

ISSN 2414-3146

Received 30 January 2024 Accepted 27 February 2024

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México

Keywords: crystal structure; coordination compound; ruthenium(II); DMAP; dmso.

CCDC reference: 2034089

Structural data: full structural data are available from iucrdata.iucr.org

cis,cis,cis-Dichloridobis(N^4 , N^4 -dimethylpyridin-4amine- κN^1)bis(dimethyl sulfoxide- κS)ruthenium(II)

Esther H. Park, Sarah M. Ortiz, Todd K. Liang and Bradley W. Smucker*

Austin College, 900 N Grand, Sherman, TX 75090, USA. *Correspondence e-mail: bsmucker@austincollege.edu

The structure of the title compound, $[RuCl_2(C_7H_{10}N_2)_2(C_2H_6OS)_2]$, has monoclinic $(P2_1/n)$ symmetry. The Ru–N distances of the coordination compound are influenced by the *trans* chloride or dimethylsulfoxide- κS ligands. The molecular structure exhibits disorder for two of the terminal methyl groups of a dimethyl sulfoxide ligand.

Structure description

Both symmetry-related Δ and Λ enantiomers are present in the unit cell. The ruthenium(II) complex has the oxygen atoms of the dimethyl sulfoxide (dmso) ligands positioned in the same general direction toward an H1 atom of a DMAP (*N*,*N*dimethylpyridin-4-amine) ligand with intramolecular distances of 2.456 (H1···O2) and 2.707 Å (H1···O1) (Fig. 1). The two DMAP ligands are both tilted to position the α -hydrogen atoms of the pyridyl rings to interact with the aforementioned oxygen atoms of the dmso ligand or the chlorido ligands with distances of 2.841 (H12···Cl2) and 2.931 Å (H12···Cl1) (Fig. 1). A comparison between the Ru–N distances for the coordinating DMAP ligands reveals a greater *trans*-influence by the S atom from the dmso ligand [Ru–N3 = 2.150 (4) Å] than by the chloride ligand [Ru–N1 = 2.117 (5) Å]. This influence by the S and Cl atoms agrees with the Ru–N distances found in the crystal structure of a similar Ru^{II} complex containing pyridine instead of DMAP, namely *cis,cis, cis*-[RuCl₂(dmso- κS)₂(py)₂] (Trivedi *et al.*, 2010).

The molecular complexes pack with one of the DMAP ligands offset above its symmetry-related counterpart, with intermolecular distances of 3.691 (9) and 3.729 (8) Å, for N2···C3(1 - x, 1 - y, 1 - z) and N2···N2(1 - x, 1 - y, 1 - z), respectively (Fig. 2).

Synthesis and crystallization

The formation of $[Ru(DMAP)_6]Cl_2$ was reported from the reaction of a fortyfold excess of DMAP with $[Ru(dmso)_4Cl_2]$ in ethanol (Rossi *et al.*, 2008). With the aim toward the

Figure 1

Displacement ellipsoid (50% probability level) representation of the title complex with intramolecular $H \cdots O$ and $H \cdots Cl$ distances given (disorder and methyl hydrogen atoms omitted for clarity).

neutral tetrakis(DMAP) product, a general synthesis was followed, as described for *trans*-[RuCl₂(pyrazine- κN)₄] (Carlucci *et al.*, 2002), where [RuCl₂(dmso)₄] and four equivalents of a pyridyl-based ligand are heated in toluene for multiple hours. This method has yielded *trans*-[RuCl₂(NN)₄] compounds with NN = 4-methoxypyridine (Reinheimer *et al.*, 2023) or pyrazine (Nesterov *et al.*, 2012). Rath and co-workers explored the effects of solvent polarity on the substitution of dmso and used a water/methanol solution of [Ru(dmso)₄Cl₂] and two equivalents of pyridine to form *cis,cis,cis*-[RuCl₂(dmso- κS)₂(py)₂] (Trivedi *et al.*, 2010). Unexpectedly, the title compound was synthesized using a non-polar solvent and four equivalents of a more basic pyridyl-type ligand, DMAP.

A Schlenk flask was charged with 0.1 g (0.2 mmol) of $Ru(dmso)_4Cl_2$ and 0.1 g (0.8 mmol) of DMAP, then combined

Figure 2

Displacement ellipsoid (50% probability level) representation of the packing of two molecules of the title complex with intermolecular distances given between the N2 atom and the C3 and N2 symmetry-related atoms (1 - x, 1 - y, 1 - z). Disorder and hydrogen atoms omitted for clarity.

Fable 1	
Experimental	details.

	Crystal data	
	Chemical formula	$[RuCl_2(C_7H_{10}N_2)_2(C_2H_6OS)_2]$
	$M_{ m r}$	572.56
	Crystal system, space group	Monoclinic, $P2_1/n$
	Temperature (K)	293
	a, b, c (Å)	8.3125 (1), 18.9072 (4), 15.7906 (3)
	β(°)	90.617 (2)
	$V(Å^3)$	2481.60 (8)
	Z	4
	Radiation type	Μο Κα
	$\mu (\text{mm}^{-1})$	1.04
	Crystal size (mm)	$0.16\times0.10\times0.07$
	Data collection	
	Diffractometer	XtaLAB Mini II
	Absorption correction	Analytical [<i>CrysAlis PRO</i> (Rigaku OD, 2020) based on Clark & Reid (1995)]
	Turin Turin	0.969 0.984
	No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	122167, 5695, 4795
	Rint	0.067
	$(\sin \theta/\lambda)_{\rm max} ({\rm \AA}^{-1})$	0.649
tle	Refinement	
ler	$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.148, 1.09
	No. of reflections	5695
	No. of parameters	293
	No. of restraints	18
as	H-atom treatment	H-atom parameters constrained
1	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min}$ (e Å ⁻³)	1.35, -0.87

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), and Mercury (Macrae et al., 2020).

with 20 ml of toluene. The flask was purged with N_2 and the solution heated at reflux for 2 h. After slowly cooling, 0.11 g (90%) of a light-yellow solid was isolated after filtering in air and washing with ethanol. Brown prisms were grown by vapor diffusion between toluene and a chloroform/toluene solution of the product.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The crystal was treated as a twocomponent twin with scales of 0.9262 (9) and 0.0738 (9). Two of the terminal methyl groups were modeled for disorder using restrained distances (SADI; same distances with standard deviation of 0.02 Å) for S1–C15 and S1–C16, with parts *A* and *B*, restraining these carbon atoms with roughly equivalent anisotropic displacement parameters (SIMU; similar U_{ij} components with standard deviation of 0.001 Å²), and summing the occupancies of each type of C to sum to one (FVAR and 1 - FVAR; Sheldrick, 2015*b*).

Funding information

Funding for this research was provided by: Welch Foundation (grant No. AD-0007 to the Chemistry Department); Jerry Taylor and Nancy Bryant Foundation (gift to the Austin College Science Division).

