metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[di­aqua­[μ-1,4-bis­­(pyridin-4-ylmeth­yl)pip­era­zine][μ-4-(carboxyl­atoeth­yl)benzoato]nickel(II)]

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 July 2023; accepted 8 September 2023; online 22 September 2023)

The title compound, [Ni(C10H8O4)(C16H20N4)(H2O)2]n, contains NiII cations octa­hedrally surrounded within an [O4N2] coordination set. The cations are linked by 4-(carb­oxy­eth­yl)benzoate (ceb) and 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) ligands into tri-periodic diamondoid (dia) networks. The fivefold inter­penetrated dia networks are held into the crystal structure by means of O—H⋯O hydrogen bonding between bound water mol­ecules and unligated carboxyl­ate O atoms of the ceb ligands.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Our group has demonstrated the utility of 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) for the construction of divalent metal coordination polymers with a remarkable variety of inter­esting topologies (Robinson et al., 2015[Robinson, M. E., Mizzi, J. E., Staples, R. J. & LaDuca, R. L. (2015). Cryst. Growth Des. 15, 2260-2271.]). For instance, the cobalt oxalate (ox) bpmp phase {[Co(ox)(bpmp)].3H2O}n, manifests a threefold inter­penetrated tri-periodic diamondoid (dia) topology. Use of the di­carboxyl­ate ligand oxy(bis­)benzoate (oba) afforded {[Co3(oba)3(bpmp)2]n, which exhibits a striking self-penetrated tri-periodic network with 4451767 topology (Martin et al., 2008[Martin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754-9756.]). The title compound was isolated during an attempt to prepare a divalent nickel coordination polymer containing both bpmp and 4-(carboxyl­atoeth­yl)benzoato (ceb) ligands.

The asymmetric unit of the title compound contains a divalent nickel atom, a fully deprotonated ceb ligand, two bound water mol­ecules, and a bpmp ligand. The nickel atom is coordinated in an [O4N2] distorted octa­hedral fashion (Fig. 1[link]) with two cis-oriented aqua ligands, two trans-oriented carboxyl­ate O atom donors from two ceb ligands, and two cis-oriented pyridyl N atom donors from two bpmp ligands. Pertinent bond length and angle information for the coordination sphere is listed in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.068 (10) Ni1—O6 2.089 (11)
Ni1—O4i 2.071 (10) Ni1—N1 2.089 (12)
Ni1—O5 2.112 (9) Ni1—N4ii 2.109 (10)
       
O1—Ni1—O4i 174.77 (15) O4i—Ni1—N4ii 89.8 (4)
O1—Ni1—O5 90.3 (4) O6—Ni1—O5 90.47 (17)
O1—Ni1—O6 85.0 (4) O6—Ni1—N4ii 178.3 (4)
O1—Ni1—N1 89.5 (4) N1—Ni1—O5 179.7 (5)
O1—Ni1—N4ii 93.6 (4) N1—Ni1—O6 89.3 (4)
O4i—Ni1—O5 85.8 (4) N1—Ni1—N4ii 89.56 (16)
O4i—Ni1—O6 91.6 (3) N4ii—Ni1—O5 90.6 (4)
O4i—Ni1—N1 94.4 (4)    
Symmetry codes: (i) [x+1, -y+1, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Nickel coordination environment in the title compound with full ceb and bpmp ligands. Displacement ellipsoids are drawn at the 50% probability level. Color code: Co, dark blue; O, red; N, light blue; C, black; H, pink. Symmetry codes are as listed in Table 1[link].

The ceb ligands bridge adjacent nickel(II) atoms in a bis­(monodentate) fashion to construct [Ni(ceb)(H2O)2]n chain submotifs arranged parallel to [201], in which the Ni⋯Ni inter­nuclear distance measures 13.996 (4) Å (Fig. 2[link]). These chain motifs are connected into [Ni(ceb)(bpmp)(H2O)2]n 66 dia topology (Blatov et al., 2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]) coordination polymer networks (Fig. 3[link]). Incipient void space within a single [Ni(ceb)(bpmp)(H2O)2]n network allows inter­penetration of four additional networks to instill a fivefold system of inter­penetrated dia networks in the title compound (Fig. 4[link]).

[Figure 2]
Figure 2
[Ni(ceb)(H2O)2]n coordination polymer chain in the title compound.
[Figure 3]
Figure 3
A single [Ni(ceb)(bpmp)(H2O)2]n dia coordination polymer network in the title compound with unit cell outlines shown.
[Figure 4]
Figure 4
Fivefold inter­penetration of dia polymer networks in the title compound. The linking ligands are shown as rods.

