

ISSN 2414-3146

Received 1 February 2024 Accepted 3 March 2024

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom

Keywords: crystal structure; hydrogen bonding.

CCDC reference: 2337417

Structural data: full structural data are available from iucrdata.iucr.org

data reports

10-Bromo-N,N-diphenylanthracen-9-amine

K. Sureshkumar,^a Themmila Khamrang,^b Madhukar Hemamalini,^c Dhandayutham Saravanan^a and G. Jerald Maria Antony^a*

^aDepartment of Chemistry, National College, Thiruchirappalli, Tamil Nadu, India (Affiliated to Bharathidasan University, Tiruchirappalli), ^bDepartment of Chemistry, Dhanamanjuri University, Manipur 795 001, India, and ^cDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India. *Correspondence e-mail: jerelewin.mine@gmail.com

In the title compound, $C_{26}H_{18}BrN$, the dihedral angles between the anthracene ring system and the phenyl rings are 89.51 (14) and 74.03 (15)°. In the extended structure, a weak C-H···Br interaction occurs, which generates [100] chains, but no significant π - π or C-H··· π interactions are observed.

Structure description

Palladium-catalysed cross-coupling reactions are an important method for the formation of various types of carbon–carbon and carbon–heteroatom bonds (Ruiz-Castilo & Buchwald, 2016). The anthracene nucleus is a key building block that has been extensively used in OLEDs and anion sensors, as well as electronic and optical materials (Dhangar *et al.*, 2017). As part of our work in this area, we now describe the structure of the title compound, $C_{26}H_{18}BrN$, (I).

The asymmetric unit of (I) is shown in Fig. 1: it crystallizes in space group *Pbca*. Compound (I) consists of a bromo-substituted anthracenyl moiety and two phenyl groups linked by the N atom. The compound is not planar as indicted by the dihedral angles between the anthracene ring system (C1–C14) and the phenyl rings (C15–C20 and C21–C26) of 89.51 (14) and 74.03 (15)°, respectively; the dihedral angle between the phenyl rings is 59.87 (19)°. The bond-angle sum at N1 is 360.0°. In the extended structure of (I) (Fig. 2), the only identified directional interaction is a weak C16–H13···Br1 bond (Table 1), which generates [100] chains. No π – π or C–H··· π interactions involving the aromatic rings occur.

A search of the Cambridge Structural Database (CSD; Version 5.41, update November 2019 (Groom *et al.*, 2016) for the 4-bromobenzohydrazide fragment yielded many structures such as 10-bromo-2,7-di-*tert*-butyl-*N*,*N*-bis(4-methylphenyl) anthracen-9-amine (CSD refcode FEKTOG; Hoffend *et al.*, 2021), 10-bromo-*N*,*N*-bis(4-methylphenyl)

data reports

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots $
$C16{-}H13{\cdot}\cdot\cdot Br1^i$	0.93	2.92	3.621 (3)	133
C	1 1	. 1		

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

phenyl)anthracen-9-amine dichloromethane solvate (HOWJIO; Rajamalli *et al.*, 2015) and 9-(10'-bromo-9'-anthryl)carbazole (PEDSUM; Boyer *et al.*, 1993).

Synthesis and crystallization

The title compound was synthesized as described previously (Justin Thomas *et al.*, 2005). Colourless blocks of (I) were recrystallized from the mixed solvents of dichloromethane and hexane.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

References

- Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
- Boyer, G., Claramunt, R. M., Elguero, J., Fathalla, M., Foces-Foces, C., Jaime, C. & Llamas-Saiz, A. L. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 757–766.
- Dhangar, G., Serrano, J. L., Schulzke, C., Gunturu, K. C. & Kapdi, A. R. (2017). ACS Omega, 2, 3144–3156.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Hoffend, C., Schödel, F., Bolte, M., Lerner, H.-W. & Wagner, M. (2012). *Chem. Eur. J.* **18**, 15394–15405.

Figure 1

The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level (H atoms are omitted for clarity).

Table 2

Experimental details.

