metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis,cis,cis-Di­chlorido­bis­­(N4,N4-di­methyl­pyridin-4-amine-κN1)bis­­(di­methyl sulfoxide-κS)ruthenium(II)

crossmark logo

aAustin College, 900 N Grand, Sherman, TX 75090, USA
*Correspondence e-mail: bsmucker@austincollege.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 30 January 2024; accepted 27 February 2024; online 6 March 2024)

The structure of the title compound, [RuCl2(C7H10N2)2(C2H6OS)2], has monoclinic (P21/n) symmetry. The Ru—N distances of the coordination compound are influenced by the trans chloride or di­methyl­sulfoxide-κS ligands. The mol­ecular structure exhibits disorder for two of the terminal methyl groups of a dimethyl sulfoxide ligand.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Both symmetry-related Δ and Λ enanti­omers are present in the unit cell. The ruthenium(II) complex has the oxygen atoms of the dimethyl sulfoxide (dmso) ligands positioned in the same general direction toward an H1 atom of a DMAP (N,N-di­methyl­pyridin-4-amine) ligand with intra­molecular distances of 2.456 (H1⋯O2) and 2.707 Å (H1⋯O1) (Fig. 1[link]). The two DMAP ligands are both tilted to position the α-hydrogen atoms of the pyridyl rings to inter­act with the aforementioned oxygen atoms of the dmso ligand or the chlorido ligands with distances of 2.841 (H12⋯Cl2) and 2.931 Å (H12⋯Cl1) (Fig. 1[link]). A comparison between the Ru—N distances for the coordinating DMAP ligands reveals a greater trans-influence by the S atom from the dmso ligand [Ru—N3 = 2.150 (4) Å] than by the chloride ligand [Ru—N1 = 2.117 (5) Å]. This influence by the S and Cl atoms agrees with the Ru—N distances found in the crystal structure of a similar RuII complex containing pyridine instead of DMAP, namely cis,cis,cis-[RuCl2(dmso-κS)2(py)2] (Trivedi et al., 2010[Trivedi, M., Sharma, Y. K., Nagarajan, R. & Rath, N. P. (2010). J. Mol. Struct. 975, 335-342.]).

[Figure 1]
Figure 1
Displacement ellipsoid (50% probability level) representation of the title complex with intra­molecular H⋯O and H⋯Cl distances given (disorder and methyl hydrogen atoms omitted for clarity).

The molecular complexes pack with one of the DMAP ligands offset above its symmetry-related counterpart, with inter­molecular distances of 3.691 (9) and 3.729 (8) Å, for N2⋯C3(1 − x, 1 − y, 1 − z) and N2⋯N2(1 − x, 1 − y, 1 − z), respectively (Fig. 2[link]).

[Figure 2]
Figure 2
Displacement ellipsoid (50% probability level) representation of the packing of two mol­ecules of the title complex with inter­molecular distances given between the N2 atom and the C3 and N2 symmetry-related atoms (1 − x, 1 − y, 1 − z). Disorder and hydrogen atoms omitted for clarity.

Synthesis and crystallization

The formation of [Ru(DMAP)6]Cl2 was reported from the reaction of a fortyfold excess of DMAP with [Ru(dmso)4Cl2] in ethanol (Rossi et al., 2008[Rossi, M. B., Piro, O. E., Castellano, E. E., Alborés, P. & Baraldo, L. M. (2008). Inorg. Chem. 47, 2416-2427.]). With the aim toward the neutral tetra­kis­(DMAP) product, a general synthesis was followed, as described for trans-[RuCl2(pyrazine-κN)4] (Carlucci et al., 2002[Carlucci, L., Ciani, G., Porta, F., Proserpio, D. M. & Santagostini, L. (2002). Angew. Chem. Int. Ed. 41, 1907-1911.]), where [RuCl2(dmso)4] and four equivalents of a pyridyl-based ligand are heated in toluene for multiple hours. This method has yielded trans-[RuCl2(NN)4] compounds with NN = 4-meth­oxy­pyridine (Reinheimer et al., 2023[Reinheimer, E. W., Tobias, R. A., Bassel, E. R., Cantu, N. A. & Smucker, B. W. (2023). IUCrData, 8, x230155.]) or pyrazine (Nesterov et al., 2012[Nesterov, V. N., Khan, W., Rangel, A. E. & Smucker, B. W. (2012). Acta Cryst. E68, m1193.]). Rath and co-workers explored the effects of solvent polarity on the substitution of dmso and used a water/methanol solution of [Ru(dmso)4Cl2] and two equivalents of pyridine to form cis,cis,cis-[RuCl2(dmso-κS)2(py)2] (Trivedi et al., 2010[Trivedi, M., Sharma, Y. K., Nagarajan, R. & Rath, N. P. (2010). J. Mol. Struct. 975, 335-342.]). Unexpectedly, the title compound was synthesized using a non-polar solvent and four equivalents of a more basic pyridyl-type ligand, DMAP.