References

- Carlucci, L., Ciani, G., Porta, F., Proserpio, D. M. & Santagostini, L. (2002). Angew. Chem. Int. Ed. 41, 1907–1911.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). *J. Appl. Cryst.* 53, 226–235.
- Nesterov, V. N., Khan, W., Rangel, A. E. & Smucker, B. W. (2012). *Acta Cryst.* E68, m1193.
- Reinheimer, E. W., Tobias, R. A., Bassel, E. R., Cantu, N. A. & Smucker, B. W. (2023). *IUCrData*, **8**, x230155.
- Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Rossi, M. B., Piro, O. E., Castellano, E. E., Alborés, P. & Baraldo, L. M. (2008). *Inorg. Chem.* **47**, 2416–2427.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Trivedi, M., Sharma, Y. K., Nagarajan, R. & Rath, N. P. (2010). J. Mol. Struct. 975, 335–342.

full crystallographic data

IUCrData (2024). 9, x240191 [https://doi.org/10.1107/S2414314624001913]

cis,cis,cis-Dichloridobis(N^4 , N^4 -dimethylpyridin-4-amine- κN^1)bis(dimethyl sulfoxide-*kS*)ruthenium(II)

Esther H. Park, Sarah M. Ortiz, Todd K. Liang and Bradley W. Smucker

cis,cis,cis-Dichloridobis(N^4 , N^4 -dimethylpyridin-4-amine- κN^1)bis(dimethyl sulfoxide- κS)ruthenium(II)

Crystal data

 $[RuCl_2(C_7H_{10}N_2)_2(C_2H_6OS)_2]$ $M_r = 572.56$ Monoclinic, $P2_1/n$ a = 8.3125(1) Å *b* = 18.9072 (4) Å c = 15.7906 (3) Å $\beta = 90.617 \ (2)^{\circ}$ V = 2481.60 (8) Å³ Z = 4

Data collection

XtaLAB Mini II	122167 measured reflections
diffractometer	5695 independent reflections
Radiation source: fine-focused sealed tube	4795 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.067$
Absorption correction: analytical	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
[CrysAlisPro (Rigaku OD, 2020) based on	$h = -10 \rightarrow 10$
Clark & Reid (1995)]	$k = -24 \longrightarrow 24$
$T_{\rm min} = 0.969, \ T_{\rm max} = 0.984$	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.048$ $wR(F^2) = 0.148$ S = 1.095695 reflections 293 parameters 18 restraints

Cell parameters from 31352 reflections $\theta = 2.2 - 28.7^{\circ}$ $\mu = 1.04 \text{ mm}^{-1}$ T = 293 KBlock, brown $0.16 \times 0.10 \times 0.07 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

F(000) = 1176

 $D_{\rm x} = 1.533 {\rm Mg} {\rm m}^{-3}$

Hydrogen site location: inferred from

neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0631P)^2 + 9.1602P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.35 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.87 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Refinement. Refined as a 2-component twin.

Fractional aton	nic coordinates	s and isotropic	or equivalent	t isotropic	displacement	naramotors	(\hat{A}^2)
Fractional alon	iic coorainaies	s una isotropic	or equivalent	isonopic	uspiacemeni	parameters	(A)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Ru1	0.73027 (5)	0.72633 (2)	0.75951 (3)	0.03186 (13)	

S2	0.59464 (17)	0.71392 (7)	0.88155 (8)	0.0373 (3)
C12	0.88050 (19)	0.82299 (8)	0.82624 (10)	0.0511 (4)
S1	0.91252 (18)	0.64259 (9)	0.79645 (11)	0.0499 (4)
C11	0.8805 (2)	0.74749 (10)	0.63031 (10)	0.0531 (4)
01	0.8687 (6)	0.5892 (2)	0.8604 (3)	0.0576 (12)
02	0.4730(5)	0.6575(2)	0.8889(3)	0.0524 (11)
N3	0.5583(5)	0.0070(2) 0.8030(2)	0.0009(3) 0.7148(3)	0.0329(9)
N2	0.3047(7)	0.5048(3)	0.5567(4)	0.0571(14)
N4	0.3017(7) 0.2210(7)	0.9497(3)	0.5307(1) 0.6181(4)	0.0571(11) 0.0508(12)
N1	0.2210(7) 0.5925(6)	0.5197(3)	0.6031(3)	0.0300(12)
CO	0.3923(0) 0.2838(7)	0.0490(2) 0.8364(3)	0.0751(3)	0.0404(10)
	0.2858 (7)	0.8304 (3)	0.0840 (3)	0.0404 (12)
113 C8	0.173319 0.2074(7)	0.024777 0.7000(3)	0.087201 0.7120 (4)	0.048
	0.3974 (7)	0.7900 (3)	0.7130 (4)	0.0381 (11)
Пð	0.302393	0.740412	0.732970	0.040°
C3	0.3963 (8)	0.5519 (3)	0.6005 (4)	0.0453 (13)
C10	0.3299 (7)	0.9020 (3)	0.6492 (3)	0.0405 (12)
C5	0.5422 (7)	0.6618 (3)	0.6125 (3)	0.0410 (12)
H5	0.575206	0.703469	0.586635	0.049*
C12	0.6030 (7)	0.8656 (3)	0.6827 (4)	0.0434 (13)
H12	0.712162	0.876319	0.682320	0.052*
C11	0.4969 (7)	0.9152 (3)	0.6503 (4)	0.0461 (14)
H11	0.536018	0.957625	0.628999	0.055*
C14	0.2713 (10)	1.0068 (4)	0.5618 (5)	0.0648 (19)
H14A	0.378701	1.021287	0.576635	0.097*
H14B	0.199495	1.046257	0.567635	0.097*
H14C	0.268760	0.990457	0.504287	0.097*
C1	0.5460 (8)	0.5873 (3)	0.7265 (4)	0.0463 (13)
H1	0.579416	0.576580	0.781458	0.056*
C2	0.4523 (8)	0.5385 (3)	0.6841 (4)	0.0498 (14)
H2	0.425382	0.496277	0.710649	0.060*
C4	0.4461 (8)	0.6169 (3)	0.5664 (4)	0.0469 (14)
H4	0.413423	0.629550	0.511941	0.056*
C17	0.7239 (9)	0.7070 (4)	0.9729 (4)	0.0544 (16)
H17A	0.783317	0.663560	0.970460	0.082*
H17B	0.660093	0 707661	1 023245	0.082*
H17C	0 797394	0 746193	0.973982	0.082*
C7	0.7373(11)	0.5231(4)	0.9753(5)	0.002
С7 H7A	0.132824	0.545369	0.483275	0.105*
H7R	0.221327	0.545505	0.442004	0.105*
	0.221527	0.460997	0.446307	0.105*
П/С C12	0.303770	0.333002	0.440397	0.103°
	0.0489 (8)	0.9328 (4)	0.0152(5)	0.0585 (17)
HIJA	0.025195	0.905825	0.565108	0.088*
нізв	-0.0123/9	0.9/5811	0.014310	0.088*
HI3C	0.021278	0.905643	0.004343	0.088*
C6	0.2547 (10)	0.4391 (4)	0.5945 (5)	0.0665 (19)
H6A	0.347232	0.414532	0.616460	0.100*
H6B	0.202125	0.410330	0.552418	0.100*
H6C	0.181547	0.448616	0.639694	0.100*

