metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[di­aqua­bis­­(1,3-di­hydro-3-oxo­isobenzo­furan-1-acetato)­copper(II)]-μ-N,N′-(ethane-1,2-di­yl)dinicotinamide]

crossmark logo

aH. H. Dow High School, Midland, MI 48640, USA, and bE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by M. Zeller, Purdue University, USA (Received 1 August 2023; accepted 1 September 2023; online 8 September 2023)

The title compound, {[Cu(C10H7O4)2(C14H14N4O2)(H2O)2]n, contains octa­hed­rally coordinated CuII ions ligated by two bis­(1,3-di­hydro-3-oxo-1-isobenzo­furan­acetate (dibf) ligands and two trans water mol­ecules, linked by N,N′-(ethane-1,2-di­yl)dinicotinamide (edn) ligands into mono-periodic coordination polymer chains. The dibf ligands exhibit a pseudo-mirror positional disorder over two positions in a 89.2 (3)/10.8 (3) ratio; the central amide groups of the edn ligands are disordered pseudo-rotationally in the same ratio. These mono-periodic chain motifs are held into supra­molecular di-periodic supra­molecular layers by means of N—H⋯O hydrogen bonding between edn amide groups and unligated dibf carboxyl­ate O atoms. In turn, the supra­molecular layers are held by crystal packing forces into the full crystal structure of the title compound.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our group (Przybyla et al., 2019[Przybyla, J. J., Ezenyilimba, F. C. & LaDuca, R. L. (2019). Inorg. Chim. Acta, 498, 119087.]) and other groups (Wang et al., 2013[Wang, X., Luan, J., Lin, H., Lu, Q., Xu, C. & Liu, G. (2013). Dalton Trans. 42, 8375-8386.]) have demonstrated the utility of N,N′-(ethane-1,2-di­yl)dinicotinamide) (edn) for the construction of divalent metal coordination polymers. The title complex was obtained by hydro­thermal reaction of copper nitrate, 2-carb­oxy­cinnamic acid, and edn under basic conditions.

The asymmetric unit of the title compound contains a divalent copper atom on a crystallographic inversion center, one bis(1,3-dihydro-3-oxo-1-isobenzofuranacetate (dibf) ligand generated from the in situ lactonization of 2-carb­oxy­cinnamic acid (Murray & LaDuca, 2014[Murray, N. H. & LaDuca, R. L. (2014). Inorg. Chim. Acta, 421, 145-151.]), one weakly bound water mol­ecule, and half of an edn ligand whose central C—C σ bond is sited over another crystallographic inversion center. Operation of the inversion center at the CuII atom results in a Jahn–Teller-distorted {N2O4} coordination environment (Fig. 1[link]) whose elongated axial positions are filled by the bound water mol­ecules. Trans pyridyl N donor atoms from two edn ligands, and trans carboxyl­ate O atoms from two dibf ligands occupy the four equatorial positions. Bond lengths and angles within the coordination sphere are listed in Table 1[link]. The dibf ligands in the title complex serve as monodentate capping ligands. Neighboring copper atoms are linked by dipodal edn ligands to construct [Cu(dibf)(edn)(H2O)2]n coordination polymer chains that are oriented along the [110] direction (Fig. 2[link]). Both the edn as well as the dibf ligands in the title complex are disordered (Fig. 3[link]). For the edn ligand, the central N,N′-(ethane-1,2-di­yl)di­amide unit is disordered by a pseudo-rotation around the center of the ethyl­ene group. Both the major and minor moiety are located on the crystallographic inversion center and are both exactly inversion symmetric. The dibf disorder involves a pseudo-mirror operation, with inverted handedness for the saturated carbon atom C15 of the isobenzo­furan­one. The disorder is correlated via a close contact between hydrogen atoms of the major moiety edn ligand and the minor moiety dibf ligand [H7B⋯H10Bi = 1.72 Å, C7⋯C10Bi = 3.31 (2) Å; symmetry code: (i) −x, 1 − y, −1 − z]. The disorder ratio in both ligands refined to exactly identical values, 89.2 (3)/10.8 (3), indicating that the disorder of the edn ligand causes the disorder of the dibf ligand. The minor moieties of the dibf ligand are incompatible with each other due to a close contact between the lactone oxygen atoms O5B [O5B⋯O5Bii = 2.91 (7) Å; symmetry code: (ii) −x, 2 − y, −1 − z].

