

ISSN 2414-3146

Received 11 March 2024 Accepted 12 March 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

**Keywords:** crystal structure; dithiocarbazate; fluorine; isatin; z configuration; hydrogen bond.

CCDC reference: 2339543

**Structural data:** full structural data are available from iucrdata.iucr.org

## 4-Fluorobenzyl (Z)-2-(2-oxoindolin-3-ylidene) hydrazine-1-carbodithioate

## Mohd Abdul Fatah Abdul Manan,<sup>a</sup>\* David B. Cordes<sup>b</sup> and Aidan P. McKay<sup>b</sup>

<sup>a</sup>Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and <sup>b</sup>EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom. \*Correspondence e-mail: abdfatah@uitm.edu.my

The title compound,  $C_{16}H_{12}FN_3OS$ , a fluorinated dithiocarbazate imine derivative, was synthesized by the one-pot, multi-component condensation reaction of hydrazine hydrate, carbon disulfide, 4-fluorobenzyl chloride and isatin. The compound demonstrates near-planarity across much of the molecule in the solid state and a Z configuration for the azomethine C=N bond. The Z form is further stabilized by the presence of an intramolecular N-H···O hydrogen bond. In the extended structure, molecules are linked into dimers by N-H···O hydrogen bonds and further connected into chains along either [210] or [100] by weak C-H···S and C-H···F hydrogen bonds, which further link into corrugated sheets and in combination form the overall three-dimensional network.



#### Structure description

Various sulfur-containing molecules isolated from natural sources have been reported to exhibit a broad spectrum of biological activities (Wang *et al.*, 2020; Chen & Li, 2023). Some synthetic sulfur-containing drugs inspired by natural products include the antibiotics dalfopristin and quinupristin, and the anticancer agents phthalascidin and ixabepilone (Mustafa & Winum, 2022; Hai *et al.*, 2021). The ubiquitous role of fluorine in the design of bioactive molecules is expending rapidly, as a better understanding of the unique properties of this element is gained. The introduction of a fluorinated substituent atom can influence  $pK_a$ , basicity, dipole moment, conformation, intrinsic potency, membrane permeability, metabolic stability and pharmacokinetic properties (Richardson, 2021; Ali & Zhou, 2023). The literature reveals that various fluorine- and sulfur-containing drugs have been approved by the US Food and Drug Administration to combat diseases. Some examples are the recently reported lenacapavir for the treatment of HIV-1 infection (Paik, 2022; Han & Lu, 2023) and belzutifan for the treatment of





Figure 1

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

kidney cancer (Deeks, 2021; Fallah *et al.*, 2022). As part of our ongoing studies in this area, we now describe the synthesis and structure of the title compound.

The title compound crystallizes in the triclinic space group  $P\overline{1}$  with one molecule in asymmetric unit (Fig. 1). Its conformation and geometric details are similar to those in three closely related compounds; namely (Z)-benzyl 2-(5-methyl-2-oxoindolin-3-ylidene)hydrazinecarbodithioate, benzyl 2-(5-chloro-2-oxo-1,2-dihydro-3H-indol-3-ylidene)hydrazine-carbodithioate and benzyl 2-(5-bromo-2-oxo-1,2-dihydro-3H-indol-3-ylidene)hydrazinecarbodithioate (Abdul Manan *et al.*, 2011, 2023), the main difference being the dihedral angles between the aromatic rings and isatin moieties; 70.9° in the first, 72.6° in the second and 74.5° in the third compound, while in the title compound this dihedral angle is 82.6 (4)°.

In the crystal of the title compound, individual molecules form inversion dimers through pairwise N1-H1...O2 [H...O = 1.93 (6) Å, N...O = 2.844 (10) Å] hydrogen bonds (Table 1) in the common  $R_2^2(8)$  motif. A second set of dimers is formed through weak C6-H6...S11 [H...S = 2.944 (3) Å, C...S = 3.819 (11) Å] hydrogen bonds in an  $R_2^2(18)$  motif, and the combination of the two dimeric interactions forms chains propagating along [210] (Fig. 2). A second set of chains is formed by two pairs of weak hydrogen bonds: two donors, C11-H11A and C17-H17, interact simultaneously with S10 [H...S 2.918 (2) and 3.028 (3) Å, C...S = 3.876 (10) and 3.908 (11) Å] and the donors C14-H14 and C16-H16 interact in an alternating fashion with F15 [H...F = 2.523 (6)



Figure 2

View of the hydrogen-bonded chains along  $[2\overline{10}]$  (left to right) formed from alternating N-H···O and C-H···S hydrogen-bonded dimers with  $R_2^2(8)$  and  $R_2^2(18)$  motifs, respectively.