C18	0.4956 (10)	0.7942 (4)	0.9103 (4)	0.0586 (18)		
H18A	0.568704	0.833165	0.904579	0.088*		
H18B	0.460866	0.791123	0.967999	0.088*		
H18C	0.403896	0.801449	0.873846	0.088*		
C16B	1.115 (3)	0.674 (3)	0.811 (4)	0.094 (9)	0.49 (7)	
H16A	1.151237	0.695361	0.759029	0.141*	0.49 (7)	
H16B	1.184112	0.635662	0.825903	0.141*	0.49 (7)	
H16C	1.117362	0.709174	0.855091	0.141*	0.49 (7)	
C15B	0.971 (3)	0.5886 (13)	0.7074 (8)	0.107 (7)	0.89 (5)	
H15A	0.879157	0.562820	0.686573	0.161*	0.89 (5)	
H15B	1.053119	0.555928	0.725013	0.161*	0.89 (5)	
H15C	1.011517	0.618346	0.663205	0.161*	0.89 (5)	
C16A	1.088 (4)	0.684 (2)	0.843 (3)	0.094 (9)	0.51 (7)	
H16D	1.113528	0.726098	0.811056	0.141*	0.51 (7)	
H16E	1.177123	0.652033	0.840928	0.141*	0.51 (7)	
H16F	1.066494	0.696755	0.900281	0.141*	0.51 (7)	
C15A	1.026 (19)	0.625 (9)	0.702 (5)	0.107 (7)	0.11 (5)	
H15D	0.989372	0.655770	0.657266	0.161*	0.11 (5)	
H15E	1.010593	0.576730	0.685221	0.161*	0.11 (5)	
H15F	1.138045	0.633495	0.713066	0.161*	0.11 (5)	