A Schlenk flask was charged with 0.1 g (0.2 mmol) of Ru(dmso)4Cl2 and 0.1 g (0.8 mmol) of DMAP, then combined with 20 ml of toluene. The flask was purged with N2 and the solution heated at reflux for 2 h. After slowly cooling, 0.11 g (90%) of a light-yellow solid was isolated after filtering in air and washing with ethanol. Brown prisms were grown by vapor diffusion between toluene and a chloro­form/toluene solution of the product.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal was treated as a two-component twin with scales of 0.9262 (9) and 0.0738 (9). Two of the terminal methyl groups were modeled for disorder using restrained distances (SADI; same distances with standard deviation of 0.02 Å) for S1—C15 and S1—C16, with parts A and B, restraining these carbon atoms with roughly equivalent anisotropic displacement parameters (SIMU; similar Uij components with standard deviation of 0.001 Å2), and summing the occupancies of each type of C to sum to one (FVAR and 1 - FVAR; Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Table 1
Experimental details

Crystal data
Chemical formula [RuCl2(C7H10N2)2(C2H6OS)2]
Mr 572.56
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.3125 (1), 18.9072 (4), 15.7906 (3)
β (°) 90.617 (2)
V3) 2481.60 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.04
Crystal size (mm) 0.16 × 0.10 × 0.07
 
Data collection
Diffractometer XtaLAB Mini II
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) based on Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.969, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 122167, 5695, 4795
Rint 0.067
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.148, 1.09
No. of reflections 5695
No. of parameters 293
No. of restraints 18
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.35, −0.87
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

cis,cis,cis-Dichloridobis(N4,N4-dimethylpyridin-4-amine-κN1)bis(dimethyl sulfoxide-κS)ruthenium(II) top
Crystal data top
[RuCl2(C7H10N2)2(C2H6OS)2]F(000) = 1176
Mr = 572.56Dx = 1.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.3125 (1) ÅCell parameters from 31352 reflections
b = 18.9072 (4) Åθ = 2.2–28.7°
c = 15.7906 (3) ŵ = 1.04 mm1
β = 90.617 (2)°T = 293 K
V = 2481.60 (8) Å3Block, brown
Z = 40.16 × 0.10 × 0.07 mm
Data collection top
XtaLAB Mini II
diffractometer
4795 reflections with I > 2σ(I)
Radiation source: fine-focused sealed tubeRint = 0.067
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: analytical
[CrysAlisPro (Rigaku OD, 2020) based on Clark & Reid (1995)]
h = 1010
Tmin = 0.969, Tmax = 0.984k = 2424
122167 measured reflectionsl = 2020
5695 independent reflections
Refinement top
Refinement on F218 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0631P)2 + 9.1602P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5695 reflectionsΔρmax = 1.35 e Å3
293 parametersΔρmin = 0.87 e Å3
Special details top