Table 1Hydrogen-bond geometry (Å,  $^{\circ}$ ).

|                                          | •        |                         |              |                                      |
|------------------------------------------|----------|-------------------------|--------------|--------------------------------------|
| $D - H \cdot \cdot \cdot A$              | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
| $N1-H1\cdots O2^{i}$                     | 0.96 (3) | 1.92 (5)                | 2.845 (10)   | 159 (9)                              |
| $N4-H4\cdots O2$                         | 0.96 (3) | 2.02 (8)                | 2.725 (10)   | 128 (8)                              |
| $C6-H6\cdots S11^{ii}$                   | 0.95     | 2.94                    | 3.819 (11)   | 154                                  |
| $C11 - H11A \cdot \cdot \cdot S10^{iii}$ | 0.99     | 2.92                    | 3.876 (10)   | 163                                  |
| $C14-H14\cdots F15^{iv}$                 | 0.95     | 2.52                    | 3.347 (11)   | 145                                  |
| $C16-H16\cdots F15^{v}$                  | 0.95     | 2.68                    | 3.540 (12)   | 150                                  |
| $C17 - H17 \cdots S10^{iii}$             | 0.95     | 3.03                    | 3.908 (11)   | 155                                  |
|                                          |          |                         |              |                                      |

Symmetry codes: (i) -x + 3, -y, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x - 1, y, z; (iv) -x + 1, -y + 2, -z + 2; (v) -x, -y + 2, -z + 2.

and 2.685 (7) Å,  $C \cdots F = 3.347$  (11) and 3.540 (12) Å], forming  $R_2^1(6)$  and  $R_2^2(8)$  motifs, respectively. This results in flat, tapelike chains running along [100] (Fig. 3), which can combine with either the N-H···O hydrogen-bonded dimers, or the weakly hydrogen-bonded dimer, giving corrugated sheets in both cases, lying in the (012) or (011) planes, respectively. The combination of these weaker interactions forms the overall three-dimensional structure.

#### Synthesis and crystallization

30 ml of an ethanolic solution of KOH (1.68 g, 0.03 mol, 1.0 eq) was mixed with hydrazine hydrate (1.50 g, 0.03 mol, 99%, 1.0 eq) and stirred at 0°C. Carbon disulfide (2.28 g, 0.03 mol, 1.0 eq) followed by 4-fluorobenzyl chloride (4.34 g, 0.03 mol, 1.0 eq) were added to the initial mixture with constant stirring. After 1 h, 40 ml of an ethanolic solution of isatin (4.42 g, 0.03 mol, 1.0 eq) were added and the resulting mixture was heated under reflux for 3 h. A yellow solid product was formed, which was then filtered and dried over silica gel, yielding yellow crystals on recystallization from ethanol solution (yield: 8.1 g, 78%). m.p. 214–215°C; <sup>1</sup>H (400 MHz,  $d_6$ -DMSO)  $\delta$ : (p.p.m.): 4.51 (s, 2H), 6.90 (d, J = 7.89 Hz, 1H) 7.03 (t, J = 7.21 Hz, 1H), 7.13 (t, J = 17.69 Hz, 2H), 7.36 (td, J = 14.25, 8.19 Hz, 1H), 7.44–7.49 (m, 3H), 11.32  $(s, 1H), 13.92 (s, 1H); {}^{19}F{}^{1}H{} (376 \text{ MHz}, d_6\text{-DMSO}) \delta: (p.p.m):$ -114.82; HRMS m/z (ESI<sup>+</sup>), found:  $[M + H]^+$  346.0480,  $C_{16}H_{12}FN_3OS_2$  requires  $[M + H]^+$  346.0484.