Atomic displacement parameters $(Å^2)$

Ru1 $0.0324 (2)$ $0.0340 (2)$ $0.02915 (19)$ $-0.00073 (16)$ $0.00050 (15)$ $0.00225 (15)$ S2 $0.0387 (7)$ $0.0418 (7)$ $0.0313 (6)$ $-0.0010 (5)$ $0.0018 (5)$ $0.0026 (5)$ Cl2 $0.0518 (8)$ $0.0528 (8)$ $0.0486 (8)$ $-0.0152 (7)$ $-0.0079 (6)$ $-0.0009 (6)$ S1 $0.0385 (7)$ $0.0533 (9)$ $0.0580 (9)$ $0.0114 (6)$ $0.0036 (7)$ $0.0098 (7)$ Cl1 $0.0510 (9)$ $0.0664 (9)$ $0.0421 (7)$ $-0.0077 (7)$ $0.0132 (6)$ $0.0031 (7)$ O1 $0.062 (3)$ $0.043 (2)$ $0.068 (3)$ $0.011 (2)$ $0.002 (2)$ $0.011 (2)$ O2 $0.047 (2)$ $0.061 (3)$ $0.050 (2)$ $-0.014 (2)$ $0.0099 (19)$ $0.001 (2)$ N3 $0.032 (2)$ $0.037 (2)$ $0.033 (2)$ $-0.0018 (18)$ $-0.0031 (17)$ $0.0026 (17)$ N2 $0.067 (4)$ $0.043 (3)$ $0.060 (3)$ $-0.015 (3)$ $-0.012 (3)$ $0.000 (2)$ N4 $0.054 (3)$ $0.041 (3)$ $0.057 (3)$ $0.008 (2)$ $-0.010 (3)$ $0.004 (2)$ N1 $0.049 (3)$ $0.036 (2)$ $0.037 (2)$ $-0.003 (2)$ $-0.003 (2)$ $0.002 (2)$ C3 $0.051 (3)$ $0.036 (3)$ $0.042 (3)$ $-0.005 (3)$ $-0.003 (3)$ $0.001 (2)$ C4 $0.036 (3)$ $0.042 (3)$ $-0.005 (3)$ $-0.003 (3)$ $0.002 (2)$ C5 $0.035 (3)$ $0.036 (3)$ $0.042 (3)$ $-0.005 (3)$ $-0.003 (3)$ $0.007 (2)$ C10 $0.048 ($		U^{11}	U^{22}	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U^{23}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ru1	0.0324 (2)	0.0340 (2)	0.02915 (19)	-0.00073 (16)	0.00050 (15)	0.00225 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S2	0.0387 (7)	0.0418 (7)	0.0313 (6)	-0.0010 (5)	0.0018 (5)	0.0026 (5)
S1 0.0385 (7) 0.0533 (9) 0.0580 (9) 0.0114 (6) 0.0036 (7) 0.0098 (7) C11 0.0510 (9) 0.0664 (9) 0.0421 (7) -0.0077 (7) 0.0132 (6) 0.0031 (7) O1 0.062 (3) 0.043 (2) 0.068 (3) 0.011 (2) 0.002 (2) 0.011 (2) O2 0.047 (2) 0.061 (3) 0.050 (2) -0.014 (2) 0.0099 (19) 0.001 (2) N3 0.032 (2) 0.037 (2) 0.033 (2) -0.0018 (18) -0.0031 (17) 0.0026 (17) N2 0.067 (4) 0.043 (3) 0.060 (3) -0.015 (3) -0.012 (3) 0.000 (2) N4 0.054 (3) 0.041 (3) 0.057 (3) 0.008 (2) -0.010 (3) 0.004 (2) N1 0.049 (3) 0.036 (2) 0.037 (3) 0.039 (3) -0.003 (2) -0.002 (2) 0.003 (2) 0.002 (2) C8 0.036 (3) 0.042 (3) -0.005 (2) 0.000 (2) 0.007 (2) C3 0.051 (3) 0.038 (3) 0.048 (3) -0.005 (3) -0.003 (3) <th< td=""><td>C12</td><td>0.0518 (8)</td><td>0.0528 (8)</td><td>0.0486 (8)</td><td>-0.0152 (7)</td><td>-0.0079 (6)</td><td>-0.0009 (6)</td></th<>	C12	0.0518 (8)	0.0528 (8)	0.0486 (8)	-0.0152 (7)	-0.0079 (6)	-0.0009 (6)
Cl1 $0.0510(9)$ $0.0664(9)$ $0.0421(7)$ $-0.0077(7)$ $0.0132(6)$ $0.0031(7)$ O1 $0.062(3)$ $0.043(2)$ $0.068(3)$ $0.011(2)$ $0.002(2)$ $0.011(2)$ O2 $0.047(2)$ $0.061(3)$ $0.050(2)$ $-0.014(2)$ $0.0099(19)$ $0.001(2)$ N3 $0.032(2)$ $0.037(2)$ $0.033(2)$ $-0.018(18)$ $-0.0031(17)$ $0.0026(17)$ N2 $0.067(4)$ $0.043(3)$ $0.060(3)$ $-0.015(3)$ $-0.012(3)$ $0.000(2)$ N4 $0.054(3)$ $0.041(3)$ $0.057(3)$ $0.008(2)$ $-0.010(3)$ $0.004(2)$ N1 $0.049(3)$ $0.036(2)$ $0.037(2)$ $-0.002(2)$ $-0.003(2)$ $0.002(2)$ C8 $0.036(3)$ $0.047(3)$ $0.039(3)$ $-0.005(2)$ $-0.003(2)$ $0.002(2)$ C8 $0.036(3)$ $0.047(3)$ $0.039(3)$ $-0.005(2)$ $-0.003(3)$ $0.001(2)$ C9 $0.035(3)$ $0.036(3)$ $0.042(3)$ $-0.005(2)$ $-0.003(3)$ $0.001(2)$ C10 $0.048(3)$ $0.037(3)$ $0.036(3)$ $0.002(2)$ $-0.003(3)$ $0.001(2)$ C10 $0.048(3)$ $0.037(3)$ $0.053(3)$ $-0.008(2)$ $-0.003(3)$ $0.007(2)$ C11 $0.046(3)$ $0.032(3)$ $0.060(4)$ $-0.007(2)$ $-0.008(3)$ $0.009(2)$ C12 $0.040(3)$ $0.037(3)$ $0.048(3)$ $-0.008(3)$ $-0.002(3)$ $0.007(2)$ C14 $0.073(5)$ $0.045(4)$ $0.076(5)$ $0.002(3)$ $-0.002(3)$ 0.00	S 1	0.0385 (7)	0.0533 (9)	0.0580 (9)	0.0114 (6)	0.0036 (7)	0.0098 (7)
O1 0.062 (3) 0.043 (2) 0.068 (3) 0.011 (2) 0.002 (2) 0.011 (2) O2 0.047 (2) 0.061 (3) 0.050 (2) -0.014 (2) 0.0099 (19) 0.001 (2) N3 0.032 (2) 0.037 (2) 0.033 (2) -0.0018 (18) -0.0031 (17) 0.0026 (17) N2 0.067 (4) 0.043 (3) 0.060 (3) -0.015 (3) -0.012 (3) 0.000 (2) N4 0.054 (3) 0.041 (3) 0.057 (3) 0.008 (2) -0.010 (3) 0.004 (2) N1 0.049 (3) 0.036 (2) 0.037 (2) -0.002 (2) -0.003 (2) 0.002 (2) C8 0.036 (3) 0.042 (3) -0.005 (2) -0.003 (2) 0.002 (2) C8 0.036 (3) 0.036 (3) 0.048 (3) -0.005 (2) -0.003 (3) 0.001 (2) C3 0.051 (3) 0.038 (3) 0.048 (3) -0.005 (2) -0.001 (2) 0.003 (2) C4 0.048 (3) 0.037 (3) 0.036 (3) 0.002 (2) -0.005 (2) -0.001 (2) C10	Cl1	0.0510 (9)	0.0664 (9)	0.0421 (7)	-0.0077 (7)	0.0132 (6)	0.0031 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01	0.062 (3)	0.043 (2)	0.068 (3)	0.011 (2)	0.002 (2)	0.011 (2)
