)
C50.043 (6)0.044 (6)0.050 (5)0.008 (5)0.017 (4)0.003 (5)
C60.056 (7)0.038 (6)0.056 (6)0.007 (5)0.030 (5)0.007 (5)
C70.072 (8)0.037 (6)0.043 (5)0.009 (5)0.021 (5)0.003 (4)
C80.062 (7)0.041 (6)0.044 (5)0.012 (5)0.014 (5)0.002 (4)
C90.045 (6)0.037 (6)0.046 (5)0.017 (5)0.014 (4)0.000 (4)
C100.033 (5)0.043 (6)0.051 (5)0.007 (4)0.007 (4)0.009 (4)
C110.038 (5)0.047 (6)0.044 (5)0.013 (5)0.002 (4)0.006 (4)
C120.040 (5)0.047 (6)0.035 (5)0.008 (5)0.005 (4)0.005 (4)
C130.032 (5)0.050 (7)0.057 (6)0.005 (5)0.008 (4)0.006 (5)
C140.050 (6)0.046 (7)0.047 (5)0.015 (5)0.010 (5)0.001 (5)
C150.049 (6)0.055 (7)0.037 (5)0.006 (5)0.008 (4)0.001 (5)
C160.041 (5)0.051 (7)0.034 (5)0.005 (5)0.001 (4)0.000 (4)
C170.038 (5)0.063 (8)0.039 (5)0.015 (5)0.008 (4)0.006 (5)
Geometric parameters (Å, º) top
S10—C101.637 (10)C6—C71.387 (15)
S11—C101.780 (10)C7—H70.9500
S11—C111.828 (9)C7—C81.383 (14)
F15—C151.375 (12)C8—H80.9500
O2—C21.213 (11)C8—C91.371 (13)
N1—H10.96 (3)C11—H11A0.9900
N1—C21.360 (12)C11—H11B0.9900
N1—C91.412 (12)C11—C121.512 (14)
N3—N41.339 (10)C12—C131.386 (13)
N3—C31.286 (11)C12—C171.391 (13)
N4—H40.96 (3)C13—H130.9500
N4—C101.351 (12)C13—C141.392 (15)
C2—C31.516 (13)C14—H140.9500
C3—C41.445 (13)C14—C151.365 (14)
C4—C51.403 (13)C15—C161.360 (14)
C4—C91.399 (13)C16—H160.9500
C5—H50.9500C16—C171.396 (15)
C5—C61.376 (13)C17—H170.9500
C6—H60.9500
C10—S11—C11102.7 (5)C8—C9—N1129.8 (10)
C2—N1—H1121 (6)C8—C9—C4122.1 (10)
C2—N1—C9112.3 (8)S10—C10—S11126.9 (6)
C9—N1—H1126 (6)N4—C10—S10121.4 (7)
C3—N3—N4117.2 (8)N4—C10—S11111.6 (7)
N3—N4—H4124 (6)S11—C11—H11A109.1
N3—N4—C10121.9 (8)S11—C11—H11B109.1
C10—N4—H4114 (6)H11A—C11—H11B107.9
O2—C2—N1128.1 (9)C12—C11—S11112.4 (7)
O2—C2—C3126.4 (9)C12—C11—H11A109.1
N1—C2—C3105.5 (8)C12—C11—H11B109.1
N3—C3—C2126.7 (9)C13—C12—C11121.1 (9)
N3—C3—C4127.3 (9)C13—C12—C17118.7 (10)
C4—C3—C2105.9 (8)C17—C12—C11120.2 (9)
C5—C4—C3132.9 (10)C12—C13—H13119.3
C9—C4—C3108.3 (9)C12—C13—C14121.3 (10)
C9—C4—C5118.9 (9)C14—C13—H13119.3
C4—C5—H5120.7C13—C14—H14121.3
C6—C5—C4118.7 (10)C15—C14—C13117.4 (10)
C6—C5—H5120.7C15—C14—H14121.3
C5—C6—H6119.3C14—C15—F15118.1 (9)
C5—C6—C7121.4 (10)C16—C15—F15117.8 (9)
C7—C6—H6119.3C16—C15—C14124.2 (11)
C6—C7—H7119.8C15—C16—H16121.2
C8—C7—C6120.4 (9)C15—C16—C17117.7 (10)
C8—C7—H7119.8C17—C16—H16121.2
C7—C8—H8120.8C12—C17—C16120.8 (10)
C9—C8—C7118.5 (10)C12—C17—H17119.6
C9—C8—H8120.8C16—C17—H17119.6
C4—C9—N1108.1 (8)
S11—C11—C12—C1361.5 (11)C5—C4—C9—N1179.5 (8)
S11—C11—C12—C17120.0 (8)C5—C4—C9—C80.6 (14)
F15—C15—C16—C17179.4 (8)C5—C6—C7—C80.5 (16)
O2—C2—C3—N30.1 (15)C6—C7—C8—C90.8 (15)
O2—C2—C3—C4177.7 (9)C7—C8—C9—N1177.9 (10)
N1—C2—C3—N3177.8 (9)C7—C8—C9—C40.7 (15)
N1—C2—C3—C40.3 (10)C9—N1—C2—O2178.4 (9)
N3—N4—C10—S10178.3 (7)C9—N1—C2—C30.5 (10)
N3—N4—C10—S111.7 (12)C9—C4—C5—C61.8 (14)
N3—C3—C4—C52.4 (17)C10—S11—C11—C12103.8 (7)
N3—C3—C4—C9178.4 (9)C11—S11—C10—S104.6 (8)
N4—N3—C3—C23.1 (13)C11—S11—C10—N4175.4 (7)
N4—N3—C3—C4179.9 (9)C11—C12—C13—C14179.0 (9)
C2—N1—C9—C41.1 (11)C11—C12—C17—C16179.5 (9)
C2—N1—C9—C8179.9 (10)C12—C13—C14—C150.6 (15)
C2—C3—C4—C5179.9 (10)C13—C12—C17—C161.0 (14)
C2—C3—C4—C90.9 (10)C13—C14—C15—F15179.0 (9)
C3—N3—N4—C10177.4 (9)C13—C14—C15—C161.4 (15)
C3—C4—C5—C6179.1 (10)C14—C15—C16—C170.9 (15)
C3—C4—C9—N11.2 (10)C15—C16—C17—C120.3 (14)
C3—C4—C9—C8179.9 (9)C17—C12—C13—C140.5 (15)
C4—C5—C6—C71.8 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.96 (3)1.92 (5)2.845 (10)159 (9)
N4—H4···O20.96 (3)2.02 (8)2.725 (10)128 (8)
C6—H6···S11ii0.952.943.819 (11)154
C11—H11A···S10iii0.992.923.876 (10)163
C14—H14···F15iv0.952.523.347 (11)145
C16—H16···F15v0.952.683.540 (12)150
C17—H17···S10iii0.953.033.908 (11)155
Symmetry codes: (i) x+3, y, z+1; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+2, z+2; (v) x, y+2, z+2.
 