The [Ni(ceb)(H2O)2]n chain submotifs are stabilized by inter­nal O—H⋯O hydrogen bonding between the bound water mol­ecules and unligated ceb carboxyl­ate O atoms (O5—H5A⋯O2). Adjacent [Ni(ceb)(bpmp)(H2O)2]n coordination polymer networks are held into the fivefold inter­penetrated structure by similar O—H⋯O hydrogen bonding patterns between the bound water mol­ecules (O5, O6) and unligated ceb carboxyl­ate O atoms (O2iv, O3iii). Numerical details regarding the hydrogen bonding in the title compound are listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2 0.84 (3) 1.82 (4) 2.621 (15) 158 (9)
O5—H5B⋯O3iii 0.83 (3) 2.30 (7) 2.894 (14) 129 (6)
O6—H6B⋯O2iv 0.85 (3) 2.05 (4) 2.880 (15) 166 (9)
Symmetry codes: (iii) x+1, y, z+1; (iv) [x, -y+1, z-{\script{1\over 2}}].

Synthesis and crystallization

Ni(NO3)2.6H2O (108 mg, 0.37 mmol), 4-(carb­oxy­eth­yl)benzoic acid (cebH2) (72 mg, 0.37 mmol), 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (bpmp) (99 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 72% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The crystal was twinned by non-merohedry. Only data from the major twin component was used in solution and refinement. Additionally, the structure refined best as an inversion twin in space group Cc with a refined BASF parameter of 0.39 (4). The H atoms bound to the O atoms of the water mol­ecules were found by difference-Fourier maps, restrained with DFIX commands at 0.84 (2) Å, and refined with Uiso(H) = 1.2Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Ni(C10H8O4)(C16H20N4)(H2O)2]
Mr 555.26
Crystal system, space group Monoclinic, Cc
Temperature (K) 173
a, b, c (Å) 17.282 (3), 16.324 (3), 12.698 (4)
β (°) 131.754 (2)
V3) 2672.3 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.77
Crystal size (mm) 0.32 × 0.21 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.519, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21011, 4903, 3946
Rint 0.118
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.149, 1.05
No. of reflections 4903
No. of parameters 311
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.46, −0.65
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.39 (4)
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker X (Palmer, 2020[Palmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker X (Palmer, 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Poly[diaqua[µ-1,4-bis(pyridin-4-ylmethyl)piperazine][µ-4-(carboxylatoethyl)benzoato]nickel(II)] top
Crystal data top
[Ni(C10H8O4)(C16H20N4)(H2O)2]F(000) = 1168
Mr = 555.26Dx = 1.380 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 17.282 (3) ÅCell parameters from 7345 reflections
b = 16.324 (3) Åθ = 2.5–25.1°
c = 12.698 (4) ŵ = 0.77 mm1
β = 131.754 (2)°T = 173 K
V = 2672.3 (11) Å3Chunk, green
Z = 40.32 × 0.21 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
4903 independent reflections
Radiation source: sealed tube3946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.118
Detector resolution: 8.36 pixels mm-1θmax = 25.4°, θmin = 2.0°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1919
Tmin = 0.519, Tmax = 0.745l = 1515
21011 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0734P)2 + 2.7583P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.149(Δ/σ)max < 0.001
S = 1.05Δρmax = 1.46 e Å3
4903 reflectionsΔρmin = 0.64 e Å3
311 parametersAbsolute structure: Refined as an inversion twin
8 restraintsAbsolute structure parameter: 0.39 (4)
Primary atom site location: dual
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by Least Squares using version 2018/3 of XL (Sheldrick, 2015) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the Hydrogen atom on the nitrogen atom which was found by difference Fourier methods and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.9080 (2)0.44647 (4)1.1095 (3)0.0249 (3)