N3 $0.032 (2)$ $0.037 (2)$ $0.033 (2)$ $-0.0018 (18)$ $-0.0031 (17)$ $0.0026 (17)$ N2 $0.067 (4)$ $0.043 (3)$ $0.060 (3)$ $-0.015 (3)$ $-0.012 (3)$ $0.000 (2)$ N4 $0.054 (3)$ $0.041 (3)$ $0.057 (3)$ $0.008 (2)$ $-0.010 (3)$ $0.004 (2)$ N1 $0.049 (3)$ $0.036 (2)$ $0.037 (2)$ $-0.002 (2)$ $-0.003 (2)$ $0.0021 (19)$ C9 $0.035 (3)$ $0.047 (3)$ $0.039 (3)$ $-0.005 (2)$ $0.000 (2)$ $0.007 (2)$ C3 $0.051 (3)$ $0.038 (3)$ $0.048 (3)$ $-0.005 (3)$ $-0.003 (3)$ $0.001 (2)$ C10 $0.048 (3)$ $0.036 (3)$ $0.034 (3)$ $-0.005 (3)$ $-0.003 (3)$ $0.001 (2)$ C10 $0.048 (3)$ $0.037 (3)$ $0.036 (3)$ $0.002 (2)$ $-0.003 (3)$ $0.001 (2)$ C10 $0.048 (3)$ $0.037 (3)$ $0.036 (3)$ $0.002 (2)$ $-0.003 (3)$ $0.001 (2)$ C12 $0.040 (3)$ $0.037 (3)$ $0.035 (3)$ $-0.006 (2)$ $-0.001 (2)$ $0.003 (2)$ C11 $0.046 (3)$ $0.032 (3)$ $0.060 (4)$ $-0.007 (2)$ $-0.008 (3)$ $0.009 (2)$ C14 $0.073 (5)$ $0.045 (4)$ $0.076 (5)$ $0.002 (3)$ $-0.025 (4)$ $0.014 (3)$ C1 $0.061 (4)$ $0.038 (3)$ $0.049 (3)$ $-0.003 (3)$ $-0.007 (2)$ C2 $0.064 (4)$ $0.037 (3)$ $0.048 (3)$ $-0.002 (3)$ $-0.007 (3)$ $0.005 (2)$ C14 $0.058 (4)$ $0.043 (3)$	O2	0.047 (2)	0.061 (3)	0.050 (2)	-0.014 (2)	0.0099 (19)	0.001 (2)
N2 $0.067 (4)$ $0.043 (3)$ $0.060 (3)$ $-0.015 (3)$ $-0.012 (3)$ $0.000 (2)$ N4 $0.054 (3)$ $0.041 (3)$ $0.057 (3)$ $0.008 (2)$ $-0.010 (3)$ $0.004 (2)$ N1 $0.049 (3)$ $0.036 (2)$ $0.037 (2)$ $-0.002 (2)$ $-0.003 (2)$ $0.0021 (19)$ C9 $0.035 (3)$ $0.047 (3)$ $0.039 (3)$ $-0.003 (2)$ $-0.003 (2)$ $0.002 (2)$ C8 $0.036 (3)$ $0.036 (3)$ $0.042 (3)$ $-0.005 (2)$ $0.000 (2)$ $0.007 (2)$ C3 $0.051 (3)$ $0.038 (3)$ $0.048 (3)$ $-0.005 (3)$ $-0.003 (3)$ $0.001 (2)$ C10 $0.048 (3)$ $0.037 (3)$ $0.036 (3)$ $0.002 (2)$ $-0.003 (3)$ $0.001 (2)$ C5 $0.053 (3)$ $0.036 (3)$ $0.034 (3)$ $-0.005 (3)$ $-0.003 (3)$ $0.001 (2)$ C10 $0.048 (3)$ $0.037 (3)$ $0.036 (3)$ $-0.002 (2)$ $-0.003 (3)$ $0.001 (2)$ C12 $0.040 (3)$ $0.037 (3)$ $0.035 (3)$ $-0.006 (2)$ $-0.001 (2)$ $0.003 (2)$ C11 $0.046 (3)$ $0.032 (3)$ $0.060 (4)$ $-0.007 (2)$ $-0.008 (3)$ $0.009 (2)$ C14 $0.073 (5)$ $0.045 (4)$ $0.076 (5)$ $0.002 (3)$ $-0.002 (3)$ $0.006 (2)$ C2 $0.064 (4)$ $0.037 (3)$ $0.048 (3)$ $-0.008 (3)$ $-0.002 (3)$ $0.007 (2)$ C4 $0.058 (4)$ $0.043 (3)$ $0.039 (3)$ $-0.003 (3)$ $-0.002 (3)$ $0.005 (2)$ C17 $0.068 (4)$ 0.063	N3	0.032 (2)	0.037 (2)	0.033 (2)	-0.0018 (18)	-0.0031 (17)	0.0026 (17)
N4 0.054 (3) 0.041 (3) 0.057 (3) 0.008 (2) -0.010 (3) 0.004 (2) N1 0.049 (3) 0.036 (2) 0.037 (2) -0.002 (2) -0.003 (2) 0.0021 (19) C9 0.035 (3) 0.047 (3) 0.039 (3) -0.003 (2) -0.003 (2) 0.002 (2) C8 0.036 (3) 0.042 (3) -0.005 (2) 0.000 (2) 0.007 (2) C3 0.051 (3) 0.038 (3) 0.048 (3) -0.005 (3) -0.003 (3) 0.001 (2) C10 0.048 (3) 0.037 (3) 0.036 (3) 0.002 (2) -0.005 (2) -0.001 (2) C5 0.053 (3) 0.036 (3) 0.034 (3) -0.006 (2) -0.001 (2) 0.003 (2) C12 0.040 (3) 0.037 (3) 0.053 (3) -0.008 (2) -0.001 (2) 0.003 (2) C11 0.046 (3) 0.032 (3) 0.060 (4) -0.007 (2) -0.008 (3) 0.009 (2) C14 0.073 (5) 0.045 (4) 0.076 (5) 0.002 (3) -0.025 (4) 0.014 (3) C1 <	N2	0.067 (4)	0.043 (3)	0.060 (3)	-0.015 (3)	-0.012 (3)	0.000(2)
N1 $0.049(3)$ $0.036(2)$ $0.037(2)$ $-0.002(2)$ $-0.003(2)$ $0.0021(19)$ C9 $0.035(3)$ $0.047(3)$ $0.039(3)$ $-0.003(2)$ $-0.003(2)$ $0.002(2)$ C8 $0.036(3)$ $0.036(3)$ $0.042(3)$ $-0.005(2)$ $0.000(2)$ $0.007(2)$ C3 $0.051(3)$ $0.038(3)$ $0.048(3)$ $-0.005(3)$ $-0.003(3)$ $0.001(2)$ C10 $0.048(3)$ $0.037(3)$ $0.036(3)$ $0.002(2)$ $-0.005(2)$ $-0.001(2)$ C5 $0.053(3)$ $0.036(3)$ $0.034(3)$ $-0.006(2)$ $-0.001(2)$ $0.003(2)$ C12 $0.040(3)$ $0.037(3)$ $0.053(3)$ $-0.008(2)$ $-0.003(3)$ $0.007(2)$ C11 $0.046(3)$ $0.032(3)$ $0.060(4)$ $-0.007(2)$ $-0.008(3)$ $0.009(2)$ C14 $0.073(5)$ $0.045(4)$ $0.076(5)$ $0.002(3)$ $-0.025(4)$ $0.014(3)$ C1 $0.061(4)$ $0.038(3)$ $0.048(3)$ $-0.008(3)$ $-0.002(3)$ $0.007(2)$ C2 $0.064(4)$ $0.037(3)$ $0.039(3)$ $-0.008(3)$ $-0.002(3)$ $0.007(2)$ C4 $0.058(4)$ $0.043(3)$ $0.039(3)$ $-0.003(3)$ $-0.007(3)$ $0.005(2)$ C17 $0.068(4)$ $0.063(4)$ $0.032(3)$ $0.001(3)$ $-0.007(3)$ $0.008(3)$ C7 $0.075(5)$ $0.065(5)$ $0.070(5)$ $-0.015(4)$ $-0.025(4)$ $-0.001(4)$	N4	0.054 (3)	0.041 (3)	0.057 (3)	0.008 (2)	-0.010 (3)	0.004 (2)
C9 $0.035(3)$ $0.047(3)$ $0.039(3)$ $-0.003(2)$ $-0.003(2)$ $0.002(2)$ C8 $0.036(3)$ $0.036(3)$ $0.042(3)$ $-0.005(2)$ $0.000(2)$ $0.007(2)$ C3 $0.051(3)$ $0.038(3)$ $0.048(3)$ $-0.005(3)$ $-0.003(3)$ $0.001(2)$ C10 $0.048(3)$ $0.037(3)$ $0.036(3)$ $0.002(2)$ $-0.005(2)$ $-0.001(2)$ C5 $0.053(3)$ $0.036(3)$ $0.034(3)$ $-0.006(2)$ $-0.001(2)$ $0.003(2)$ C12 $0.040(3)$ $0.037(3)$ $0.053(3)$ $-0.008(2)$ $-0.003(3)$ $0.007(2)$ C11 $0.046(3)$ $0.032(3)$ $0.060(4)$ $-0.007(2)$ $-0.008(3)$ $0.009(2)$ C14 $0.073(5)$ $0.045(4)$ $0.076(5)$ $0.002(3)$ $-0.025(4)$ $0.014(3)$ C1 $0.061(4)$ $0.038(3)$ $0.040(3)$ $-0.008(3)$ $-0.002(3)$ $0.007(2)$ C2 $0.064(4)$ $0.037(3)$ $0.048(3)$ $-0.003(3)$ $-0.007(3)$ $0.005(2)$ C1 $0.068(4)$ $0.043(3)$ $0.039(3)$ $-0.003(3)$ $-0.007(3)$ $0.005(2)$ C2 $0.064(4)$ $0.037(3)$ $0.039(3)$ $-0.003(3)$ $-0.007(3)$ $0.005(2)$ C17 $0.068(4)$ $0.063(4)$ $0.032(3)$ $0.001(3)$ $-0.007(3)$ $0.008(3)$ C7 $0.075(5)$ $0.065(5)$ $0.070(5)$ $-0.015(4)$ $-0.025(4)$ $-0.001(4)$	N1	0.049 (3)	0.036 (2)	0.037 (2)	-0.002 (2)	-0.003 (2)	0.0021 (19)
