organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

10-Bromo-N,N-di­phenyl­anthracen-9-amine

crossmark logo

aDepartment of Chemistry, National College, Thiruchirappalli, Tamil Nadu, India (Affiliated to Bharathidasan University, Tiruchirappalli), bDepartment of Chemistry, Dhanamanjuri University, Manipur 795 001, India, and cDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India
*Correspondence e-mail: jerelewin.mine@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 1 February 2024; accepted 3 March 2024; online 12 March 2024)

In the title compound, C26H18BrN, the dihedral angles between the anthracene ring system and the phenyl rings are 89.51 (14) and 74.03 (15)°. In the extended structure, a weak C—H⋯Br inter­action occurs, which generates [100] chains, but no significant ππ or C—H⋯π inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Palladium-catalysed cross-coupling reactions are an important method for the formation of various types of carbon–carbon and carbon–heteroatom bonds (Ruiz-Castilo & Buchwald, 2016[Ruiz-Castillo, P. & Buchwald, S. L. (2016). Chem. Rev. 116, 12564-12649.]). The anthracene nucleus is a key building block that has been extensively used in OLEDs and anion sensors, as well as electronic and optical materials (Dhangar et al., 2017[Dhangar, G., Serrano, J. L., Schulzke, C., Gunturu, K. C. & Kapdi, A. R. (2017). ACS Omega, 2, 3144-3156.]). As part of our work in this area, we now describe the structure of the title compound, C26H18BrN, (I).

The asymmetric unit of (I) is shown in Fig. 1[link]: it crystallizes in space group Pbca. Compound (I) consists of a bromo-substituted anthracenyl moiety and two phenyl groups linked by the N atom. The compound is not planar as indicted by the dihedral angles between the anthracene ring system (C1–C14) and the phenyl rings (C15–C20 and C21–C26) of 89.51 (14) and 74.03 (15)°, respectively; the dihedral angle between the phenyl rings is 59.87 (19)°. The bond-angle sum at N1 is 360.0°. In the extended structure of (I) (Fig. 2[link]), the only identified directional inter­action is a weak C16—H13⋯Br1 bond (Table 1[link]), which generates [100] chains. No ππ or C—H⋯π inter­actions involving the aromatic rings occur.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H13⋯Br1i 0.93 2.92 3.621 (3) 133
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level (H atoms are omitted for clarity).
[Figure 2]
Figure 2
The crystal packing of the title compound.

A search of the Cambridge Structural Database (CSD; Version 5.41, update November 2019 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-bromo­benzohydrazide fragment yielded many structures such as 10-bromo-2,7-di-tert-butyl-N,N-bis­(4-methyl­phen­yl) anthracen-9-amine (CSD refcode FEKTOG; Hoffend et al., 2021[Hoffend, C., Schödel, F., Bolte, M., Lerner, H.-W. & Wagner, M. (2012). Chem. Eur. J. 18, 15394-15405.]), 10-bromo-N,N-bis­(4-methyl­phen­yl)anthracen-9-amine di­chloro­methane solvate (HOWJIO; Rajamalli et al., 2015[Rajamalli, P., Gandeepan, P., Huang, M.-J. & Cheng, C.-H. (2015). J. Mater. Chem. C. 3, 3329-3335.]) and 9-(10′-bromo-9′-anthr­yl)carbazole (PEDSUM; Boyer et al., 1993[Boyer, G., Claramunt, R. M., Elguero, J., Fathalla, M., Foces-Foces, C., Jaime, C. & Llamas-Saiz, A. L. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 757-766.]).