Crystal data	
Chemical formula	C ₂₆ H ₁₈ BrN
Mr	424.32
Crystal system, space group	Orthorhombic, Pbca
Temperature (K)	293
a, b, c (Å)	8.4890 (12), 16.400 (2), 27.936 (3)
$V(\text{\AA}^3)$	3889.3 (9)
Z	8
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.13
Crystal size (mm)	$0.37\times0.32\times0.29$
Data collection	
Diffractometer	Agilent Xcalibur, Atlas, Gemini
Absorption correction	Multi-scan (<i>CrysAlis RED</i> ; Agilent, 2012)
T_{\min}, T_{\max}	0.507, 0.578
No. of measured, independent and	9307, 3958, 2511
observed $[I > 2\sigma(I)]$ reflections	
R _{int}	0.044
$(\sin \theta/\lambda)_{\rm max} ({\rm A}^{-1})$	0.625
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.053, 0.109, 1.08
No. of reflections	3958
No. of parameters	254
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.32, -0.45

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and PLATON (Spek, 2020).

- Justin Thomas, K. R., Velusamy, M., Lin, J. T., Chuen, C.-H. & Tao, Y.-T. (2005). *Chem. Mater.* 17, 1860–1866.
- Rajamalli, P., Gandeepan, P., Huang, M.-J. & Cheng, C.-H. (2015). J. Mater. Chem. C. 3, 3329–3335.
- Ruiz-Castillo, P. & Buchwald, S. L. (2016). Chem. Rev. 116, 12564– 12649.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.

Spek, A. L. (2020). Acta Cryst. E76, 1-11.

Figure 2 The crystal packing of the title compound.

full crystallographic data

IUCrData (2024). 9, x240207 [https://doi.org/10.1107/S2414314624002074]

10-Bromo-*N*,*N*-diphenylanthracen-9-amine

K. Sureshkumar, Themmila Khamrang, Madhukar Hemamalini, Dhandayutham Saravanan and G. Jerald Maria Antony

10-Bromo-N,N-diphenylanthracen-9-amine

Crystal data

C₂₆H₁₈BrN $M_r = 424.32$ Orthorhombic, *Pbca* a = 8.4890 (12) Å b = 16.400 (2) Å c = 27.936 (3) Å $V = 3889.3 (9) \text{ Å}^3$ Z = 8F(000) = 1728

Data collection

Agilent Xcalibur, Atlas, Gemini diffractometer Radiation source: fine-focus sealed tube ω scans Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) $T_{\min} = 0.507, T_{\max} = 0.578$ 9307 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.109$ S = 1.083958 reflections 254 parameters 0 restraints Primary atom site location: dual Hydrogen site location: inferred from neighbouring sites $D_x = 1.449 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9307 reflections $\theta = 3.5-26.4^{\circ}$ $\mu = 2.13 \text{ mm}^{-1}$ T = 293 KBlock, colourless $0.37 \times 0.32 \times 0.29 \text{ mm}$

3958 independent reflections 2511 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$ $\theta_{max} = 26.4^\circ, \ \theta_{min} = 3.5^\circ$ $h = -9 \rightarrow 10$ $k = -20 \rightarrow 20$ $l = -34 \rightarrow 33$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0257P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.32$ e Å⁻³ $\Delta\rho_{min} = -0.45$ e Å⁻³ Extinction correction: SHELXL-2018/3 (Sheldrick 2018), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.0053 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All the H atoms	were positioned geome	trically $(C - H = 0$.93 A°) and refined	using a riding model with
$U_{\rm iso}({\rm H}) = 1.2 \ U_{\rm eq}({\rm C}).$				