Table 1
Selected geometric parameters (Å, °)

Cu1—O2 2.008 (3) Cu1—N1 2.0146 (16)
Cu1—O4 2.4790 (17)    
       
O2—Cu1—O4 94.84 (13) O2B—Cu1—O4 98.1 (14)
O2—Cu1—O4i 85.16 (13) O2B—Cu1—N1 91.3 (16)
O2—Cu1—N1i 89.68 (15) O2B—Cu1—N1i 88.7 (16)
O2—Cu1—N1 90.32 (15) N1—Cu1—O4i 91.36 (6)
O2Bi—Cu1—O4 81.9 (14) N1—Cu1—O4 88.64 (6)
Symmetry code: (i) [-x+1, -y+1, -z].
[Figure 1]
Figure 1
Copper coordination environment in the title compound with full ligand set. Displacement ellipsoids are drawn at the 50% probability level. The minor disorder components are not shown. Color code: Co, dark blue; O, red; N, light blue; C, black; H, pink. Symmetry codes are as listed in Table 1[link].
[Figure 2]
Figure 2
[Cu(dibf)(edn)(H2O)2]n coordination polymer chain in the title compound.
[Figure 3]
Figure 3
Copper coordination environment in the title compound with full ligand set showing major and minor disordered components. Color code: Co, dark blue; O, red; N, light blue; C, black. H atoms have been omitted. The minor disordered components have bonds drawn as dashed lines.

The [Cu(dibf)(edn)(H2O)2]n chains aggregate into supra­molecular layers parallel to the ab crystal planes (Fig. 4[link]) by hydrogen-bonding donation from edn amide N—H groups to unligated dibf carboxyl­ate O atoms, and by hydrogen-bonding donation from bound water mol­ecules to ebn amide C=O carbonyl groups (Table 2[link]). Crystal packing forces between adjacent supra­molecular layers along the c-axis direction afford the full tri-periodic crystal structure of the title compound (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3ii 0.85 (2) 1.98 (2) 2.801 (4) 163 (3)
O4—H4A⋯O3 0.86 (2) 1.83 (2) 2.674 (4) 170 (3)
O4—H4B⋯O1iii 0.81 (2) 2.05 (2) 2.860 (3) 171 (3)
C1—H1⋯O2 0.95 2.52 2.987 (5) 111
Symmetry codes: (ii) [-x, -y+1, -z]; (iii) x, y+1, z.
[Figure 4]
Figure 4
Supra­molecular layer of [Cu(dibf)(edn)(H2O)2]n chains in the title compound.
[Figure 5]
Figure 5
Stacking of supra­molecular layers in the title compound.

Synthesis and crystallization

Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), 2-carb­oxy­cinnamic acid (ccaH2) (72 mg, 0.37 mmol), N,N′-(ethane-1,2-di­yl)dinicotinamide (edn) (99 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 24 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 19% yield. Analysis calculated for C34H32CuN4O12: C, 54.29; H, 4.29; N, 7.45%. Found: C, 54.01; H, 4.62; N, 7.11%

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms attached to C atoms were placed in calculated positions and refined with a riding model, with the H atoms attached to N or O found via difference map and then restrained (with the exception of the minor disorder N—H bond in the dibf ligand (see below). The dibf carboxyl­ate ligands and the amide groups of the edn ligands were refined as disordered over two sets of positions in a 89.2 (3)/10.8 (3) ratio. The dibf ligand exhibits a pseudo-mirror positional disorder; the edn amide group displays a pseudo-rotational relationship between its disordered components. These were treated with PART commands. Within the disordered components, SIMU commands were employed to restrain the Uij components of the atomic displacement parameters in order to avoid non-positive def­inite atomic displacement parameters. SADI and SAME commands were employed for the disordered components to restrain the bond lenghts and angles of major and minor moieties to be the same within an e.s.d. of 0.02 Å, to ensure chemically reasonable bond length and angle values. The H atoms belonging to the bound water mol­ecules were restrained with a DFIX command at 0.84 (2) Å. The amide proton of the major component of the disordered edn ligand was found and had its N—H bond distance restrained with a DFIX command at 0.88 (2) Å. The amide proton of the minor component was placed geometrically. EADP commands were used to constrain the atomic displacement parameters for carboxyl­ate major and minor disordered components of the dibf ligand to exactly the same values, again to avoid non-positive definite atomic displacement parameters.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C10H7O4)2(C14H14N4O2)(H2O)2]
Mr 752.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.9413 (13), 10.4614 (16), 11.3198 (18)
α, β, γ (°) 70.6534 (18), 87.8784 (19), 73.9621 (18)
V3) 851.2 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.71
Crystal size (mm) 0.61 × 0.31 × 0.25
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.682, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 14134, 3137, 2849
Rint 0.031
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.06
No. of reflections 3137
No. of parameters 381
No. of restraints 591
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.18
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and CrystalMaker X (Palmer, 2020[Palmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.]).