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.73027 (5)0.72633 (2)0.75951 (3)0.03186 (13)
S20.59464 (17)0.71392 (7)0.88155 (8)0.0373 (3)
Cl20.88050 (19)0.82299 (8)0.82624 (10)0.0511 (4)
S10.91252 (18)0.64259 (9)0.79645 (11)0.0499 (4)
Cl10.8805 (2)0.74749 (10)0.63031 (10)0.0531 (4)
O10.8687 (6)0.5892 (2)0.8604 (3)0.0576 (12)
O20.4730 (5)0.6575 (2)0.8889 (3)0.0524 (11)
N30.5583 (5)0.8030 (2)0.7148 (3)0.0339 (9)
N20.3047 (7)0.5048 (3)0.5567 (4)0.0571 (14)
N40.2210 (7)0.9497 (3)0.6181 (4)0.0508 (12)
N10.5925 (6)0.6498 (2)0.6931 (3)0.0404 (10)
C90.2838 (7)0.8364 (3)0.6840 (3)0.0404 (12)
H90.1753190.8247770.6872010.048*
C80.3974 (7)0.7900 (3)0.7130 (4)0.0381 (11)
H80.3623950.7464120.7329700.046*
C30.3963 (8)0.5519 (3)0.6005 (4)0.0453 (13)
C100.3299 (7)0.9020 (3)0.6492 (3)0.0405 (12)
C50.5422 (7)0.6618 (3)0.6125 (3)0.0410 (12)
H50.5752060.7034690.5866350.049*
C120.6030 (7)0.8656 (3)0.6827 (4)0.0434 (13)
H120.7121620.8763190.6823200.052*
C110.4969 (7)0.9152 (3)0.6503 (4)0.0461 (14)
H110.5360180.9576250.6289990.055*
C140.2713 (10)1.0068 (4)0.5618 (5)0.0648 (19)
H14A0.3787011.0212870.5766350.097*
H14B0.1994951.0462570.5676350.097*
H14C0.2687600.9904570.5042870.097*
C10.5460 (8)0.5873 (3)0.7265 (4)0.0463 (13)
H10.5794160.5765800.7814580.056*
C20.4523 (8)0.5385 (3)0.6841 (4)0.0498 (14)
H20.4253820.4962770.7106490.060*
C40.4461 (8)0.6169 (3)0.5664 (4)0.0469 (14)
H40.4134230.6295500.5119410.056*
C170.7239 (9)0.7070 (4)0.9729 (4)0.0544 (16)
H17A0.7833170.6635600.9704600.082*
H17B0.6600930.7076611.0232450.082*
H17C0.7973940.7461930.9739820.082*
C70.2353 (11)0.5231 (4)0.4753 (5)0.070 (2)
H7A0.1328240.5453690.4832750.105*
H7B0.2213270.4809970.4420040.105*
H7C0.3057760.5550620.4463970.105*
C130.0489 (8)0.9328 (4)0.6152 (5)0.0585 (17)
H13A0.0251950.9058230.5651080.088*
H13B0.0123790.9758110.6143160.088*
H13C0.0212780.9056430.6643430.088*
C60.2547 (10)0.4391 (4)0.5945 (5)0.0665 (19)
H6A0.3472320.4145320.6164600.100*
H6B0.2021250.4103300.5524180.100*
H6C0.1815470.4486160.6396940.100*
C180.4956 (10)0.7942 (4)0.9103 (4)0.0586 (18)
H18A0.5687040.8331650.9045790.088*
H18B0.4608660.7911230.9679990.088*
H18C0.4038960.8014490.8738460.088*
C16B1.115 (3)0.674 (3)0.811 (4)0.094 (9)0.49 (7)
H16A1.1512370.6953610.7590290.141*0.49 (7)
H16B1.1841120.6356620.8259030.141*0.49 (7)
H16C1.1173620.7091740.8550910.141*0.49 (7)
C15B0.971 (3)0.5886 (13)0.7074 (8)0.107 (7)0.89 (5)
H15A0.8791570.5628200.6865730.161*0.89 (5)