C8 $0.036(3)$ $0.036(3)$ $0.042(3)$ $-0.005(2)$ $0.000(2)$ $0.007(2)$ C3 $0.051(3)$ $0.038(3)$ $0.048(3)$ $-0.005(3)$ $-0.003(3)$ $0.001(2)$ C10 $0.048(3)$ $0.037(3)$ $0.036(3)$ $0.002(2)$ $-0.005(2)$ $-0.001(2)$ C5 $0.053(3)$ $0.036(3)$ $0.034(3)$ $-0.006(2)$ $-0.001(2)$ $0.003(2)$ C12 $0.040(3)$ $0.037(3)$ $0.053(3)$ $-0.008(2)$ $-0.003(3)$ $0.007(2)$ C11 $0.046(3)$ $0.032(3)$ $0.060(4)$ $-0.007(2)$ $-0.008(3)$ $0.009(2)$ C14 $0.073(5)$ $0.045(4)$ $0.076(5)$ $0.002(3)$ $-0.025(4)$ $0.014(3)$ C1 $0.061(4)$ $0.038(3)$ $0.040(3)$ $-0.008(3)$ $-0.002(3)$ $0.007(2)$ C2 $0.064(4)$ $0.037(3)$ $0.048(3)$ $-0.008(3)$ $-0.002(3)$ $0.007(2)$ C4 $0.058(4)$ $0.043(3)$ $0.039(3)$ $-0.003(3)$ $-0.007(3)$ $0.005(2)$ C17 $0.068(4)$ $0.063(4)$ $0.032(3)$ $0.001(3)$ $-0.010(3)$ $0.008(3)$ C7 $0.075(5)$ $0.065(5)$ $0.070(5)$ $-0.015(4)$ $-0.025(4)$ $-0.001(4)$	С9	0.035 (3)	0.047 (3)	0.039 (3)	-0.003 (2)	-0.003 (2)	0.002 (2)
C3 $0.051 (3)$ $0.038 (3)$ $0.048 (3)$ $-0.005 (3)$ $-0.003 (3)$ $0.001 (2)$ C10 $0.048 (3)$ $0.037 (3)$ $0.036 (3)$ $0.002 (2)$ $-0.005 (2)$ $-0.001 (2)$ C5 $0.053 (3)$ $0.036 (3)$ $0.034 (3)$ $-0.006 (2)$ $-0.001 (2)$ $0.003 (2)$ C12 $0.040 (3)$ $0.037 (3)$ $0.053 (3)$ $-0.008 (2)$ $-0.003 (3)$ $0.007 (2)$ C11 $0.046 (3)$ $0.032 (3)$ $0.060 (4)$ $-0.007 (2)$ $-0.008 (3)$ $0.009 (2)$ C14 $0.073 (5)$ $0.045 (4)$ $0.076 (5)$ $0.002 (3)$ $-0.025 (4)$ $0.014 (3)$ C1 $0.061 (4)$ $0.038 (3)$ $0.040 (3)$ $-0.008 (3)$ $-0.002 (3)$ $0.006 (2)$ C2 $0.064 (4)$ $0.037 (3)$ $0.048 (3)$ $-0.008 (3)$ $-0.002 (3)$ $0.007 (2)$ C4 $0.058 (4)$ $0.043 (4)$ $0.032 (3)$ $0.001 (3)$ $-0.007 (3)$ $0.005 (2)$ C17 $0.068 (4)$ $0.063 (4)$ $0.032 (3)$ $0.001 (3)$ $-0.010 (3)$ $0.008 (3)$ C7 $0.075 (5)$ $0.065 (5)$ $0.070 (5)$ $-0.015 (4)$ $-0.025 (4)$ $-0.001 (4)$	C8	0.036 (3)	0.036 (3)	0.042 (3)	-0.005 (2)	0.000(2)	0.007 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3	0.051 (3)	0.038 (3)	0.048 (3)	-0.005 (3)	-0.003 (3)	0.001 (2)
C5 $0.053(3)$ $0.036(3)$ $0.034(3)$ $-0.006(2)$ $-0.001(2)$ $0.003(2)$ C12 $0.040(3)$ $0.037(3)$ $0.053(3)$ $-0.008(2)$ $-0.003(3)$ $0.007(2)$ C11 $0.046(3)$ $0.032(3)$ $0.060(4)$ $-0.007(2)$ $-0.008(3)$ $0.009(2)$ C14 $0.073(5)$ $0.045(4)$ $0.076(5)$ $0.002(3)$ $-0.025(4)$ $0.014(3)$ C1 $0.061(4)$ $0.038(3)$ $0.040(3)$ $-0.004(3)$ $0.000(3)$ $0.006(2)$ C2 $0.064(4)$ $0.037(3)$ $0.048(3)$ $-0.008(3)$ $-0.002(3)$ $0.007(2)$ C4 $0.058(4)$ $0.043(3)$ $0.039(3)$ $-0.003(3)$ $-0.007(3)$ $0.005(2)$ C17 $0.068(4)$ $0.063(4)$ $0.032(3)$ $0.001(3)$ $-0.010(3)$ $0.008(3)$ C7 $0.075(5)$ $0.065(5)$ $0.070(5)$ $-0.015(4)$ $-0.025(4)$ $-0.001(4)$	C10	0.048 (3)	0.037 (3)	0.036 (3)	0.002 (2)	-0.005 (2)	-0.001 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5	0.053 (3)	0.036 (3)	0.034 (3)	-0.006 (2)	-0.001 (2)	0.003 (2)
C11 $0.046(3)$ $0.032(3)$ $0.060(4)$ $-0.007(2)$ $-0.008(3)$ $0.009(2)$ C14 $0.073(5)$ $0.045(4)$ $0.076(5)$ $0.002(3)$ $-0.025(4)$ $0.014(3)$ C1 $0.061(4)$ $0.038(3)$ $0.040(3)$ $-0.004(3)$ $0.000(3)$ $0.006(2)$ C2 $0.064(4)$ $0.037(3)$ $0.048(3)$ $-0.008(3)$ $-0.002(3)$ $0.007(2)$ C4 $0.058(4)$ $0.043(3)$ $0.039(3)$ $-0.003(3)$ $-0.007(3)$ $0.005(2)$ C17 $0.068(4)$ $0.063(4)$ $0.032(3)$ $0.001(3)$ $-0.010(3)$ $0.008(3)$ C7 $0.075(5)$ $0.065(5)$ $0.070(5)$ $-0.015(4)$ $-0.025(4)$ $-0.001(4)$	C12	0.040 (3)	0.037 (3)	0.053 (3)	-0.008(2)	-0.003 (3)	0.007 (2)
C14 0.073 (5) 0.045 (4) 0.076 (5) 0.002 (3) -0.025 (4) 0.014 (3) C1 0.061 (4) 0.038 (3) 0.040 (3) -0.004 (3) 0.000 (3) 0.006 (2) C2 0.064 (4) 0.037 (3) 0.048 (3) -0.008 (3) -0.002 (3) 0.007 (2) C4 0.058 (4) 0.043 (3) 0.039 (3) -0.003 (3) -0.007 (3) 0.005 (2) C17 0.068 (4) 0.063 (4) 0.032 (3) 0.001 (3) -0.010 (3) 0.008 (3) C7 0.075 (5) 0.065 (5) 0.070 (5) -0.015 (4) -0.025 (4) -0.001 (4)	C11	0.046 (3)	0.032 (3)	0.060 (4)	-0.007(2)	-0.008 (3)	0.009(2)
C1 0.061 (4) 0.038 (3) 0.040 (3) -0.004 (3) 0.000 (3) 0.006 (2) C2 0.064 (4) 0.037 (3) 0.048 (3) -0.008 (3) -0.002 (3) 0.007 (2) C4 0.058 (4) 0.043 (3) 0.039 (3) -0.003 (3) -0.007 (3) 0.005 (2) C17 0.068 (4) 0.063 (4) 0.032 (3) 0.001 (3) -0.010 (3) 0.008 (3) C7 0.075 (5) 0.065 (5) 0.070 (5) -0.015 (4) -0.025 (4) -0.001 (4)	C14	0.073 (5)	0.045 (4)	0.076 (5)	0.002 (3)	-0.025 (4)	0.014 (3)
C2 0.064 (4) 0.037 (3) 0.048 (3) -0.008 (3) -0.002 (3) 0.007 (2) C4 0.058 (4) 0.043 (3) 0.039 (3) -0.003 (3) -0.007 (3) 0.005 (2) C17 0.068 (4) 0.063 (4) 0.032 (3) 0.001 (3) -0.010 (3) 0.008 (3) C7 0.075 (5) 0.065 (5) 0.070 (5) -0.015 (4) -0.025 (4) -0.001 (4)	C1	0.061 (4)	0.038 (3)	0.040 (3)	-0.004 (3)	0.000 (3)	0.006 (2)
C4 0.058 (4) 0.043 (3) 0.039 (3) -0.003 (3) -0.007 (3) 0.005 (2) C17 0.068 (4) 0.063 (4) 0.032 (3) 0.001 (3) -0.010 (3) 0.008 (3) C7 0.075 (5) 0.065 (5) 0.070 (5) -0.015 (4) -0.025 (4) -0.001 (4)	C2	0.064 (4)	0.037 (3)	0.048 (3)	-0.008 (3)	-0.002 (3)	0.007 (2)
C17 0.068 (4) 0.063 (4) 0.032 (3) 0.001 (3) -0.010 (3) 0.008 (3) C7 0.075 (5) 0.065 (5) 0.070 (5) -0.015 (4) -0.025 (4) -0.001 (4)	C4	0.058 (4)	0.043 (3)	0.039 (3)	-0.003 (3)	-0.007 (3)	0.005 (2)
C7 $0.075(5)$ $0.065(5)$ $0.070(5)$ $-0.015(4)$ $-0.025(4)$ $-0.001(4)$	C17	0.068 (4)	0.063 (4)	0.032 (3)	0.001 (3)	-0.010 (3)	0.008 (3)
	C7	0.075 (5)	0.065 (5)	0.070 (5)	-0.015 (4)	-0.025 (4)	-0.001 (4)