Structural data


Computing details top

Data collection: COSMO v1.61 (Bruker, 2009); cell refinement: SAINT v8.34A (Bruker, 2014); data reduction: SAINT v8.34A (Bruker, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5-ac5-024 (Dolomanov et al., 2009); software used to prepare material for publication: CrystalMaker X (Palmer, 2020).

catena-Poly[[diaquabis(1,3-dihydro-3-oxoisobenzofuran-1-acetato)copper(II)]-µ-N,N'-(ethane-1,2-diyl)dinicotinamide] top
Crystal data top
[Cu(C10H7O4)2(C14H14N4O2)(H2O)2]Z = 1
Mr = 752.17F(000) = 389
Triclinic, P1Dx = 1.467 Mg m3
a = 7.9413 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4614 (16) ÅCell parameters from 8423 reflections
c = 11.3198 (18) Åθ = 2.4–25.3°
α = 70.6534 (18)°µ = 0.71 mm1
β = 87.8784 (19)°T = 173 K
γ = 73.9621 (18)°Block, green
V = 851.2 (2) Å30.61 × 0.31 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
2849 reflections with I > 2σ(I)
φ and ω scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.4°, θmin = 1.9°
Tmin = 0.682, Tmax = 0.745h = 99
14134 measured reflectionsk = 1212
3137 independent reflectionsl = 1313
Refinement top
Refinement on F2591 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.4221P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3137 reflectionsΔρmax = 0.45 e Å3
381 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.5000000.5000000.0000000.02846 (14)
O10.3728 (4)0.1070 (3)0.1206 (3)0.0390 (6)0.892 (7)
N20.1654 (3)0.0933 (3)0.0117 (3)0.0330 (6)0.892 (7)
H20.111 (3)0.175 (2)0.013 (3)0.040*0.892 (7)
C60.3054 (5)0.0207 (3)0.0920 (4)0.0286 (8)0.892 (7)
C70.0677 (3)0.0261 (3)0.0433 (3)0.0346 (7)0.892 (7)
H7A0.1502940.0546180.0610920.041*0.892 (7)
H7B0.0078360.0943280.1238170.041*0.892 (7)
O1B0.418 (4)0.129 (3)0.143 (3)0.0390 (6)0.108 (7)
N2B0.171 (3)0.054 (2)0.060 (2)0.031 (3)0.108 (7)
H2B0.1165210.1436230.0466570.037*0.108 (7)
C6B0.330 (4)0.008 (2)0.118 (4)0.032 (3)0.108 (7)
C7B0.093 (3)0.039 (3)0.019 (3)0.0346 (7)0.108 (7)
H7BA0.1030730.1281760.0887820.041*0.108 (7)
H7BB0.1553790.0609160.0522450.041*0.108 (7)
O20.2836 (3)0.5325 (5)0.1046 (4)0.0294 (6)0.892 (3)
O30.0763 (4)0.6549 (4)0.0126 (2)0.0420 (7)0.892 (3)
O50.1617 (6)0.8738 (5)0.5706 (3)0.1142 (15)0.892 (3)
O60.1684 (3)0.7086 (3)0.3839 (2)0.0621 (7)0.892 (3)
C80.1300 (4)0.6075 (4)0.0992 (3)0.0303 (8)0.892 (3)
C90.0022 (3)0.6365 (3)0.2048 (2)0.0354 (6)0.892 (3)