H15B1.0531190.5559280.7250130.161*0.89 (5)
H15C1.0115170.6183460.6632050.161*0.89 (5)
C16A1.088 (4)0.684 (2)0.843 (3)0.094 (9)0.51 (7)
H16D1.1135280.7260980.8110560.141*0.51 (7)
H16E1.1771230.6520330.8409280.141*0.51 (7)
H16F1.0664940.6967550.9002810.141*0.51 (7)
C15A1.026 (19)0.625 (9)0.702 (5)0.107 (7)0.11 (5)
H15D0.9893720.6557700.6572660.161*0.11 (5)
H15E1.0105930.5767300.6852210.161*0.11 (5)
H15F1.1380450.6334950.7130660.161*0.11 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0324 (2)0.0340 (2)0.02915 (19)0.00073 (16)0.00050 (15)0.00225 (15)
S20.0387 (7)0.0418 (7)0.0313 (6)0.0010 (5)0.0018 (5)0.0026 (5)
Cl20.0518 (8)0.0528 (8)0.0486 (8)0.0152 (7)0.0079 (6)0.0009 (6)
S10.0385 (7)0.0533 (9)0.0580 (9)0.0114 (6)0.0036 (7)0.0098 (7)
Cl10.0510 (9)0.0664 (9)0.0421 (7)0.0077 (7)0.0132 (6)0.0031 (7)
O10.062 (3)0.043 (2)0.068 (3)0.011 (2)0.002 (2)0.011 (2)
O20.047 (2)0.061 (3)0.050 (2)0.014 (2)0.0099 (19)0.001 (2)
N30.032 (2)0.037 (2)0.033 (2)0.0018 (18)0.0031 (17)0.0026 (17)
N20.067 (4)0.043 (3)0.060 (3)0.015 (3)0.012 (3)0.000 (2)
N40.054 (3)0.041 (3)0.057 (3)0.008 (2)0.010 (3)0.004 (2)
N10.049 (3)0.036 (2)0.037 (2)0.002 (2)0.003 (2)0.0021 (19)
C90.035 (3)0.047 (3)0.039 (3)0.003 (2)0.003 (2)0.002 (2)
C80.036 (3)0.036 (3)0.042 (3)0.005 (2)0.000 (2)0.007 (2)
C30.051 (3)0.038 (3)0.048 (3)0.005 (3)0.003 (3)0.001 (2)
C100.048 (3)0.037 (3)0.036 (3)0.002 (2)0.005 (2)0.001 (2)
C50.053 (3)0.036 (3)0.034 (3)0.006 (2)0.001 (2)0.003 (2)
C120.040 (3)0.037 (3)0.053 (3)0.008 (2)0.003 (3)0.007 (2)
C110.046 (3)0.032 (3)0.060 (4)0.007 (2)0.008 (3)0.009 (2)
C140.073 (5)0.045 (4)0.076 (5)0.002 (3)0.025 (4)0.014 (3)
C10.061 (4)0.038 (3)0.040 (3)0.004 (3)0.000 (3)0.006 (2)
C20.064 (4)0.037 (3)0.048 (3)0.008 (3)0.002 (3)0.007 (2)
C40.058 (4)0.043 (3)0.039 (3)0.003 (3)0.007 (3)0.005 (2)
C170.068 (4)0.063 (4)0.032 (3)0.001 (3)0.010 (3)0.008 (3)
C70.075 (5)0.065 (5)0.070 (5)0.015 (4)0.025 (4)0.001 (4)
C130.046 (3)0.059 (4)0.071 (4)0.012 (3)0.012 (3)0.002 (3)
C60.072 (5)0.049 (4)0.078 (5)0.019 (4)0.009 (4)0.000 (3)
C180.078 (5)0.054 (4)0.044 (3)0.021 (3)0.012 (3)0.000 (3)
C16B0.014 (6)0.081 (12)0.19 (3)0.005 (9)0.009 (10)0.041 (16)
C15B0.156 (13)0.095 (13)0.072 (6)0.079 (11)0.040 (7)0.004 (7)
C16A0.014 (6)0.081 (12)0.19 (3)0.005 (9)0.009 (10)0.041 (16)
C15A0.156 (13)0.095 (13)0.072 (6)0.079 (12)0.040 (7)0.004 (7)
Geometric parameters (Å, º) top
Ru1—S22.2553 (14)C11—H110.9300
Ru1—Cl22.4456 (15)C14—H14A0.9600
Ru1—S12.2635 (15)C14—H14B0.9600