#### Figure 3

View of the hydrogen-bonded chains along [100] (top to bottom) formed from a combination of weak C-H···S and C-H···F hydrogen bonds with  $R_2^1(6)$  and  $R_2^2(8)$  motifs, respectively.

## Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The structure was refined as a two component twin with component 2 rotated by  $-179.99^{\circ}$  around  $[-0.00 - 0.00 \ 1.00]$  (reciprocal) or  $[-0.31 \ 0.02 \ 0.95]$  (direct), and a refined twin fraction of 0.451 (3).

## **Funding information**

The authors acknowledge Universiti Teknologi MARA for financial support.

## References

- Abdul Manan, M. A. F., Cordes, D. B., McKay, A. P., Mohammat, M. F., Mohd Aluwi, M. F. F. & Jumali, N. S. (2023). *IUCrData*, **8**, x230782.
- Abdul Manan, M. A. F., Crouse, K. A., Tahir, M. I. M., Rosli, R., How, F. N. F., Watkin, D. J. & Slawin, A. M. (2011). *J. Chem. Crystallogr.* 41, 1630–1641.
- Ali, S. & Zhou, J. (2023). Eur. J. Med. Chem. 256, 115476.
- Chen, X. & Li, B. (2023). Curr. Opin. Chem. Biol. 76, 102377.
- Deeks, E. D. (2021). Drugs, 81, 1921-1927.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fallah, J., Brave, M. H., Weinstock, C., Mehta, G. U., Bradford, D., Gittleman, H., Bloomquist, E. W., Charlab, R., Hamed, S. S., Miller, C. P., Dorff, S. E., Chambers, W. A., Mixter, B. D., Dinin, J., Pierce, W. F., Ricks, T. K., Tang, S., Donoghue, M., Pazdur, R., Amiri-Kordestani, L., Ibrahim, A. & Beaver, J. A. (2022). *Clin. Cancer Res.* 28, 4843–4848.
- Hai, Y., Wei, M. Y., Wang, C. Y., Gu, Y. C. & Shao, C. L. (2021). Mar. Life Sci. Technol. 3, 488–518.
- Han, S. & Lu, Y. (2023). Eur. J. Med. Chem. 258, 115586.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Mustafa, M. & Winum, J. Y. (2022). *Exp. Opin. Drug. Discov.* **17**, 501–512.
- Paik, J. (2022). Drugs, 82, 1499-1504.

#### Table 2

Experimental details.

| Crystal data                                                                 |                                                     |
|------------------------------------------------------------------------------|-----------------------------------------------------|
| Chemical formula                                                             | $C_{16}H_{12}FN_3OS_2$                              |
| M <sub>r</sub>                                                               | 345.41                                              |
| Crystal system, space group                                                  | Triclinic, $P\overline{1}$                          |
| Temperature (K)                                                              | 125                                                 |
| a, b, c (Å)                                                                  | 6.7949 (2), 6.9491 (2), 16.7080 (8)                 |
| $\alpha, \beta, \gamma$ (°)                                                  | 89.525 (3), 82.547 (3), 82.347 (3)                  |
| $V(Å^3)$                                                                     | 775.25 (5)                                          |
| Z                                                                            | 2                                                   |
| Radiation type                                                               | Cu Ka                                               |
| $\mu \text{ (mm}^{-1})$                                                      | 3.28                                                |
| Crystal size (mm)                                                            | $0.13 \times 0.03 \times 0.01$                      |
| Data collection                                                              |                                                     |
| Diffractometer                                                               | Rigaku XtaLAB P200K                                 |
| Absorption correction                                                        | Multi-scan ( <i>CrysAlis PRO</i> ; Rigaku OD, 2023) |
| $T_{\min}, T_{\max}$                                                         | 0.651, 1.000                                        |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections     | 21967, 7828, 6291                                   |
| R <sub>int</sub>                                                             | 0.072                                               |
| $(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$                           | 0.629                                               |
| Refinement                                                                   |                                                     |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                          | 0.106, 0.268, 1.00                                  |
| No. of reflections                                                           | 7828                                                |
| No. of parameters                                                            | 215                                                 |
| No. of restraints                                                            | 2                                                   |
| H-atom treatment                                                             | H-atom parameters constrained                       |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.89, -0.94                                         |
|                                                                              |                                                     |

Computer programs: CrysAlis PRO (Rigaku OD, 2023), SHELXT (Sheldrick, 2015a), SHELXL2019/3 (Sheldrick, 2015b), Mercury (Macrae et al., 2020), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Richardson, P. (2021). Exp. Opin. Drug. Discov. 16, 1261-1286.

- Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Wang, N., Saidhareddy, P. & Jiang, X. (2020). *Nat. Prod. Rep.* **37**, 246–275.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# full crystallographic data

## *IUCrData* (2024). **9**, x240235 [https://doi.org/10.1107/S2414314624002359]

## 4-Fluorobenzyl (Z)-2-(2-oxoindolin-3-ylidene)hydrazine-1-carbodithioate

Z = 2

F(000) = 356

 $\theta = 6.6 - 75.3^{\circ}$ 

 $\mu = 3.28 \text{ mm}^{-1}$ 

Needle, yellow

 $0.13 \times 0.03 \times 0.01 \text{ mm}$ 

T = 125 K

 $D_{\rm x} = 1.480 {\rm Mg} {\rm m}^{-3}$ 

Cu *K* $\alpha$  radiation,  $\lambda = 1.54184$  Å

Cell parameters from 4435 reflections

Mohd Abdul Fatah Abdul Manan, David B. Cordes and Aidan P. McKay

4-Fluorobenzyl (Z)-2-(2-oxoindolin-3-ylidene)hydrazine-1-carbodithioate

Crystal data

C<sub>16</sub>H<sub>12</sub>FN<sub>3</sub>OS<sub>2</sub>  $M_r = 345.41$ Triclinic, *P*1 a = 6.7949 (2) Å b = 6.9491 (2) Å c = 16.7080 (8) Å  $\alpha = 89.525$  (3)°  $\beta = 82.547$  (3)°  $\gamma = 82.347$  (3)° V = 775.25 (5) Å<sup>3</sup>

#### Data collection

| Rigaku XtaLAB P200K<br>diffractometer                               | $T_{\min} = 0.651, T_{\max} = 1.000$<br>21967 measured reflections       |
|---------------------------------------------------------------------|--------------------------------------------------------------------------|
| Radiation source: Rotating Anode, Rigaku                            | 7828 independent reflections                                             |
| MM-007HF                                                            | 6291 reflections with $I > 2\sigma(I)$                                   |
| Rigaku Osmic Confocal Optical System                                | $R_{\rm int} = 0.072$                                                    |
| monochromator                                                       | $\theta_{\text{max}} = 76.0^{\circ},  \theta_{\text{min}} = 2.7^{\circ}$ |
| Detector resolution: 5.8140 pixels mm <sup>-1</sup>                 | $h = -8 \rightarrow 8$                                                   |
| shutterless scans                                                   | $k = -8 \rightarrow 8$                                                   |
| Absorption correction: multi-scan<br>(CrysAlisPro; Rigaku OD, 2023) | $l = -20 \rightarrow 20$                                                 |

## Refinement

| Refinement on $F^2$             | Primary atom site location: dual                           |
|---------------------------------|------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: mixed                              |
| $R[F^2 > 2\sigma(F^2)] = 0.106$ | H-atom parameters constrained                              |
| $wR(F^2) = 0.268$               | $w = 1/[\sigma^2(F_o^2) + (0.020P)^2 + 9.4P]$              |
| S = 1.00                        | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 7828 reflections                | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 215 parameters                  | $\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 2 restraints                    | $\Delta \rho_{\rm min} = -0.94 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

## Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

|      | x           | у           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|-------------|-------------|--------------|-----------------------------|--|
| S10  | 0.9380 (4)  | 0.0909 (4)  | 0.82867 (14) | 0.0439 (6)                  |  |
| S11  | 0.5880 (4)  | 0.2351 (4)  | 0.73604 (14) | 0.0429 (6)                  |  |
| F15  | 0.2547 (9)  | 0.9804 (10) | 0.9766 (3)   | 0.0562 (16)                 |  |
| O2   | 1.3272 (9)  | 0.0761 (10) | 0.5848 (4)   | 0.0400 (15)                 |  |
| N1   | 1.2988 (12) | 0.1631 (13) | 0.4524 (5)   | 0.0385 (18)                 |  |
| H1   | 1.430 (7)   | 0.105 (13)  | 0.430 (5)    | 0.046*                      |  |
| N3   | 0.8885 (11) | 0.2295 (11) | 0.6073 (5)   | 0.0373 (18)                 |  |
| N4   | 0.9629 (12) | 0.1679 (13) | 0.6748 (5)   | 0.0405 (19)                 |  |
| H4   | 1.103 (6)   | 0.123 (14)  | 0.677 (6)    | 0.049*                      |  |
| C2   | 1.2330 (14) | 0.1453 (14) | 0.5322 (6)   | 0.038 (2)                   |  |
| C3   | 1.0120 (13) | 0.2237 (14) | 0.5419 (6)   | 0.037 (2)                   |  |
| C4   | 0.9678 (15) | 0.2821 (14) | 0.4622 (6)   | 0.042 (2)                   |  |
| C5   | 0.7917 (16) | 0.3639 (15) | 0.4326 (6)   | 0.045 (2)                   |  |
| Н5   | 0.670188    | 0.393144    | 0.467968     | 0.053*                      |  |
| C6   | 0.7985 (17) | 0.4011 (15) | 0.3513 (6)   | 0.048 (3)                   |  |
| H6   | 0.679127    | 0.452949    | 0.330486     | 0.058*                      |  |
| C7   | 0.9757 (17) | 0.3643 (15) | 0.2992 (6)   | 0.049 (3)                   |  |
| H7   | 0.976563    | 0.392205    | 0.243434     | 0.059*                      |  |
| C8   | 1.1512 (17) | 0.2875 (15) | 0.3280 (6)   | 0.048 (3)                   |  |
| H8   | 1.273295    | 0.263580    | 0.292639     | 0.057*                      |  |
| C9   | 1.1449 (15) | 0.2465 (15) | 0.4086 (6)   | 0.041 (2)                   |  |
| C10  | 0.8446 (14) | 0.1609 (15) | 0.7460 (6)   | 0.042 (2)                   |  |
| C11  | 0.4666 (14) | 0.2322 (15) | 0.8402 (5)   | 0.043 (2)                   |  |
| H11A | 0.344241    | 0.168552    | 0.841732     | 0.051*                      |  |
| H11B | 0.558102    | 0.154445    | 0.873365     | 0.051*                      |  |
| C12  | 0.4107 (14) | 0.4338 (15) | 0.8764 (5)   | 0.041 (2)                   |  |
| C13  | 0.5556 (15) | 0.5522 (16) | 0.8848 (6)   | 0.046 (3)                   |  |
| H13  | 0.692085    | 0.506535    | 0.866780     | 0.055*                      |  |
| C14  | 0.5052 (16) | 0.7368 (16) | 0.9192 (6)   | 0.047 (2)                   |  |
| H14  | 0.604631    | 0.817543    | 0.925452     | 0.056*                      |  |
| C15  | 0.3072 (16) | 0.7973 (17) | 0.9436 (6)   | 0.047 (3)                   |  |
| C16  | 0.1582 (15) | 0.6873 (16) | 0.9379 (5)   | 0.042 (2)                   |  |
| H16  | 0.022436    | 0.734970    | 0.956436     | 0.051*                      |  |
| C17  | 0.2117 (15) | 0.5020 (17) | 0.9037 (6)   | 0.046 (3)                   |  |
| H17  | 0.111006    | 0.421622    | 0.899065     | 0.055*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| S10 | 0.0359 (12) | 0.0552 (17) | 0.0425 (12) | -0.0080 (12) | -0.0098 (10) | 0.0027 (11)  |
| S11 | 0.0303 (11) | 0.0540 (16) | 0.0450 (12) | -0.0058 (11) | -0.0070 (10) | -0.0004 (11) |
| F15 | 0.060 (4)   | 0.058 (4)   | 0.051 (3)   | -0.015 (3)   | -0.002 (3)   | -0.008 (3)   |
| O2  | 0.032 (3)   | 0.047 (4)   | 0.042 (3)   | -0.003 (3)   | -0.009 (3)   | -0.002 (3)   |
| N1  | 0.032 (4)   | 0.042 (5)   | 0.041 (4)   | -0.004 (4)   | -0.006 (3)   | -0.001 (3)   |
| N3  | 0.029 (4)   | 0.032 (5)   | 0.052 (4)   | -0.005 (3)   | -0.007 (3)   | -0.005 (4)   |
|     |             |             |             |              |              |              |