H9A0.0838540.5782650.1721230.043*0.892 (3)
H9B0.0719100.7366600.2290070.043*0.892 (3)
C100.1702 (6)0.7882 (5)0.6291 (3)0.0662 (10)0.892 (3)
H100.1604210.8638670.7013830.079*0.892 (3)
C110.2980 (5)0.7229 (5)0.6247 (4)0.0636 (10)0.892 (3)
H110.3770780.7518370.6957010.076*0.892 (3)
C120.3140 (5)0.6154 (4)0.5186 (4)0.0587 (9)0.892 (3)
H120.4054210.5726260.5174160.070*0.892 (3)
C130.2001 (4)0.5681 (4)0.4133 (3)0.0475 (7)0.892 (3)
H130.2123740.4942760.3401700.057*0.892 (3)
C140.0681 (3)0.6322 (3)0.4186 (2)0.0394 (6)0.892 (3)
C150.0716 (3)0.6085 (3)0.3211 (3)0.0401 (6)0.892 (3)
H150.1504860.5100550.2984080.048*0.892 (3)
C160.0538 (5)0.7401 (4)0.5237 (3)0.0528 (8)0.892 (3)
C170.0976 (5)0.7872 (5)0.5028 (4)0.0710 (10)0.892 (3)
O2B0.320 (4)0.526 (5)0.097 (4)0.0294 (6)0.108 (3)
O3B0.083 (5)0.664 (4)0.050 (3)0.0420 (7)0.108 (3)
O5B0.166 (4)0.930 (3)0.539 (3)0.090 (7)0.108 (3)
O6B0.094 (2)0.798 (2)0.3578 (14)0.059 (3)0.108 (3)
C8B0.156 (4)0.583 (4)0.110 (3)0.032 (3)0.108 (3)
C9B0.052 (3)0.580 (2)0.2211 (19)0.035 (3)0.108 (3)
H9BA0.1333160.5235890.2655960.041*0.108 (3)
H9BB0.0383270.5306670.1871870.041*0.108 (3)
C10B0.101 (4)0.822 (3)0.653 (2)0.062 (4)0.108 (3)
H10B0.0572260.8810410.7226800.074*0.108 (3)
C11B0.230 (4)0.764 (3)0.669 (2)0.061 (4)0.108 (3)
H11B0.2770530.7857060.7512470.073*0.108 (3)
C12B0.294 (5)0.674 (4)0.569 (2)0.056 (3)0.108 (3)
H12B0.3763330.6300000.5851680.067*0.108 (3)
C13B0.237 (3)0.649 (3)0.447 (2)0.053 (3)0.108 (3)
H13B0.2808250.5902470.3764230.064*0.108 (3)
C14B0.112 (3)0.715 (3)0.4326 (16)0.046 (3)0.108 (3)
C15B0.036 (2)0.721 (2)0.3141 (15)0.044 (3)0.108 (3)
H15B0.1308970.7748860.2738110.053*0.108 (3)
C16B0.038 (4)0.792 (4)0.5304 (17)0.057 (3)0.108 (3)
C17B0.085 (4)0.850 (4)0.4865 (18)0.063 (3)0.108 (3)
O40.3419 (2)0.61974 (16)0.14423 (16)0.0398 (4)
H4A0.249 (3)0.637 (3)0.099 (3)0.060*
H4B0.348 (4)0.696 (2)0.145 (3)0.060*
N10.4646 (2)0.31767 (17)0.11651 (16)0.0266 (4)
C10.4004 (2)0.2356 (2)0.0716 (2)0.0268 (4)
H10.3670840.2670180.0152870.032*
C20.3811 (3)0.1067 (2)0.1480 (2)0.0290 (4)
C30.4287 (3)0.0613 (2)0.2745 (2)0.0396 (5)
H30.4177930.0269740.3287350.048*
C40.4926 (3)0.1471 (2)0.3205 (2)0.0424 (6)
H40.5250590.1190550.4071960.051*
C50.5084 (3)0.2742 (2)0.2385 (2)0.0344 (5)
H50.5522880.3326800.2706200.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0231 (2)0.02040 (19)0.0430 (2)0.00928 (14)0.00053 (15)0.00916 (15)