Synthesis and crystallization

The title compound was synthesized as described previously (Justin Thomas et al., 2005[Justin Thomas, K. R., Velusamy, M., Lin, J. T., Chuen, C.-H. & Tao, Y.-T. (2005). Chem. Mater. 17, 1860-1866.]). Colourless blocks of (I) were recrystallized from the mixed solvents of di­chloro­methane and hexane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H18BrN
Mr 424.32
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 8.4890 (12), 16.400 (2), 27.936 (3)
V3) 3889.3 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.13
Crystal size (mm) 0.37 × 0.32 × 0.29
 
Data collection
Diffractometer Agilent Xcalibur, Atlas, Gemini
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.507, 0.578
No. of measured, independent and observed [I > 2σ(I)] reflections 9307, 3958, 2511
Rint 0.044
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.109, 1.08
No. of reflections 3958
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.45
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

10-Bromo-N,N-diphenylanthracen-9-amine top
Crystal data top
C26H18BrNDx = 1.449 Mg m3
Mr = 424.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9307 reflections
a = 8.4890 (12) Åθ = 3.5–26.4°
b = 16.400 (2) ŵ = 2.13 mm1
c = 27.936 (3) ÅT = 293 K
V = 3889.3 (9) Å3Block, colourless
Z = 80.37 × 0.32 × 0.29 mm
F(000) = 1728
Data collection top
Agilent Xcalibur, Atlas, Gemini
diffractometer
2511 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
ω scansθmax = 26.4°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 910
Tmin = 0.507, Tmax = 0.578k = 2020
9307 measured reflectionsl = 3433
3958 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0257P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.32 e Å3
3958 reflectionsΔρmin = 0.45 e Å3
254 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0053 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms were positioned geometrically (C—H = 0.93 A°) and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.03399 (6)0.27738 (3)0.45892 (2)0.0636 (2)
N10.7773 (3)0.45829 (17)0.63518 (9)0.0375 (7)
C150.6336 (4)0.43220 (19)0.65522 (12)0.0320 (8)
C140.8370 (4)0.4150 (2)0.59378 (12)0.0343 (8)
C80.9751 (4)0.2977 (2)0.55873 (13)0.0348 (9)
C60.8719 (4)0.4056 (2)0.50658 (12)0.0358 (8)
C160.5297 (4)0.3848 (2)0.62905 (13)0.0391 (9)
H130.5530920.3725360.5973320.047*
C210.8715 (4)0.5215 (2)0.65491 (11)0.0351 (8)
C70.9532 (4)0.3325 (2)0.51364 (12)0.0373 (9)
C130.9143 (4)0.3399 (2)0.60012 (12)0.0349 (8)
C50.8115 (4)0.4480 (2)0.54798 (11)0.0346 (8)
C261.0326 (4)0.5107 (2)0.66114 (12)0.0392 (9)
H231.0797240.4620830.6517520.047*