| N4  | 0.039 (5) | 0.043 (5) | 0.043 (4) | -0.014 (4) | -0.007 (3) | 0.000 (4)  |
|-----|-----------|-----------|-----------|------------|------------|------------|
| C2  | 0.040 (5) | 0.030 (5) | 0.045 (5) | -0.011 (4) | -0.007 (4) | -0.007 (4) |
| C3  | 0.032 (5) | 0.032 (5) | 0.049 (5) | -0.008(4)  | -0.010 (4) | -0.004 (4) |
| C4  | 0.045 (6) | 0.032 (5) | 0.054 (5) | -0.017 (5) | -0.016 (4) | -0.001 (4) |
| C5  | 0.043 (6) | 0.044 (6) | 0.050 (5) | -0.008 (5) | -0.017 (4) | -0.003 (5) |
| C6  | 0.056 (7) | 0.038 (6) | 0.056 (6) | -0.007(5)  | -0.030(5)  | 0.007 (5)  |
| C7  | 0.072 (8) | 0.037 (6) | 0.043 (5) | -0.009 (5) | -0.021 (5) | 0.003 (4)  |
| C8  | 0.062 (7) | 0.041 (6) | 0.044 (5) | -0.012 (5) | -0.014 (5) | -0.002 (4) |
| C9  | 0.045 (6) | 0.037 (6) | 0.046 (5) | -0.017 (5) | -0.014 (4) | 0.000 (4)  |
| C10 | 0.033 (5) | 0.043 (6) | 0.051 (5) | -0.007 (4) | -0.007 (4) | -0.009 (4) |
| C11 | 0.038 (5) | 0.047 (6) | 0.044 (5) | -0.013 (5) | -0.002 (4) | 0.006 (4)  |
| C12 | 0.040 (5) | 0.047 (6) | 0.035 (5) | -0.008 (5) | -0.005 (4) | 0.005 (4)  |
| C13 | 0.032 (5) | 0.050 (7) | 0.057 (6) | -0.005 (5) | -0.008 (4) | 0.006 (5)  |
| C14 | 0.050 (6) | 0.046 (7) | 0.047 (5) | -0.015 (5) | -0.010 (5) | 0.001 (5)  |
| C15 | 0.049 (6) | 0.055 (7) | 0.037 (5) | -0.006 (5) | -0.008 (4) | 0.001 (5)  |
| C16 | 0.041 (5) | 0.051 (7) | 0.034 (5) | -0.005 (5) | -0.001 (4) | 0.000 (4)  |
| C17 | 0.038 (5) | 0.063 (8) | 0.039 (5) | -0.015 (5) | -0.008 (4) | 0.006 (5)  |
|     |           |           |           |            |            |            |

Geometric parameters (Å, °)