O10.0402 (17)0.0193 (12)0.0609 (18)0.0079 (10)0.0007 (12)0.0177 (12)
N20.0295 (11)0.0248 (13)0.0500 (17)0.0128 (10)0.0012 (11)0.0152 (12)
C60.0254 (16)0.0212 (13)0.044 (2)0.0112 (11)0.0099 (12)0.0135 (14)
C70.0341 (12)0.0339 (16)0.0435 (18)0.0179 (11)0.0028 (12)0.0162 (14)
O1B0.0402 (17)0.0193 (12)0.0609 (18)0.0079 (10)0.0007 (12)0.0177 (12)
N2B0.030 (4)0.024 (4)0.045 (5)0.013 (4)0.004 (4)0.017 (4)
C6B0.027 (5)0.027 (5)0.045 (5)0.010 (5)0.004 (5)0.016 (5)
C7B0.0341 (12)0.0339 (16)0.0435 (18)0.0179 (11)0.0028 (12)0.0162 (14)
O20.0191 (17)0.0266 (9)0.0428 (11)0.0075 (14)0.0012 (13)0.0106 (8)
O30.0318 (9)0.0459 (11)0.0487 (18)0.0020 (8)0.0003 (14)0.0235 (15)
O50.122 (3)0.141 (4)0.084 (2)0.089 (3)0.032 (2)0.002 (2)
O60.0442 (12)0.0922 (18)0.0550 (13)0.0360 (12)0.0108 (10)0.0180 (12)
C80.0248 (14)0.0230 (18)0.0409 (16)0.0083 (11)0.0007 (13)0.0065 (12)
C90.0254 (13)0.0390 (14)0.0412 (14)0.0061 (11)0.0007 (10)0.0147 (12)
C100.067 (2)0.075 (2)0.0416 (18)0.0075 (19)0.0022 (16)0.0096 (17)
C110.060 (2)0.075 (3)0.050 (2)0.0060 (19)0.0126 (18)0.0309 (18)
C120.0530 (18)0.071 (2)0.062 (2)0.0139 (16)0.0056 (16)0.0364 (17)
C130.0494 (16)0.0487 (17)0.0488 (16)0.0130 (13)0.0008 (13)0.0224 (14)
C140.0356 (13)0.0423 (15)0.0388 (14)0.0042 (11)0.0050 (11)0.0175 (12)
C150.0290 (12)0.0466 (14)0.0432 (15)0.0072 (11)0.0031 (11)0.0160 (12)
C160.0511 (16)0.064 (2)0.0408 (15)0.0157 (16)0.0071 (13)0.0146 (14)
C170.069 (2)0.087 (3)0.056 (2)0.036 (2)0.0193 (17)0.0121 (18)
O2B0.0191 (17)0.0266 (9)0.0428 (11)0.0075 (14)0.0012 (13)0.0106 (8)
O3B0.0318 (9)0.0459 (11)0.0487 (18)0.0020 (8)0.0003 (14)0.0235 (15)
O5B0.100 (10)0.093 (11)0.076 (10)0.041 (10)0.019 (9)0.017 (9)
O6B0.050 (4)0.073 (5)0.052 (4)0.026 (4)0.010 (4)0.012 (4)
C8B0.026 (5)0.032 (5)0.041 (4)0.010 (4)0.003 (4)0.013 (4)
C9B0.027 (5)0.038 (5)0.041 (5)0.009 (4)0.001 (4)0.015 (4)
C10B0.059 (6)0.073 (6)0.044 (5)0.014 (5)0.002 (5)0.014 (5)
C11B0.060 (6)0.071 (6)0.047 (6)0.009 (5)0.005 (5)0.022 (5)
C12B0.055 (4)0.065 (5)0.048 (5)0.011 (4)0.005 (4)0.024 (4)
C13B0.051 (4)0.062 (4)0.048 (4)0.010 (4)0.000 (4)0.024 (4)
C14B0.043 (4)0.056 (4)0.042 (4)0.013 (4)0.001 (4)0.020 (4)
C15B0.036 (4)0.054 (4)0.044 (4)0.014 (4)0.003 (4)0.017 (4)
C16B0.056 (4)0.070 (4)0.044 (4)0.021 (4)0.005 (4)0.015 (4)
C17B0.057 (5)0.081 (5)0.052 (5)0.028 (5)0.011 (4)0.016 (5)
O40.0401 (9)0.0262 (8)0.0560 (11)0.0102 (7)0.0014 (8)0.0168 (8)