data reports

C13	0.046 (3)	0.059 (4)	0.071 (4)	0.012 (3)	-0.012 (3)	-0.002(3)
C6	0.072 (5)	0.049 (4)	0.078 (5)	-0.019 (4)	-0.009 (4)	0.000 (3)
C18	0.078 (5)	0.054 (4)	0.044 (3)	0.021 (3)	0.012 (3)	0.000 (3)
C16B	0.014 (6)	0.081 (12)	0.19 (3)	0.005 (9)	0.009 (10)	0.041 (16)
C15B	0.156 (13)	0.095 (13)	0.072 (6)	0.079 (11)	0.040 (7)	0.004 (7)
C16A	0.014 (6)	0.081 (12)	0.19 (3)	0.005 (9)	0.009 (10)	0.041 (16)
C15A	0.156 (13)	0.095 (13)	0.072 (6)	0.079 (12)	0.040 (7)	0.004 (7)

Geometric parameters (Å, °)

Ru1—S2	2.2553 (14)	C11—H11	0.9300
Ru1—Cl2	2.4456 (15)	C14—H14A	0.9600
Ru1—S1	2.2635 (15)	C14—H14B	0.9600
Ru1—Cl1	2.4366 (15)	C14—H14C	0.9600
Ru1—N3	2.150 (4)	C1—H1	0.9300
Ru1—N1	2.117 (5)	C1—C2	1.376 (9)
S2—O2	1.476 (4)	С2—Н2	0.9300
S2—C17	1.794 (6)	C4—H4	0.9300
S2—C18	1.788 (6)	C17—H17A	0.9600
S1—O1	1.476 (5)	C17—H17B	0.9600
S1—C16B	1.799 (13)	C17—H17C	0.9600
S1—C15B	1.809 (9)	C7—H7A	0.9600
S1—C16A	1.804 (14)	С7—Н7В	0.9600
S1—C15A	1.804 (18)	С7—Н7С	0.9600
N3—C8	1.360 (7)	C13—H13A	0.9600
N3—C12	1.341 (7)	C13—H13B	0.9600
N2—C3	1.355 (8)	C13—H13C	0.9600
N2—C7	1.446 (9)	C6—H6A	0.9600
N2—C6	1.442 (9)	С6—Н6В	0.9600
N4—C10	1.364 (7)	С6—Н6С	0.9600
N4—C14	1.463 (9)	C18—H18A	0.9600
N4—C13	1.466 (8)	C18—H18B	0.9600
N1—C5	1.355 (7)	C18—H18C	0.9600
N1—C1	1.352 (7)	C16B—H16A	0.9600
С9—Н9	0.9300	C16B—H16B	0.9600
C9—C8	1.366 (8)	C16B—H16C	0.9600
C9—C10	1.412 (8)	C15B—H15A	0.9600
C8—H8	0.9300	C15B—H15B	0.9600
C3—C2	1.419 (9)	C15B—H15C	0.9600
C3—C4	1.406 (8)	C16A—H16D	0.9600
C10—C11	1.410 (8)	C16A—H16E	0.9600
С5—Н5	0.9300	C16A—H16F	0.9600
C5—C4	1.370 (8)	C15A—H15D	0.9600
C12—H12	0.9300	C15A—H15E	0.9600
C12—C11	1.381 (8)	C15A—H15F	0.9600
S2—Ru1—Cl2	88.12 (5)	N4—C14—H14C	109.5
S2—Ru1—S1	92.66 (6)	H14A—C14—H14B	109.5