C200.5938 (4)0.4510 (3)0.70287 (12)0.0484 (10)
H170.6603050.4830830.7214150.058*
C120.9361 (4)0.3048 (2)0.64666 (13)0.0414 (9)
H240.8962930.3314170.6734390.050*
C91.0548 (4)0.2222 (2)0.56713 (15)0.0490 (10)
H271.0948700.1933350.5411780.059*
C10.8415 (4)0.4411 (2)0.46022 (12)0.0453 (10)
H60.8806690.4157180.4329490.054*
C170.3931 (4)0.3554 (2)0.64880 (14)0.0486 (10)
H140.3262650.3229970.6305320.058*
C40.7233 (4)0.5212 (2)0.54110 (13)0.0445 (9)
H30.6837420.5490230.5675010.053*
C190.4559 (4)0.4214 (3)0.72170 (14)0.0567 (12)
H160.4304220.4341910.7532000.068*
C180.3540 (4)0.3736 (2)0.69575 (13)0.0505 (10)
H150.2614060.3539780.7093220.061*
C30.6966 (4)0.5506 (2)0.49646 (14)0.0534 (10)
H40.6375590.5978370.4925500.064*
C111.0136 (4)0.2338 (2)0.65207 (15)0.0500 (10)
H251.0279000.2124760.6825980.060*
C101.0736 (5)0.1912 (3)0.61196 (16)0.0559 (11)
H261.1260370.1420030.6162560.067*
C251.1231 (5)0.5716 (2)0.68114 (13)0.0506 (10)
H221.2305730.5633470.6853890.061*
C20.7577 (4)0.5101 (3)0.45570 (14)0.0526 (11)
H50.7395220.5315580.4253920.063*
C220.8063 (5)0.5955 (2)0.66815 (14)0.0603 (12)
H190.6993300.6047580.6634540.072*
C241.0571 (6)0.6439 (3)0.69480 (17)0.0678 (14)
H211.1187930.6847220.7083520.081*
C230.8986 (6)0.6554 (3)0.68822 (18)0.0793 (15)
H200.8527050.7044610.6974540.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0805 (4)0.0629 (3)0.0473 (3)0.0032 (2)0.0161 (2)0.0246 (3)
N10.0372 (16)0.0429 (18)0.0323 (15)0.0014 (15)0.0035 (15)0.0111 (15)
C150.0292 (18)0.0375 (19)0.0293 (17)0.0071 (16)0.0006 (17)0.0035 (17)
C140.0286 (18)0.039 (2)0.0358 (19)0.0064 (16)0.0069 (17)0.0093 (17)
C80.0312 (19)0.034 (2)0.039 (2)0.0035 (15)0.0003 (18)0.0106 (18)
C60.0305 (18)0.042 (2)0.0352 (18)0.0103 (17)0.0018 (17)0.0076 (18)
C160.044 (2)0.040 (2)0.0335 (19)0.0001 (18)0.0032 (19)0.0130 (18)
C210.042 (2)0.0332 (18)0.0300 (18)0.0009 (17)0.0006 (18)0.0016 (16)
C70.040 (2)0.040 (2)0.0317 (19)0.0088 (17)0.0050 (18)0.0150 (18)
C130.0354 (19)0.035 (2)0.0347 (18)0.0113 (16)0.0047 (18)0.0073 (17)
C50.0319 (19)0.0396 (19)0.0323 (18)0.0043 (17)0.0041 (17)0.0048 (18)
C260.044 (2)0.038 (2)0.035 (2)0.0000 (18)0.0015 (19)0.0026 (18)
C200.037 (2)0.076 (3)0.0315 (18)0.001 (2)0.0016 (19)0.013 (2)
C120.042 (2)0.044 (2)0.037 (2)0.0102 (18)0.0008 (19)0.0031 (19)
C90.046 (2)0.049 (2)0.053 (2)0.0047 (19)0.000 (2)0.014 (2)
C10.044 (2)0.058 (2)0.0338 (19)0.010 (2)0.001 (2)0.006 (2)
C170.046 (2)0.053 (2)0.047 (2)0.006 (2)0.001 (2)0.008 (2)
C40.039 (2)0.048 (2)0.047 (2)0.0048 (19)0.001 (2)0.010 (2)
C190.045 (2)0.089 (3)0.036 (2)0.007 (2)0.006 (2)0.012 (2)
C180.034 (2)0.066 (3)0.052 (2)0.002 (2)0.013 (2)0.001 (2)