N10.0218 (8)0.0217 (8)0.0405 (10)0.0087 (6)0.0036 (7)0.0140 (7)
C10.0209 (9)0.0248 (10)0.0379 (11)0.0067 (8)0.0034 (8)0.0147 (9)
C20.0225 (9)0.0222 (9)0.0452 (12)0.0083 (8)0.0077 (9)0.0142 (9)
C30.0444 (13)0.0270 (11)0.0473 (14)0.0164 (10)0.0033 (11)0.0073 (10)
C40.0539 (15)0.0396 (13)0.0367 (13)0.0211 (11)0.0009 (11)0.0095 (10)
C50.0354 (12)0.0338 (11)0.0410 (13)0.0163 (9)0.0023 (9)0.0163 (10)
Geometric parameters (Å, º) top
Cu1—O2i2.008 (3)C13—C141.381 (4)
Cu1—O22.008 (3)C14—C151.506 (4)
Cu1—O4i2.4790 (17)C14—C161.369 (4)
Cu1—O42.4790 (17)C15—H151.0000
Cu1—N12.0146 (16)C16—C171.473 (5)
Cu1—N1i2.0146 (16)O2B—C8B1.270 (18)
O1—C61.228 (3)O3B—C8B1.260 (18)
N2—H20.849 (17)O5B—C17B1.186 (17)
N2—C61.338 (4)O6B—C15B1.460 (16)
N2—C71.454 (3)O6B—C17B1.374 (17)
C6—C21.510 (3)C8B—C9B1.543 (17)
C7—C7ii1.518 (6)C9B—H9BA0.9900
C7—H7A0.9900C9B—H9BB0.9900
C7—H7B0.9900C9B—C15B1.494 (17)
O1B—C6B1.206 (18)C10B—H10B0.9500
N2B—H2B0.8800C10B—C11B1.368 (19)
N2B—C6B1.334 (17)C10B—C16B1.397 (17)
N2B—C7B1.478 (17)C11B—H11B0.9500
C6B—C21.505 (17)C11B—C12B1.39 (2)
C7B—C7Bii1.48 (5)C12B—H12B0.9500
C7B—H7BA0.9900C12B—C13B1.396 (18)
C7B—H7BB0.9900C13B—H13B0.9500
O2—C81.268 (4)C13B—C14B1.397 (17)
O3—C81.250 (4)C14B—C15B1.516 (16)
O5—C171.197 (5)C14B—C16B1.356 (17)
O6—C151.450 (3)C15B—H15B1.0000
O6—C171.368 (4)C16B—C17B1.468 (17)
C8—C91.516 (4)O4—H4A0.855 (18)
C9—H9A0.9900O4—H4B0.814 (18)
C9—H9B0.9900N1—C11.343 (2)
C9—C151.505 (4)N1—C51.329 (3)
C10—H100.9500C1—H10.9500
C10—C111.363 (6)C1—C21.387 (3)
C10—C161.399 (5)C2—C31.381 (3)
C11—H110.9500C3—H30.9500
C11—C121.377 (6)C3—C41.384 (3)
C12—H120.9500C4—H40.9500
C12—C131.388 (4)C4—C51.382 (3)
C13—H130.9500C5—H50.9500
O2i—Cu1—O2180.0O6—C15—C14103.8 (2)
O2—Cu1—O494.84 (13)O6—C15—H15109.9
O2i—Cu1—O4i94.84 (13)C9—C15—C14113.1 (2)
O2—Cu1—O4i85.16 (13)C9—C15—H15109.9
O2i—Cu1—O485.16 (13)C14—C15—H15109.9
O2i—Cu1—N1i90.32 (15)C10—C16—C17129.9 (3)
O2—Cu1—N1i89.68 (15)C14—C16—C10121.5 (4)
O2i—Cu1—N189.68 (15)C14—C16—C17108.6 (3)
O2—Cu1—N190.32 (15)O5—C17—O6121.0 (4)
O2Bi—Cu1—O2B180.0 (11)O5—C17—C16131.3 (4)
O2Bi—Cu1—O481.9 (14)O6—C17—C16107.7 (3)
O2B—Cu1—O498.1 (14)C8B—O2B—Cu1139 (3)
O2B—Cu1—N191.3 (16)C17B—O6B—C15B110.4 (13)
O2Bi—Cu1—N188.7 (16)O2B—C8B—C9B118 (2)
O2Bi—Cu1—N1i91.3 (16)O3B—C8B—O2B121 (3)
O2B—Cu1—N1i88.7 (16)O3B—C8B—C9B119 (2)
O4i—Cu1—O4180.0C8B—C9B—H9BA108.5
N1i—Cu1—O4i88.64 (6)C8B—C9B—H9BB108.5