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	1.03399 (6)	0.27738 (3)	0.45892 (2)	0.0636 (2)	
N1	0.7773 (3)	0.45829 (17)	0.63518 (9)	0.0375 (7)	
C15	0.6336 (4)	0.43220 (19)	0.65522 (12)	0.0320 (8)	
C14	0.8370 (4)	0.4150 (2)	0.59378 (12)	0.0343 (8)	
C8	0.9751 (4)	0.2977 (2)	0.55873 (13)	0.0348 (9)	
C6	0.8719 (4)	0.4056 (2)	0.50658 (12)	0.0358 (8)	
C16	0.5297 (4)	0.3848 (2)	0.62905 (13)	0.0391 (9)	
H13	0.553092	0.372536	0.597332	0.047*	
C21	0.8715 (4)	0.5215 (2)	0.65491 (11)	0.0351 (8)	
C7	0.9532 (4)	0.3325 (2)	0.51364 (12)	0.0373 (9)	
C13	0.9143 (4)	0.3399 (2)	0.60012 (12)	0.0349 (8)	
C5	0.8115 (4)	0.4480 (2)	0.54798 (11)	0.0346 (8)	
C26	1.0326 (4)	0.5107 (2)	0.66114 (12)	0.0392 (9)	
H23	1.079724	0.462083	0.651752	0.047*	
C20	0.5938 (4)	0.4510 (3)	0.70287 (12)	0.0484 (10)	
H17	0.660305	0.483083	0.721415	0.058*	
C12	0.9361 (4)	0.3048 (2)	0.64666 (13)	0.0414 (9)	
H24	0.896293	0.331417	0.673439	0.050*	
C9	1.0548 (4)	0.2222 (2)	0.56713 (15)	0.0490 (10)	
H27	1.094870	0.193335	0.541178	0.059*	
C1	0.8415 (4)	0.4411 (2)	0.46022 (12)	0.0453 (10)	
H6	0.880669	0.415718	0.432949	0.054*	
C17	0.3931 (4)	0.3554 (2)	0.64880 (14)	0.0486 (10)	
H14	0.326265	0.322997	0.630532	0.058*	
C4	0.7233 (4)	0.5212 (2)	0.54110 (13)	0.0445 (9)	
H3	0.683742	0.549023	0.567501	0.053*	
C19	0.4559 (4)	0.4214 (3)	0.72170 (14)	0.0567 (12)	
H16	0.430422	0.434191	0.753200	0.068*	
C18	0.3540 (4)	0.3736 (2)	0.69575 (13)	0.0505 (10)	
H15	0.261406	0.353978	0.709322	0.061*	
C3	0.6966 (4)	0.5506 (2)	0.49646 (14)	0.0534 (10)	
H4	0.637559	0.597837	0.492550	0.064*	
C11	1.0136 (4)	0.2338 (2)	0.65207 (15)	0.0500 (10)	
H25	1.027900	0.212476	0.682598	0.060*	
C10	1.0736 (5)	0.1912 (3)	0.61196 (16)	0.0559 (11)	
H26	1.126037	0.142003	0.616256	0.067*	
C25	1.1231 (5)	0.5716 (2)	0.68114 (13)	0.0506 (10)	
H22	1.230573	0.563347	0.685389	0.061*	
C2	0.7577 (4)	0.5101 (3)	0.45570 (14)	0.0526 (11)	
H5	0.739522	0.531558	0.425392	0.063*	
C22	0.8063 (5)	0.5955 (2)	0.66815 (14)	0.0603 (12)	
H19	0.699330	0.604758	0.663454	0.072*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