C30.050 (2)0.048 (2)0.062 (3)0.009 (2)0.004 (2)0.008 (2)
C110.050 (2)0.053 (3)0.047 (2)0.002 (2)0.006 (2)0.008 (2)
C100.047 (2)0.051 (3)0.070 (3)0.009 (2)0.012 (2)0.004 (2)
C250.049 (2)0.055 (2)0.048 (2)0.018 (2)0.004 (2)0.009 (2)
C20.050 (2)0.068 (3)0.041 (2)0.002 (2)0.003 (2)0.007 (2)
C220.058 (3)0.045 (2)0.078 (3)0.011 (2)0.015 (2)0.023 (2)
C240.081 (4)0.053 (3)0.070 (3)0.019 (3)0.016 (3)0.005 (3)
C230.091 (4)0.049 (3)0.097 (4)0.006 (3)0.014 (4)0.025 (3)
Geometric parameters (Å, º) top
Br1—C71.903 (3)C12—H240.9300
N1—C151.409 (4)C9—C101.360 (5)
N1—C211.420 (4)C9—H270.9300
N1—C141.449 (4)C1—C21.342 (5)
C15—C161.385 (4)C1—H60.9300
C15—C201.408 (4)C17—C181.386 (5)
C14—C51.406 (4)C17—H140.9300
C14—C131.406 (5)C4—C31.356 (5)
C8—C71.395 (5)C4—H30.9300
C8—C91.431 (5)C19—C181.374 (5)
C8—C131.443 (4)C19—H160.9300
C6—C71.398 (5)C18—H150.9300
C6—C11.443 (4)C3—C21.416 (5)
C6—C51.444 (4)C3—H40.9300
C16—C171.371 (5)C11—C101.415 (5)
C16—H130.9300C11—H250.9300
C21—C221.384 (4)C10—H260.9300
C21—C261.390 (5)C25—C241.366 (5)
C13—C121.434 (5)C25—H220.9300
C5—C41.428 (5)C2—H50.9300
C26—C251.378 (5)C22—C231.376 (5)
C26—H230.9300C22—H190.9300
C20—C191.372 (5)C24—C231.372 (6)
C20—H170.9300C24—H210.9300
C12—C111.345 (5)C23—H200.9300
C15—N1—C21123.7 (3)C8—C9—H27119.0
C15—N1—C14118.1 (3)C2—C1—C6121.3 (4)
C21—N1—C14118.1 (3)C2—C1—H6119.3
C16—C15—C20118.0 (3)C6—C1—H6119.3
C16—C15—N1120.8 (3)C16—C17—C18120.5 (4)
C20—C15—N1121.2 (3)C16—C17—H14119.7
C5—C14—C13121.6 (3)C18—C17—H14119.7
C5—C14—N1118.9 (3)C3—C4—C5120.6 (3)
C13—C14—N1119.5 (3)C3—C4—H3119.7
C7—C8—C9124.4 (3)C5—C4—H3119.7
C7—C8—C13118.7 (3)C20—C19—C18122.4 (3)
C9—C8—C13116.9 (3)C20—C19—H16118.8
C7—C6—C1124.2 (3)C18—C19—H16118.8
C7—C6—C5118.4 (3)C19—C18—C17118.1 (4)
C1—C6—C5117.4 (3)C19—C18—H15120.9
C17—C16—C15121.6 (3)C17—C18—H15120.9
C17—C16—H13119.2C4—C3—C2120.8 (4)
C15—C16—H13119.2C4—C3—H4119.6
C22—C21—C26118.1 (3)C2—C3—H4119.6
C22—C21—N1121.2 (3)C12—C11—C10120.9 (4)
C26—C21—N1120.7 (3)C12—C11—H25119.5
C8—C7—C6122.9 (3)C10—C11—H25119.5
C8—C7—Br1118.9 (3)C9—C10—C11120.2 (4)
C6—C7—Br1118.1 (3)C9—C10—H26119.9
C14—C13—C12121.7 (3)C11—C10—H26119.9
C14—C13—C8119.0 (3)C24—C25—C26120.9 (4)
C12—C13—C8119.2 (3)C24—C25—H22119.5
C14—C5—C4121.8 (3)C26—C25—H22119.5
C14—C5—C6119.3 (3)C1—C2—C3120.9 (4)
C4—C5—C6118.9 (3)C1—C2—H5119.6
C25—C26—C21120.5 (3)C3—C2—H5119.6
C25—C26—H23119.8C23—C22—C21120.5 (4)
C21—C26—H23119.8C23—C22—H19119.8
C19—C20—C15119.4 (4)C21—C22—H19119.8
C19—C20—H17120.3C25—C24—C23119.0 (4)
C15—C20—H17120.3C25—C24—H21120.5
C11—C12—C13120.8 (4)C23—C24—H21120.5
C11—C12—H24119.6C24—C23—C22121.0 (4)
C13—C12—H24119.6C24—C23—H20119.5
C10—C9—C8121.9 (4)C22—C23—H20119.5