N1—Cu1—O4i91.36 (6)H9BA—C9B—H9BB107.5
N1i—Cu1—O491.36 (6)C15B—C9B—C8B115.2 (19)
N1—Cu1—O488.64 (6)C15B—C9B—H9BA108.5
N1i—Cu1—N1180.00 (10)C15B—C9B—H9BB108.5
C6—N2—H2117.4 (19)C11B—C10B—H10B121.3
C6—N2—C7122.8 (2)C11B—C10B—C16B117 (2)
C7—N2—H2116.2 (19)C16B—C10B—H10B121.3
O1—C6—N2124.5 (2)C10B—C11B—H11B118.6
O1—C6—C2120.0 (2)C10B—C11B—C12B123 (2)
N2—C6—C2115.5 (2)C12B—C11B—H11B118.6
N2—C7—C7ii111.6 (3)C11B—C12B—H12B120.1
N2—C7—H7A109.3C11B—C12B—C13B120 (2)
N2—C7—H7B109.3C13B—C12B—H12B120.1
C7ii—C7—H7A109.3C12B—C13B—H13B121.9
C7ii—C7—H7B109.3C12B—C13B—C14B116.1 (18)
H7A—C7—H7B108.0C14B—C13B—H13B121.9
C6B—N2B—H2B122.6C13B—C14B—C15B129.4 (15)
C6B—N2B—C7B114.9 (16)C16B—C14B—C13B123.6 (15)
C7B—N2B—H2B122.6C16B—C14B—C15B106.9 (13)
O1B—C6B—N2B129 (2)O6B—C15B—C9B108.6 (15)
O1B—C6B—C2126 (2)O6B—C15B—C14B104.4 (12)
N2B—C6B—C2104.8 (15)O6B—C15B—H15B109.8
N2B—C7B—H7BA110.3C9B—C15B—C14B114.2 (16)
N2B—C7B—H7BB110.3C9B—C15B—H15B109.8
C7Bii—C7B—H7BA110.3C14B—C15B—H15B109.8
C7Bii—C7B—H7BB110.3C10B—C16B—C17B128.5 (18)
H7BA—C7B—H7BB108.6C14B—C16B—C10B119.8 (17)
C8—O2—Cu1127.6 (3)C14B—C16B—C17B111.1 (14)
C17—O6—C15111.1 (2)O5B—C17B—O6B120 (2)
O2—C8—C9116.7 (3)O5B—C17B—C16B133 (2)
O3—C8—O2125.9 (3)O6B—C17B—C16B106.7 (14)
O3—C8—C9117.4 (3)Cu1—O4—H4A86 (2)
C8—C9—H9A108.2Cu1—O4—H4B124 (2)
C8—C9—H9B108.2H4A—O4—H4B106 (3)
H9A—C9—H9B107.4C1—N1—Cu1120.45 (14)
C15—C9—C8116.4 (2)C5—N1—Cu1120.88 (13)
C15—C9—H9A108.2C5—N1—C1118.64 (18)
C15—C9—H9B108.2N1—C1—H1118.9
C11—C10—H10121.1N1—C1—C2122.12 (19)
C11—C10—C16117.8 (4)C2—C1—H1118.9
C16—C10—H10121.1C1—C2—C6119.5 (2)
C10—C11—H11119.6C1—C2—C6B131.6 (16)
C10—C11—C12120.8 (3)C3—C2—C6121.5 (2)
C12—C11—H11119.6C3—C2—C6B109.2 (15)
C11—C12—H12119.1C3—C2—C1118.97 (19)
C11—C12—C13121.7 (3)C2—C3—H3120.7
C13—C12—H12119.1C2—C3—C4118.7 (2)
C12—C13—H13121.2C4—C3—H3120.7
C14—C13—C12117.6 (3)C3—C4—H4120.5
C14—C13—H13121.2C5—C4—C3119.1 (2)
C13—C14—C15130.6 (3)C5—C4—H4120.5
C16—C14—C13120.6 (3)N1—C5—C4122.5 (2)
C16—C14—C15108.7 (3)N1—C5—H5118.7
O6—C15—C9110.0 (2)C4—C5—H5118.7
Cu1—O2—C8—O314.2 (8)C16—C10—C11—C121.5 (5)
Cu1—O2—C8—C9168.7 (3)C16—C14—C15—O62.4 (3)
Cu1—O2B—C8B—O3B11 (10)C16—C14—C15—C9116.8 (3)
Cu1—O2B—C8B—C9B178 (4)C17—O6—C15—C9119.8 (3)
Cu1—N1—C1—C2177.22 (14)C17—O6—C15—C141.5 (3)
Cu1—N1—C5—C4177.37 (17)O2B—C8B—C9B—C15B118 (4)
O1—C6—C2—C1136.2 (4)O3B—C8B—C9B—C15B49 (5)
O1—C6—C2—C345.1 (5)C8B—C9B—C15B—O6B54 (3)