data reports

C24	1.0571 (6)	0.6439 (3)	0.69480 (17)	0.0678 (14)
H21	1.118793	0.684722	0.708352	0.081*
C23	0.8986 (6)	0.6554 (3)	0.68822 (18)	0.0793 (15)
H20	0.852705	0.704461	0.697454	0.095*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Br1	0.0805 (4)	0.0629 (3)	0.0473 (3)	0.0032 (2)	0.0161 (2)	-0.0246 (3)
N1	0.0372 (16)	0.0429 (18)	0.0323 (15)	-0.0014 (15)	0.0035 (15)	-0.0111 (15)
C15	0.0292 (18)	0.0375 (19)	0.0293 (17)	0.0071 (16)	-0.0006 (17)	-0.0035 (17)
C14	0.0286 (18)	0.039 (2)	0.0358 (19)	-0.0064 (16)	0.0069 (17)	-0.0093 (17)
C8	0.0312 (19)	0.034 (2)	0.039 (2)	-0.0035 (15)	0.0003 (18)	-0.0106 (18)
C6	0.0305 (18)	0.042 (2)	0.0352 (18)	-0.0103 (17)	-0.0018 (17)	-0.0076 (18)
C16	0.044 (2)	0.040 (2)	0.0335 (19)	-0.0001 (18)	0.0032 (19)	-0.0130 (18)
C21	0.042 (2)	0.0332 (18)	0.0300 (18)	-0.0009 (17)	-0.0006 (18)	-0.0016 (16)
C7	0.040 (2)	0.040 (2)	0.0317 (19)	-0.0088 (17)	0.0050 (18)	-0.0150 (18)
C13	0.0354 (19)	0.035 (2)	0.0347 (18)	-0.0113 (16)	0.0047 (18)	-0.0073 (17)
C5	0.0319 (19)	0.0396 (19)	0.0323 (18)	-0.0043 (17)	0.0041 (17)	-0.0048 (18)
C26	0.044 (2)	0.038 (2)	0.035 (2)	0.0000 (18)	0.0015 (19)	0.0026 (18)
C20	0.037 (2)	0.076 (3)	0.0315 (18)	-0.001 (2)	-0.0016 (19)	-0.013 (2)
C12	0.042 (2)	0.044 (2)	0.037 (2)	-0.0102 (18)	-0.0008 (19)	-0.0031 (19)
C9	0.046 (2)	0.049 (2)	0.053 (2)	0.0047 (19)	0.000 (2)	-0.014 (2)
C1	0.044 (2)	0.058 (2)	0.0338 (19)	-0.010 (2)	0.001 (2)	-0.006 (2)
C17	0.046 (2)	0.053 (2)	0.047 (2)	-0.006 (2)	-0.001 (2)	-0.008 (2)
C4	0.039 (2)	0.048 (2)	0.047 (2)	0.0048 (19)	0.001 (2)	-0.010 (2)
C19	0.045 (2)	0.089 (3)	0.036 (2)	0.007 (2)	0.006 (2)	-0.012 (2)
C18	0.034 (2)	0.066 (3)	0.052 (2)	-0.002 (2)	0.013 (2)	0.001 (2)
C3	0.050 (2)	0.048 (2)	0.062 (3)	0.009 (2)	-0.004 (2)	0.008 (2)
C11	0.050 (2)	0.053 (3)	0.047 (2)	0.002 (2)	-0.006 (2)	0.008 (2)
C10	0.047 (2)	0.051 (3)	0.070 (3)	0.009 (2)	-0.012 (2)	-0.004 (2)
C25	0.049 (2)	0.055 (2)	0.048 (2)	-0.018 (2)	-0.004 (2)	0.009 (2)
C2	0.050 (2)	0.068 (3)	0.041 (2)	-0.002 (2)	-0.003 (2)	0.007 (2)
C22	0.058 (3)	0.045 (2)	0.078 (3)	0.011 (2)	-0.015 (2)	-0.023 (2)
C24	0.081 (4)	0.053 (3)	0.070 (3)	-0.019 (3)	-0.016 (3)	-0.005 (3)
C23	0.091 (4)	0.049 (3)	0.097 (4)	0.006 (3)	-0.014 (4)	-0.025 (3)

Geometric parameters (Å, °)

Br1—C7	1.903 (3)	C12—H24	0.9300
N1-C15	1.409 (4)	C9—C10	1.360 (5)
N1-C21	1.420 (4)	C9—H27	0.9300
N1-C14	1.449 (4)	C1—C2	1.342 (5)
C15—C16	1.385 (4)	C1—H6	0.9300
C15—C20	1.408 (4)	C17—C18	1.386 (5)
C14—C5	1.406 (4)	C17—H14	0.9300
C14—C13	1.406 (5)	C4—C3	1.356 (5)
C8—C7	1.395 (5)	C4—H3	0.9300