C10—C9—H27119.0
C21—N1—C15—C16164.7 (3)N1—C14—C5—C6179.4 (3)
C14—N1—C15—C1619.2 (5)C7—C6—C5—C140.4 (5)
C21—N1—C15—C2017.6 (5)C1—C6—C5—C14179.3 (3)
C14—N1—C15—C20158.5 (3)C7—C6—C5—C4177.7 (3)
C15—N1—C14—C598.7 (4)C1—C6—C5—C41.1 (5)
C21—N1—C14—C584.9 (4)C22—C21—C26—C251.7 (5)
C15—N1—C14—C1379.2 (4)N1—C21—C26—C25178.8 (3)
C21—N1—C14—C1397.2 (4)C16—C15—C20—C190.6 (5)
C20—C15—C16—C171.1 (5)N1—C15—C20—C19177.2 (3)
N1—C15—C16—C17176.6 (3)C14—C13—C12—C11178.4 (3)
C15—N1—C21—C2248.2 (5)C8—C13—C12—C110.6 (5)
C14—N1—C21—C22135.6 (4)C7—C8—C9—C10179.6 (4)
C15—N1—C21—C26132.2 (3)C13—C8—C9—C100.3 (5)
C14—N1—C21—C2643.9 (4)C7—C6—C1—C2177.6 (3)
C9—C8—C7—C6178.6 (3)C5—C6—C1—C21.2 (5)
C13—C8—C7—C61.4 (5)C15—C16—C17—C180.9 (6)
C9—C8—C7—Br10.2 (5)C14—C5—C4—C3178.2 (3)
C13—C8—C7—Br1179.7 (2)C6—C5—C4—C30.0 (5)
C1—C6—C7—C8177.1 (3)C15—C20—C19—C180.1 (6)
C5—C6—C7—C81.6 (5)C20—C19—C18—C170.3 (6)
C1—C6—C7—Br11.7 (4)C16—C17—C18—C190.2 (6)
C5—C6—C7—Br1179.5 (2)C5—C4—C3—C21.0 (6)
C5—C14—C13—C12178.0 (3)C13—C12—C11—C100.9 (6)
N1—C14—C13—C120.2 (5)C8—C9—C10—C110.1 (6)
C5—C14—C13—C82.9 (5)C12—C11—C10—C90.6 (6)
N1—C14—C13—C8179.2 (3)C21—C26—C25—C240.6 (6)
C7—C8—C13—C140.8 (5)C6—C1—C2—C30.2 (6)
C9—C8—C13—C14179.1 (3)C4—C3—C2—C10.9 (6)
C7—C8—C13—C12179.9 (3)C26—C21—C22—C231.9 (6)
C9—C8—C13—C120.0 (5)N1—C21—C22—C23178.5 (4)
C13—C14—C5—C4175.4 (3)C26—C25—C24—C230.2 (7)
N1—C14—C5—C42.5 (5)C25—C24—C23—C220.1 (7)
C13—C14—C5—C62.7 (5)C21—C22—C23—C241.1 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H13···Br1i0.932.923.621 (3)133
Symmetry code: (i) x1/2, y+1/2, z+1.
 

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBoyer, G., Claramunt, R. M., Elguero, J., Fathalla, M., Foces-Foces, C., Jaime, C. & Llamas-Saiz, A. L. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 757–766.  CSD CrossRef Web of Science Google Scholar
First citationDhangar, G., Serrano, J. L., Schulzke, C., Gunturu, K. C. & Kapdi, A. R. (2017). ACS Omega, 2, 3144–3156.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoffend, C., Schödel, F., Bolte, M., Lerner, H.-W. & Wagner, M. (2012). Chem. Eur. J. 18, 15394–15405.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationJustin Thomas, K. R., Velusamy, M., Lin, J. T., Chuen, C.-H. & Tao, Y.-T. (2005). Chem. Mater. 17, 1860–1866.  Web of Science CrossRef Google Scholar
First citationRajamalli, P., Gandeepan, P., Huang, M.-J. & Cheng, C.-H. (2015). J. Mater. Chem. C. 3, 3329–3335.  Web of Science CSD CrossRef CAS Google Scholar
First citationRuiz-Castillo, P. & Buchwald, S. L. (2016). Chem. Rev. 116, 12564–12649.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146