N2—C6—C2—C143.4 (4)C8B—C9B—C15B—C14B170 (2)
N2—C6—C2—C3135.2 (3)C10B—C11B—C12B—C13B5 (6)
C6—N2—C7—C7ii83.9 (5)C10B—C16B—C17B—O5B3 (8)
C6—C2—C3—C4178.1 (3)C10B—C16B—C17B—O6B175 (4)
C7—N2—C6—O15.3 (6)C11B—C10B—C16B—C14B4 (5)
C7—N2—C6—C2175.1 (3)C11B—C10B—C16B—C17B174 (4)
O1B—C6B—C2—C1121 (4)C11B—C12B—C13B—C14B2 (5)
O1B—C6B—C2—C353 (5)C12B—C13B—C14B—C15B173 (3)
N2B—C6B—C2—C159 (4)C12B—C13B—C14B—C16B4 (5)
N2B—C6B—C2—C3127 (2)C13B—C14B—C15B—O6B177 (3)
C6B—N2B—C7B—C7Bii169 (4)C13B—C14B—C15B—C9B59 (4)
C6B—C2—C3—C4175.3 (15)C13B—C14B—C16B—C10B7 (5)
C7B—N2B—C6B—O1B1 (7)C13B—C14B—C16B—C17B179 (3)
C7B—N2B—C6B—C2179 (2)C14B—C16B—C17B—O5B174 (4)
O2—C8—C9—C1516.2 (6)C14B—C16B—C17B—O6B4 (4)
O3—C8—C9—C15166.5 (4)C15B—O6B—C17B—O5B171 (3)
C8—C9—C15—O667.6 (3)C15B—O6B—C17B—C16B7 (4)
C8—C9—C15—C14176.8 (3)C15B—C14B—C16B—C10B171 (3)
C10—C11—C12—C131.0 (5)C15B—C14B—C16B—C17B1 (4)
C10—C16—C17—O52.6 (8)C16B—C10B—C11B—C12B2 (6)
C10—C16—C17—O6179.2 (4)C16B—C14B—C15B—O6B5 (3)
C11—C10—C16—C140.8 (6)C16B—C14B—C15B—C9B123 (3)
C11—C10—C16—C17178.4 (4)C17B—O6B—C15B—C9B130 (2)
C11—C12—C13—C140.4 (5)C17B—O6B—C15B—C14B8 (3)
C12—C13—C14—C15178.2 (3)O4—Cu1—O2B—C8B1 (7)
C12—C13—C14—C161.1 (4)O4i—Cu1—O2B—C8B179 (7)
C13—C14—C15—O6179.8 (3)N1—Cu1—O2B—C8B90 (7)
C13—C14—C15—C960.6 (4)N1i—Cu1—O2B—C8B90 (7)
C13—C14—C16—C100.5 (5)N1—C1—C2—C6179.0 (2)
C13—C14—C16—C17179.9 (3)N1—C1—C2—C6B173.1 (18)
C14—C16—C17—O5176.6 (5)N1—C1—C2—C30.3 (3)
C14—C16—C17—O61.5 (4)C1—N1—C5—C40.9 (3)
C15—O6—C17—O5178.5 (4)C1—C2—C3—C40.5 (3)
C15—O6—C17—C160.1 (4)C2—C3—C4—C50.7 (4)
C15—C14—C16—C10178.2 (3)C3—C4—C5—N10.0 (4)
C15—C14—C16—C172.4 (4)C5—N1—C1—C21.0 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3iii0.85 (2)1.98 (2)2.801 (4)163 (3)
O4—H4A···O30.86 (2)1.83 (2)2.674 (4)170 (3)
O4—H4B···O1iv0.81 (2)2.05 (2)2.860 (3)171 (3)
C1—H1···O20.952.522.987 (5)111
Symmetry codes: (iii) x, y+1, z; (iv) x, y+1, z.
 

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMurray, N. H. & LaDuca, R. L. (2014). Inorg. Chim. Acta, 421, 145–151.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.  Google Scholar
First citationPrzybyla, J. J., Ezenyilimba, F. C. & LaDuca, R. L. (2019). Inorg. Chim. Acta, 498, 119087.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X., Luan, J., Lin, H., Lu, Q., Xu, C. & Liu, G. (2013). Dalton Trans. 42, 8375–8386.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146