Funding information

The authors acknowledge Universiti Teknologi MARA for financial support.

References

First citationAbdul Manan, M. A. F., Cordes, D. B., McKay, A. P., Mohammat, M. F., Mohd Aluwi, M. F. F. & Jumali, N. S. (2023). IUCrData, 8, x230782.  Google Scholar
First citationAbdul Manan, M. A. F., Crouse, K. A., Tahir, M. I. M., Rosli, R., How, F. N. F., Watkin, D. J. & Slawin, A. M. (2011). J. Chem. Crystallogr. 41, 1630–1641.  CAS Google Scholar
First citationAli, S. & Zhou, J. (2023). Eur. J. Med. Chem. 256, 115476.  CrossRef PubMed Google Scholar
First citationChen, X. & Li, B. (2023). Curr. Opin. Chem. Biol. 76, 102377.  CrossRef PubMed Google Scholar
First citationDeeks, E. D. (2021). Drugs, 81, 1921–1927.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFallah, J., Brave, M. H., Weinstock, C., Mehta, G. U., Bradford, D., Gittleman, H., Bloomquist, E. W., Charlab, R., Hamed, S. S., Miller, C. P., Dorff, S. E., Chambers, W. A., Mixter, B. D., Dinin, J., Pierce, W. F., Ricks, T. K., Tang, S., Donoghue, M., Pazdur, R., Amiri-Kordestani, L., Ibrahim, A. & Beaver, J. A. (2022). Clin. Cancer Res. 28, 4843–4848.  CrossRef CAS PubMed Google Scholar
First citationHai, Y., Wei, M. Y., Wang, C. Y., Gu, Y. C. & Shao, C. L. (2021). Mar. Life Sci. Technol. 3, 488–518.  CrossRef CAS PubMed Google Scholar
First citationHan, S. & Lu, Y. (2023). Eur. J. Med. Chem. 258, 115586.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMustafa, M. & Winum, J. Y. (2022). Exp. Opin. Drug. Discov. 17, 501–512.  CrossRef CAS Google Scholar
First citationPaik, J. (2022). Drugs, 82, 1499–1504.  CrossRef CAS PubMed Google Scholar
First citationRichardson, P. (2021). Exp. Opin. Drug. Discov. 16, 1261–1286.  CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, N., Saidhareddy, P. & Jiang, X. (2020). Nat. Prod. Rep. 37, 246–275.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146