C8—C9	1.431 (5)	C19—C18	1.374 (5)
C8—C13	1.443 (4)	C19—H16	0.9300
C6—C7	1.398 (5)	C18—H15	0.9300
C6—C1	1.443 (4)	C3—C2	1.416 (5)
C6—C5	1.444 (4)	C3—H4	0.9300
C16—C17	1.371 (5)	C11—C10	1.415 (5)
С16—Н13	0.9300	С11—Н25	0.9300
C21—C22	1.384 (4)	С10—Н26	0.9300
C21—C26	1.390 (5)	C25—C24	1.366 (5)
C13—C12	1.434 (5)	C25—H22	0.9300
C5—C4	1.428 (5)	С2—Н5	0.9300
C26—C25	1.378 (5)	C22—C23	1.376 (5)
C26—H23	0.9300	C22—H19	0.9300
C20—C19	1.372 (5)	C24—C23	1.372 (6)
С20—Н17	0.9300	C24—H21	0.9300
C12—C11	1.345 (5)	C23—H20	0.9300
C15—N1—C21	123.7 (3)	C8—C9—H27	119.0
C15 - N1 - C14	118.1 (3)	C_{2} C_{1} C_{6}	121.3 (4)
$C_{21} - N_{1} - C_{14}$	1181(3)	C2-C1-H6	1193
C_{16} C_{15} C_{20}	118.0(3)	C6-C1-H6	119.3
$C_{16} - C_{15} - N_{1}$	120.8(3)	$C_{16} - C_{17} - C_{18}$	120.5(4)
C_{20} C_{15} N_{1}	120.0(3) 121.2(3)	C_{16} C_{17} H_{14}	119.7
C_{5} C_{14} C_{13}	121.2(3) 121.6(3)	C_{18} C_{17} H_{14}	119.7
C_5 — C_14 — N_1	121.0(3) 1189(3)	$C_{3} - C_{4} - C_{5}$	120.6(3)
C13 - C14 - N1	110.5(3) 119.5(3)	C_{3} C_{4} H_{3}	119.7
C7 - C8 - C9	119.5(3) 124.4(3)	C5-C4-H3	119.7
C7 - C8 - C13	124.4(3) 1187(3)	C_{20} C_{19} C_{18}	119.7 122.4(3)
$C_{1}^{0} = C_{1}^{0} = C_{1}^{0}$	116.7(3)	$C_{20} = C_{10} = C_{10}$	118.8
C_{7} C_{6} C_{1}	110.9(3) 124.2(3)	$C_{20} = C_{19} = H_{10}$	118.8
C7 C6 C5	124.2(5) 1184(3)	$C_{10} = C_{10} = C_{10} = C_{10}$	118.1(4)
$C_{1} = C_{0} = C_{2}$	117.4(3)	$C_{19} = C_{18} = C_{17}$	120.0
C17 C16 C15	117.4(3)	$C_{17} = C_{18} = H_{15}$	120.9
C17 - C16 - H13	121.0 (5)	$C_1 = C_1 = C_1 = C_1$	120.9 120.8 (4)
$C_{17} = C_{10} = 1113$	119.2	$C_{4} = C_{3} = C_{2}$	120.8 (4)
$C_{13}^{22} = C_{10}^{21} = C_{13}^{26}$	119.2	$C_{1} = C_{2} = C_{3} = H_{4}$	119.0
$C_{22} = C_{21} = C_{20}$	110.1(3) 1212(3)	$C_2 = C_3 = 114$	119.0 120.9(4)
$C_{22} = C_{21} = N_1$	121.2(3) 120.7(3)	$C_{12} = C_{11} = C_{10}$	120.9 (4)
$C_{20} = C_{21} = M_1$	120.7(3) 122.9(3)	$C_{12} = C_{11} = H_{25}$	119.5
$C_{8} = C_{7} = B_{*1}$	122.9(3) 118.0(3)	C_{10} C_{10} C_{11}	119.3 120.2(4)
C_{6} C_{7} P_{r1}	110.9(3)	C_{2}	120.2 (4)
$C_0 - C_1 - B_{11}$	110.1(3) 121.7(3)	C_{9} C_{10} H_{20}	119.9
C14 - C13 - C12	121.7(3)	C11 - C10 - H20	119.9
$C_{14} = C_{13} = C_{8}$	119.0(3) 110.2(3)	C_{24} C_{25} C_{20} C_{24} C_{25} H_{22}	120.9 (4)
C_{12} C_{13} C_{0}	117.2(3)	$C_{24} = C_{25} = \Pi_{22}$	119.3
$C_{14} = C_{5} = C_{6}$	$1 \ge 1.8 (3)$ 110.2 (2)	C_{20} $-C_{20}$ $-H_{22}$ C_{10} C_{20} C_{20} C_{20}	119.5
$C_{14} = C_{5} = C_{6}$	119.5 (3)	C1 = C2 = U5	120.9 (4)
$\begin{array}{c} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$	118.9 (3)	$C_1 = C_2 = H_2$	119.6
C25-C26-C21	120.5 (3)	C3-C2-H3	119.6