Ru1—Cl12.4366 (15)C14—H14C0.9600
Ru1—N32.150 (4)C1—H10.9300
Ru1—N12.117 (5)C1—C21.376 (9)
S2—O21.476 (4)C2—H20.9300
S2—C171.794 (6)C4—H40.9300
S2—C181.788 (6)C17—H17A0.9600
S1—O11.476 (5)C17—H17B0.9600
S1—C16B1.799 (13)C17—H17C0.9600
S1—C15B1.809 (9)C7—H7A0.9600
S1—C16A1.804 (14)C7—H7B0.9600
S1—C15A1.804 (18)C7—H7C0.9600
N3—C81.360 (7)C13—H13A0.9600
N3—C121.341 (7)C13—H13B0.9600
N2—C31.355 (8)C13—H13C0.9600
N2—C71.446 (9)C6—H6A0.9600
N2—C61.442 (9)C6—H6B0.9600
N4—C101.364 (7)C6—H6C0.9600
N4—C141.463 (9)C18—H18A0.9600
N4—C131.466 (8)C18—H18B0.9600
N1—C51.355 (7)C18—H18C0.9600
N1—C11.352 (7)C16B—H16A0.9600
C9—H90.9300C16B—H16B0.9600
C9—C81.366 (8)C16B—H16C0.9600
C9—C101.412 (8)C15B—H15A0.9600
C8—H80.9300C15B—H15B0.9600
C3—C21.419 (9)C15B—H15C0.9600
C3—C41.406 (8)C16A—H16D0.9600
C10—C111.410 (8)C16A—H16E0.9600
C5—H50.9300C16A—H16F0.9600
C5—C41.370 (8)C15A—H15D0.9600
C12—H120.9300C15A—H15E0.9600
C12—C111.381 (8)C15A—H15F0.9600
S2—Ru1—Cl288.12 (5)N4—C14—H14C109.5
S2—Ru1—S192.66 (6)H14A—C14—H14B109.5
S2—Ru1—Cl1176.35 (6)H14A—C14—H14C109.5
S1—Ru1—Cl294.27 (6)H14B—C14—H14C109.5
S1—Ru1—Cl189.02 (6)N1—C1—H1118.0
Cl1—Ru1—Cl288.52 (6)N1—C1—C2123.9 (6)
N3—Ru1—S290.81 (12)C2—C1—H1118.0
N3—Ru1—Cl288.40 (12)C3—C2—H2119.6
N3—Ru1—S1175.69 (12)C1—C2—C3120.8 (5)
N3—Ru1—Cl187.66 (12)C1—C2—H2119.6
N1—Ru1—S294.54 (13)C3—C4—H4119.6
N1—Ru1—Cl2174.55 (13)C5—C4—C3120.7 (5)
N1—Ru1—S190.36 (14)C5—C4—H4119.6
N1—Ru1—Cl188.68 (14)S2—C17—H17A109.5
N1—Ru1—N386.82 (18)S2—C17—H17B109.5
O2—S2—Ru1119.47 (19)S2—C17—H17C109.5
O2—S2—C17106.8 (3)H17A—C17—H17B109.5
O2—S2—C18106.0 (3)H17A—C17—H17C109.5
C17—S2—Ru1113.2 (2)H17B—C17—H17C109.5
C18—S2—Ru1111.4 (2)N2—C7—H7A109.5
C18—S2—C1797.5 (3)N2—C7—H7B109.5
O1—S1—Ru1119.0 (2)N2—C7—H7C109.5
O1—S1—C16B112 (2)H7A—C7—H7B109.5
O1—S1—C15B102.5 (9)H7A—C7—H7C109.5
O1—S1—C16A103.1 (19)H7B—C7—H7C109.5
O1—S1—C15A125 (5)N4—C13—H13A109.5
C16B—S1—Ru1114.9 (18)N4—C13—H13B109.5
C16B—S1—C15B92 (2)N4—C13—H13C109.5
C15B—S1—Ru1112.3 (5)H13A—C13—H13B109.5
C16A—S1—Ru1109.5 (16)H13A—C13—H13C109.5
C15A—S1—Ru1106 (4)H13B—C13—H13C109.5
C15A—S1—C16A89 (7)N2—C6—H6A109.5
C8—N3—Ru1122.3 (4)N2—C6—H6B109.5
C12—N3—Ru1122.2 (4)N2—C6—H6C109.5
C12—N3—C8115.4 (5)H6A—C6—H6B109.5
C3—N2—C7120.9 (6)H6A—C6—H6C109.5
C3—N2—C6121.2 (6)H6B—C6—H6C109.5
C6—N2—C7117.4 (6)S2—C18—H18A109.5
C10—N4—C14120.9 (6)S2—C18—H18B109.5
C10—N4—C13120.7 (5)S2—C18—H18C109.5
C14—N4—C13115.3 (5)H18A—C18—H18B109.5
C5—N1—Ru1120.7 (4)H18A—C18—H18C109.5