S2—Ru1—Cl1	176.35 (6)	H14A—C14—H14C	109.5
S1—Ru1—Cl2	94.27 (6)	H14B—C14—H14C	109.5
S1—Ru1—Cl1	89.02 (6)	N1—C1—H1	118.0
Cl1—Ru1—Cl2	88.52 (6)	N1—C1—C2	123.9 (6)
N3—Ru1—S2	90.81 (12)	C2—C1—H1	118.0
N3—Ru1—C12	88.40 (12)	C3—C2—H2	119.6
N3—Ru1—S1	175.69 (12)	C1—C2—C3	120.8 (5)
N3—Ru1—C11	87.66 (12)	C1—C2—H2	119.6
N1—Ru1—S2	94.54 (13)	C3—C4—H4	119.6
N1— $Ru1$ — $C12$	174.55 (13)	C5—C4—C3	120.7 (5)
N1— $Ru1$ — $S1$	90.36 (14)	C5—C4—H4	119.6
N1—Ru1—Cl1	88.68 (14)	S2—C17—H17A	109.5
N1— $Ru1$ — $N3$	86 82 (18)	S2-C17-H17B	109.5
$\Omega^2 = S^2 = Ru^1$	119 47 (19)	S2-C17-H17C	109.5
02 - 82 - C17	106.8 (3)	H17A - C17 - H17B	109.5
02 - 82 - C18	106.0(3)	H17A - C17 - H17C	109.5
$C_{17} = S_{2} = B_{11}$	100.0(3) 113.2(2)	H17B - C17 - H17C	109.5
C18 = S2 = Ru1	113.2(2) 111.4(2)	N2-C7-H7A	109.5
$C_{18} = S_{2} = C_{17}$	97 5 (3)	N2—C7—H7B	109.5
01 - S1 - Ru1	1190(2)	N2H7C	109.5
01 - S1 - C16B	112.0(2)	H7A - C7 - H7B	109.5
01 - S1 - C15B	102(2)	H7A - C7 - H7C	109.5
01 - S1 - C16A	102.3(9) 103 1(19)	H7B-C7-H7C	109.5
01 - S1 - C15A	105.1 (17)	$M_{-}C13 - H13A$	109.5
C_{16B} S_{1} B_{11}	125(5) 1149(18)	N4-C13-H13R	109.5
C16B = S1 = C15B	92 (2)	N4-C13-H13C	109.5
C15B $S1$ $B10$	$\frac{112}{112}$ 3 (5)	$H_{13} = C_{13} = H_{13} B$	109.5
C16A = S1 = Ru1	109 5 (16)	$H_{13}A - C_{13} - H_{13}C$	109.5
C15A = S1 = Ru1	105.5 (10)	H_{13B} C_{13} H_{13C}	109.5
C15A - S1 - C16A	89 (7)	N2-C6-H6A	109.5
C8—N3—Rul	122.3(4)	N2-C6-H6B	109.5
C12—N3—Ru1	122.3(1) 122.2(4)	$N_2 = C_6 = H_6C$	109.5
C12 - N3 - C8	122.2(4) 1154(5)	H6A - C6 - H6B	109.5
$C_{3} N_{2} C_{7}$	120.9 (6)	H6A - C6 - H6C	109.5
$C_3 = N_2 = C_6$	120.9 (0)	H6B—C6—H6C	109.5
C6-N2-C7	121.2(0) 1174(6)	S2-C18-H18A	109.5
C10 - N4 - C14	120.9 (6)	S2—C18—H18B	109.5
C10 N4 $C13$	120.9(0) 120.7(5)	S2—C18—H18C	109.5
C14 - N4 - C13	120.7(5) 115.3(5)	H18A—C18—H18B	109.5
C_{5} N1 R_{11}	120.7(4)	H18A - C18 - H18C	109.5
C1 - N1 - Ru1	126.7(1) 124.0(4)	H18B—C18—H18C	109.5
C1-N1-C5	1153(5)	S1—C16B—H16A	109.5
С8—С9—Н9	119.8	S1—C16B—H16B	109.5
C8-C9-C10	120 4 (5)	S1—C16B—H16C	109.5
С10—С9—Н9	119.8	H16A—C16B—H16B	109.5
N3-C8-C9	124.5 (5)	H16A - C16B - H16C	109.5
N3—C8—H8	117.7	H16B—C16B—H16C	109.5
C9—C8—H8	117.7	S1—C15B—H15A	109.5

N2—C3—C2	122.3 (6)	S1—C15B—H15B	109.5
N2—C3—C4	123.0 (6)	S1—C15B—H15C	109.5
C4—C3—C2	114.7 (5)	H15A—C15B—H15B	109.5
N4—C10—C9	122.6 (5)	H15A—C15B—H15C	109.5
N4—C10—C11	122.5 (5)	H15B—C15B—H15C	109.5
C11—C10—C9	114.9 (5)	S1—C16A—H16D	109.5
N1—C5—H5	117.7	S1—C16A—H16E	109.5
N1—C5—C4	124.6 (5)	S1—C16A—H16F	109.5
C4—C5—H5	117.7	H16D—C16A—H16E	109.5
N3—C12—H12	117.9	H16D—C16A—H16F	109.5
N3—C12—C11	124.1 (5)	H16E—C16A—H16F	109.5
C11—C12—H12	117.9	S1—C15A—H15D	109.5
C10-C11-H11	119.7	S1—C15A—H15E	109.5
C12—C11—C10	120.6 (5)	S1—C15A—H15F	109.5
C12—C11—H11	119.7	H15D—C15A—H15E	109.5
N4—C14—H14A	109.5	H15D—C15A—H15F	109.5
N4—C14—H14B	109.5	H15E—C15A—H15F	109.5
Ru1—N3—C8—C9	-178.9 (4)	C10—C9—C8—N3	3.1 (9)
Ru1—N3—C12—C11	177.3 (5)	C5—N1—C1—C2	-1.0 (9)
Ru1—N1—C5—C4	-176.6 (5)	C12—N3—C8—C9	-2.1 (8)
Ru1—N1—C1—C2	177.9 (5)	C14—N4—C10—C9	-162.6 (6)
N3—C12—C11—C10	0.0 (10)	C14—N4—C10—C11	18.7 (9)
N2—C3—C2—C1	179.6 (6)	C1—N1—C5—C4	2.4 (9)
N2—C3—C4—C5	-178.3 (6)	C2—C3—C4—C5	0.5 (9)
N4—C10—C11—C12	179.6 (6)	C4—C3—C2—C1	0.8 (10)
N1—C5—C4—C3	-2.2 (10)	C7—N2—C3—C2	173.3 (7)
N1—C1—C2—C3	-0.6 (10)	C7—N2—C3—C4	-8.0 (11)
C9—C10—C11—C12	0.8 (9)	C13—N4—C10—C9	-3.5 (9)
C8—N3—C12—C11	0.6 (9)	C13—N4—C10—C11	177.7 (6)
C8—C9—C10—N4	178.9 (6)	C6—N2—C3—C2	2.0 (11)
C8—C9—C10—C11	-2.2 (8)	C6—N2—C3—C4	-179.3 (7)