С25—С26—Н23	119.8	C23—C22—C21	120.5 (4)
С21—С26—Н23	119.8	С23—С22—Н19	119.8
C19—C20—C15	119.4 (4)	С21—С22—Н19	119.8
C19—C20—H17	120.3	C25—C24—C23	119.0 (4)
C15—C20—H17	120.3	C25—C24—H21	120.5
C11—C12—C13	120.8 (4)	C23—C24—H21	120.5
C11—C12—H24	119.6	C24—C23—C22	121.0 (4)
C13—C12—H24	119.6	C24—C23—H20	119.5
C10—C9—C8	121.9 (4)	C22—C23—H20	119.5
С10—С9—Н27	119.0		
C21—N1—C15—C16	164.7 (3)	N1-C14-C5-C6	179.4 (3)
C14—N1—C15—C16	-19.2 (5)	C7—C6—C5—C14	0.4 (5)
C21—N1—C15—C20	-17.6 (5)	C1—C6—C5—C14	179.3 (3)
C14—N1—C15—C20	158.5 (3)	C7—C6—C5—C4	-177.7 (3)
C15—N1—C14—C5	98.7 (4)	C1—C6—C5—C4	1.1 (5)
C21—N1—C14—C5	-84.9 (4)	C22—C21—C26—C25	1.7 (5)
C15—N1—C14—C13	-79.2 (4)	N1-C21-C26-C25	-178.8 (3)
C21—N1—C14—C13	97.2 (4)	C16—C15—C20—C19	0.6 (5)
C20-C15-C16-C17	-1.1 (5)	N1-C15-C20-C19	-177.2 (3)
N1—C15—C16—C17	176.6 (3)	C14—C13—C12—C11	-178.4 (3)
C15—N1—C21—C22	-48.2 (5)	C8—C13—C12—C11	0.6 (5)
C14—N1—C21—C22	135.6 (4)	C7—C8—C9—C10	179.6 (4)
C15—N1—C21—C26	132.2 (3)	C13—C8—C9—C10	-0.3 (5)
C14—N1—C21—C26	-43.9 (4)	C7—C6—C1—C2	177.6 (3)
C9—C8—C7—C6	178.6 (3)	C5-C6-C1-C2	-1.2 (5)
C13—C8—C7—C6	-1.4 (5)	C15—C16—C17—C18	0.9 (6)
C9—C8—C7—Br1	-0.2 (5)	C14—C5—C4—C3	-178.2 (3)
C13—C8—C7—Br1	179.7 (2)	C6—C5—C4—C3	0.0 (5)
C1—C6—C7—C8	-177.1 (3)	C15-C20-C19-C18	0.1 (6)
C5—C6—C7—C8	1.6 (5)	C20-C19-C18-C17	-0.3 (6)
C1C6C7Br1	1.7 (4)	C16—C17—C18—C19	-0.2 (6)
C5-C6-C7-Br1	-179.5 (2)	C5—C4—C3—C2	-1.0(6)
C5-C14-C13-C12	-178.0 (3)	C13—C12—C11—C10	-0.9 (6)
N1-C14-C13-C12	-0.2 (5)	C8—C9—C10—C11	0.1 (6)
C5—C14—C13—C8	2.9 (5)	C12—C11—C10—C9	0.6 (6)
N1-C14-C13-C8	-179.2 (3)	C21—C26—C25—C24	-0.6 (6)
C7—C8—C13—C14	-0.8 (5)	C6—C1—C2—C3	0.2 (6)
C9—C8—C13—C14	179.1 (3)	C4—C3—C2—C1	0.9 (6)
C7—C8—C13—C12	-179.9 (3)	C26—C21—C22—C23	-1.9 (6)
C9—C8—C13—C12	0.0 (5)	N1-C21-C22-C23	178.5 (4)
C13—C14—C5—C4	175.4 (3)	C26—C25—C24—C23	-0.2 (7)
N1-C14-C5-C4	-2.5 (5)	C25—C24—C23—C22	-0.1 (7)
C13—C14—C5—C6	-2.7 (5)	C21—C22—C23—C24	1.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —Н··· <i>A</i>
C16—H13···Br1 ⁱ	0.93	2.92	3.621 (3)	133

Symmetry code: (i) x-1/2, -y+1/2, -z+1.