| S10—C10     | 1.637 (10) | C6—C7         | 1.387 (15) |  |
|-------------|------------|---------------|------------|--|
| S11-C10     | 1.780 (10) | С7—Н7         | 0.9500     |  |
| S11—C11     | 1.828 (9)  | C7—C8         | 1.383 (14) |  |
| F15—C15     | 1.375 (12) | C8—H8         | 0.9500     |  |
| O2—C2       | 1.213 (11) | C8—C9         | 1.371 (13) |  |
| N1—H1       | 0.96 (3)   | C11—H11A      | 0.9900     |  |
| N1-C2       | 1.360 (12) | C11—H11B      | 0.9900     |  |
| N1-C9       | 1.412 (12) | C11—C12       | 1.512 (14) |  |
| N3—N4       | 1.339 (10) | C12—C13       | 1.386 (13) |  |
| N3—C3       | 1.286 (11) | C12—C17       | 1.391 (13) |  |
| N4—H4       | 0.96 (3)   | C13—H13       | 0.9500     |  |
| N4-C10      | 1.351 (12) | C13—C14       | 1.392 (15) |  |
| С2—С3       | 1.516 (13) | C14—H14       | 0.9500     |  |
| C3—C4       | 1.445 (13) | C14—C15       | 1.365 (14) |  |
| C4—C5       | 1.403 (13) | C15—C16       | 1.360 (14) |  |
| С4—С9       | 1.399 (13) | C16—H16       | 0.9500     |  |
| С5—Н5       | 0.9500     | C16—C17       | 1.396 (15) |  |
| С5—С6       | 1.376 (13) | C17—H17       | 0.9500     |  |
| С6—Н6       | 0.9500     |               |            |  |
| C10—S11—C11 | 102.7 (5)  | C8—C9—N1      | 129.8 (10) |  |
| C2—N1—H1    | 121 (6)    | C8—C9—C4      | 122.1 (10) |  |
| C2—N1—C9    | 112.3 (8)  | S10-C10-S11   | 126.9 (6)  |  |
| C9—N1—H1    | 126 (6)    | N4—C10—S10    | 121.4 (7)  |  |
| C3—N3—N4    | 117.2 (8)  | N4—C10—S11    | 111.6 (7)  |  |
| N3—N4—H4    | 124 (6)    | S11—C11—H11A  | 109.1      |  |
| N3—N4—C10   | 121.9 (8)  | S11—C11—H11B  | 109.1      |  |
| C10—N4—H4   | 114 (6)    | H11A—C11—H11B | 107.9      |  |