C1—N1—Ru1124.0 (4)H18B—C18—H18C109.5
C1—N1—C5115.3 (5)S1—C16B—H16A109.5
C8—C9—H9119.8S1—C16B—H16B109.5
C8—C9—C10120.4 (5)S1—C16B—H16C109.5
C10—C9—H9119.8H16A—C16B—H16B109.5
N3—C8—C9124.5 (5)H16A—C16B—H16C109.5
N3—C8—H8117.7H16B—C16B—H16C109.5
C9—C8—H8117.7S1—C15B—H15A109.5
N2—C3—C2122.3 (6)S1—C15B—H15B109.5
N2—C3—C4123.0 (6)S1—C15B—H15C109.5
C4—C3—C2114.7 (5)H15A—C15B—H15B109.5
N4—C10—C9122.6 (5)H15A—C15B—H15C109.5
N4—C10—C11122.5 (5)H15B—C15B—H15C109.5
C11—C10—C9114.9 (5)S1—C16A—H16D109.5
N1—C5—H5117.7S1—C16A—H16E109.5
N1—C5—C4124.6 (5)S1—C16A—H16F109.5
C4—C5—H5117.7H16D—C16A—H16E109.5
N3—C12—H12117.9H16D—C16A—H16F109.5
N3—C12—C11124.1 (5)H16E—C16A—H16F109.5
C11—C12—H12117.9S1—C15A—H15D109.5
C10—C11—H11119.7S1—C15A—H15E109.5
C12—C11—C10120.6 (5)S1—C15A—H15F109.5
C12—C11—H11119.7H15D—C15A—H15E109.5
N4—C14—H14A109.5H15D—C15A—H15F109.5
N4—C14—H14B109.5H15E—C15A—H15F109.5
Ru1—N3—C8—C9178.9 (4)C10—C9—C8—N33.1 (9)
Ru1—N3—C12—C11177.3 (5)C5—N1—C1—C21.0 (9)
Ru1—N1—C5—C4176.6 (5)C12—N3—C8—C92.1 (8)
Ru1—N1—C1—C2177.9 (5)C14—N4—C10—C9162.6 (6)
N3—C12—C11—C100.0 (10)C14—N4—C10—C1118.7 (9)
N2—C3—C2—C1179.6 (6)C1—N1—C5—C42.4 (9)
N2—C3—C4—C5178.3 (6)C2—C3—C4—C50.5 (9)
N4—C10—C11—C12179.6 (6)C4—C3—C2—C10.8 (10)
N1—C5—C4—C32.2 (10)C7—N2—C3—C2173.3 (7)
N1—C1—C2—C30.6 (10)C7—N2—C3—C48.0 (11)
C9—C10—C11—C120.8 (9)C13—N4—C10—C93.5 (9)
C8—N3—C12—C110.6 (9)C13—N4—C10—C11177.7 (6)
C8—C9—C10—N4178.9 (6)C6—N2—C3—C22.0 (11)
C8—C9—C10—C112.2 (8)C6—N2—C3—C4179.3 (7)
 

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to the Chemistry Department); Jerry Taylor and Nancy Bryant Foundation (gift to the Austin College Science Division).

References

First citationCarlucci, L., Ciani, G., Porta, F., Proserpio, D. M. & Santagostini, L. (2002). Angew. Chem. Int. Ed. 41, 1907–1911.  CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNesterov, V. N., Khan, W., Rangel, A. E. & Smucker, B. W. (2012). Acta Cryst. E68, m1193.  CSD CrossRef IUCr Journals Google Scholar
First citationReinheimer, E. W., Tobias, R. A., Bassel, E. R., Cantu, N. A. & Smucker, B. W. (2023). IUCrData, 8, x230155.  Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRossi, M. B., Piro, O. E., Castellano, E. E., Alborés, P. & Baraldo, L. M. (2008). Inorg. Chem. 47, 2416–2427.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrivedi, M., Sharma, Y. K., Nagarajan, R. & Rath, N. P. (2010). J. Mol. Struct. 975, 335–342.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146