| $O_2 C_2 N_1$                       | 128 1 (0)               | C12 C11 S11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112 A (7)            |
|-------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 02 - 02 - 03                        | 126.4 (9)               | C12 - C11 - H11A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.1                |
| N1 - C2 - C3                        | 105 5 (8)               | C12 $C11$ $H11B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.1                |
| $N_3 = C_3 = C_2$                   | 126.7(9)                | $C_{12} = C_{12} = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.1 (9)            |
| $N_3 - C_3 - C_4$                   | 120.7(9)<br>1273(9)     | $C_{13}$ $C_{12}$ $C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.1(9)<br>1187(10) |
| $C_{4}$ $C_{3}$ $C_{2}$             | 127.5(9)<br>105.9(8)    | $C_{12}^{}C_{12}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{}C_{11}^{-$ | 120.2 (9)            |
| $C_{1}^{-} = C_{2}^{-} = C_{2}^{-}$ | 132.9(10)               | C12 - C12 - C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.2 ())            |
| $C_{3}$                             | 102.9(10)               | $C_{12} = C_{13} = C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.3<br>121.3 (10)  |
| $C_{2} = C_{4} = C_{2}$             | 108.5(9)<br>118.0(0)    | C12 - C13 - C14<br>C14 - C13 - H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 121.3 (10)           |
| $C_{4}$ $C_{5}$ $H_{5}$             | 110.9 (9)               | $C_{14} = C_{13} = 1113$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.5                |
| $C_{4} = C_{5} = C_{4}$             | 120.7<br>118 7 (10)     | $C_{15} = C_{14} = 1114$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.3<br>117.4(10)   |
| C6 C5 U5                            | 118.7 (10)              | C15 - C14 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117.4 (10)           |
|                                     | 120.7                   | C13 - C14 - H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.5                |
| $C_{5}$                             | 119.5                   | C14—C15—F15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118.1 (9)            |
| $C_{3}$                             | 121.4 (10)              | C16—C15—F15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117.8 (9)            |
| $C/-C_0-H_0$                        | 119.3                   | C16-C15-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124.2 (11)           |
| C6-C/-H/                            | 119.8                   | C15-C16-H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121.2                |
| C8—C7—C6                            | 120.4 (9)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117.7 (10)           |
| C8—C7—H7                            | 119.8                   | С17—С16—Н16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 121.2                |
| С7—С8—Н8                            | 120.8                   | C12—C17—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.8 (10)           |
| C9—C8—C7                            | 118.5 (10)              | С12—С17—Н17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.6                |
| С9—С8—Н8                            | 120.8                   | C16—C17—H17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.6                |
| C4—C9—N1                            | 108.1 (8)               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| S11-C11-C12-C13                     | -61.5 (11)              | C5—C4—C9—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -179.5 (8)           |
| S11-C11-C12-C17                     | 120.0 (8)               | $C_{5} - C_{4} - C_{9} - C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.6(14)             |
| F15-C15-C16-C17                     | 179 4 (8)               | $C_{5} - C_{6} - C_{7} - C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5(16)              |
| 02-C2-C3-N3                         | -0.1(15)                | C6-C7-C8-C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.8(15)              |
| 02 - 02 - 03 - 04                   | -1777(9)                | C7-C8-C9-N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 177.9(10)            |
| N1 - C2 - C3 - N3                   | 177 8 (9)               | C7-C8-C9-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.7(15)             |
| N1-C2-C3-C4                         | 0.3(10)                 | C9-N1-C2-O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178 4 (9)            |
| $N_3 - N_4 - C_{10} - S_{10}$       | -1783(7)                | C9-N1-C2-C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5(10)              |
| $N_3 N_4 C_{10} S_{11}$             | 17(12)                  | C9-C4-C5-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8(14)              |
| $N_3 - C_3 - C_4 - C_5$             | 24(17)                  | C10 = S11 = C11 = C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $103 \ 8 \ (7)$      |
| $N_3 - C_3 - C_4 - C_9$             | -1784(9)                | $C_{11} = S_{11} = C_{10} = S_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46(8)                |
| $N_4 - N_3 - C_3 - C_2$             | 31(13)                  | $C_{11} = S_{11} = C_{10} = N_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1754(7)             |
| N4—N3—C3—C4                         | -1799(9)                | $C_{11}$ $C_{12}$ $C_{13}$ $C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -179.0(9)            |
| $C_2 = N_1 = C_9 = C_4$             | -1.1(11)                | $C_{11} - C_{12} - C_{13} - C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 179.5 (9)            |
| $C_2 = N_1 = C_2 = C_4$             | -1700(10)               | $C_{12}^{12} C_{13}^{13} C_{14}^{14} C_{15}^{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.6(15)             |
| $C_2 = C_3 = C_4 = C_5$             | 179.9(10)<br>170.0(10)  | $C_{12} = C_{13} = C_{14} = C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10(14)               |
| $C_2 = C_3 = C_4 = C_5$             | -0.0(10)                | $C_{13} = C_{12} = C_{17} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -170.0(0)            |
| $C_2 = C_3 = C_4 = C_9$             | -177.4(0)               | $C_{13} = C_{14} = C_{15} = F_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 / 9.0 (9)          |
| $C_{2} = C_{4} = C_{5} = C_{4}$     | -1/1.4(9)<br>-170.1(10) | $C_{13} - C_{14} - C_{15} - C_{16} - C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4(13)<br>-0.0(15)  |
| $C_2 = C_4 = C_2 = C_0$             | -1/9.1(10)              | C14 - C15 - C10 - C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.9(13)             |
| $C_{3} - C_{4} - C_{9} - N_{1}$     | 1.2 (10)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.3(14)             |
| U3-U4-U9-U8                         |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |
| a. a. a. c.                         | -1/9.9 (9)              | C17 - C12 - C13 - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.5 (15)            |

| D—H···A                         | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|---------------------------------|-------------|--------------|--------------|------------|
| N1—H1····O2 <sup>i</sup>        | 0.96 (3)    | 1.92 (5)     | 2.845 (10)   | 159 (9)    |
| N4—H4…O2                        | 0.96 (3)    | 2.02 (8)     | 2.725 (10)   | 128 (8)    |
| C6—H6…S11 <sup>ii</sup>         | 0.95        | 2.94         | 3.819 (11)   | 154        |
| C11—H11A…S10 <sup>iii</sup>     | 0.99        | 2.92         | 3.876 (10)   | 163        |
| C14— $H14$ ···F15 <sup>iv</sup> | 0.95        | 2.52         | 3.347 (11)   | 145        |
| C16—H16…F15 <sup>v</sup>        | 0.95        | 2.68         | 3.540 (12)   | 150        |
| C17—H17…S10 <sup>iii</sup>      | 0.95        | 3.03         | 3.908 (11)   | 155        |
|                                 |             |              |              |            |

## Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -x+3, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) -x+1, -y+2, -z+2; (v) -x, -y+2, -z+2.