O10.7548 (7)0.4520 (6)1.0183 (9)0.031 (3)
O20.7660 (7)0.5196 (6)1.1810 (9)0.039 (3)
O30.0511 (7)0.4808 (7)0.5374 (10)0.042 (3)
O40.0617 (7)0.5475 (5)0.7020 (8)0.028 (3)
O50.9473 (7)0.5383 (6)1.2552 (9)0.029 (2)
O60.8654 (7)0.5358 (7)0.9613 (10)0.035 (3)
N10.8685 (8)0.3559 (7)0.9646 (11)0.026 (3)
N20.7051 (9)0.2250 (7)0.5017 (11)0.030 (3)
N30.6112 (9)0.2750 (7)0.2218 (11)0.034 (3)
N40.4467 (8)0.1455 (7)0.2456 (11)0.025 (3)
C10.7170 (12)0.4855 (9)1.0645 (17)0.035 (2)
C20.5985 (10)0.4809 (8)0.9613 (13)0.035 (2)
H2A0.5701230.5031930.8690340.042*
H2B0.5775800.4226720.9469780.042*
C30.5517 (11)0.5259 (8)1.0082 (14)0.035 (2)
H3A0.5860390.5073201.1047710.042*
H3B0.5681750.5847941.0143180.042*
C40.4387 (11)0.5181 (9)0.9203 (18)0.039 (4)
C50.3753 (13)0.4740 (9)0.7964 (17)0.043 (4)
H50.4056710.4444130.7673560.051*
C60.2662 (11)0.4715 (8)0.7110 (15)0.041 (3)
H60.2247700.4403850.6262320.049*
C70.2181 (8)0.5153 (8)0.7515 (12)0.0261 (18)
C80.2775 (7)0.5557 (5)0.8700 (9)0.042 (2)
H80.2475160.5837590.9008090.050*
C90.3845 (7)0.5582 (5)0.9521 (9)0.0390 (19)
H90.4240240.5896081.0364780.047*
C100.1021 (10)0.5149 (9)0.6574 (14)0.0261 (18)
C110.9436 (10)0.3177 (9)0.9745 (14)0.034 (4)
H111.0143400.3297181.0526780.041*
C120.9193 (12)0.2603 (9)0.8714 (15)0.037 (4)
H120.9733850.2332590.8834070.045*
C130.8190 (11)0.2445 (10)0.7565 (15)0.034 (4)
C140.7419 (11)0.2820 (9)0.7461 (15)0.034 (4)
H140.6709520.2698670.6690430.041*
C150.7697 (11)0.3374 (10)0.8497 (14)0.039 (4)
H150.7157070.3637670.8386870.046*
C160.7929 (12)0.1936 (10)0.6390 (14)0.037 (4)
H16A0.8537830.1913760.6468510.044*
H16B0.7774920.1370200.6483710.044*
C170.7384 (12)0.2994 (9)0.4741 (15)0.0340 (7)
H17A0.7956010.2855640.4770980.041*
H17B0.7638780.3410430.5475750.041*
C180.6462 (11)0.3335 (8)0.3286 (13)0.0340 (7)
H18A0.5890340.3470200.3258830.041*
H18B0.6671200.3844590.3109880.041*
C190.6673 (11)0.1634 (8)0.3875 (13)0.0340 (7)
H19A0.7253430.1475380.3931790.041*
H19B0.6426720.1135240.4017860.041*
C200.5811 (12)0.1987 (8)0.2451 (15)0.0340 (7)
H20A0.5601440.1586470.1715950.041*
H20B0.5204750.2088140.2362210.041*
C210.5270 (12)0.3104 (9)0.0812 (14)0.036 (4)
H21A0.5498060.3635810.0723590.044*
H21B0.4656340.3205560.0706900.044*
C220.3756 (11)0.1827 (9)0.2542 (13)0.031 (3)
H220.3051460.1731300.3363250.037*
C230.3944 (11)0.2335 (8)0.1559 (15)0.032 (3)
H230.3385970.2565570.1674640.039*
C240.4971 (11)0.2519 (9)0.0363 (14)0.029 (3)
C250.5714 (12)0.2170 (10)0.0316 (16)0.041 (4)
H250.6425220.2285100.0455590.050*
C260.5443 (10)0.1653 (8)0.1371 (12)0.030 (3)
H260.5974940.1430390.1318760.036*
H5A0.898 (4)0.537 (6)1.254 (8)0.036*
H6A0.928 (3)0.545 (6)1.007 (7)0.036*
H5B1.000 (4)0.514 (5)1.323 (6)0.036*
H6B0.830 (5)0.527 (5)0.874 (4)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0212 (4)0.0340 (4)0.0202 (4)0.0002 (11)0.0140 (3)0.0002 (11)
O10.008 (4)0.049 (7)0.025 (6)0.003 (4)0.007 (4)0.002 (5)
O20.032 (5)0.055 (7)0.021 (6)0.009 (5)0.013 (4)0.006 (5)
O30.025 (5)0.074 (8)0.035 (6)0.003 (5)0.024 (5)0.002 (6)
O40.032 (5)0.036 (6)0.024 (6)0.002 (4)0.022 (5)0.006 (4)
O50.020 (5)0.039 (5)0.019 (5)0.000 (4)0.010 (4)0.010 (4)
O60.030 (6)0.046 (6)0.036 (6)0.005 (5)0.025 (5)0.001 (5)
N10.019 (6)0.035 (6)0.024 (6)0.001 (5)0.014 (5)0.007 (5)
N20.043 (7)0.025 (6)0.027 (7)0.010 (5)0.026 (6)0.009 (5)
N30.042 (8)0.035 (7)0.026 (7)0.002 (6)0.024 (6)0.000 (5)
N40.028 (6)0.029 (6)0.017 (6)0.004 (5)0.015 (5)0.001 (5)
C10.034 (4)0.030 (4)0.044 (5)0.004 (3)0.027 (4)0.014 (3)
C20.034 (4)0.030 (4)0.044 (5)0.004 (3)0.027 (4)0.014 (3)
C30.034 (4)0.030 (4)0.044 (5)0.004 (3)0.027 (4)0.014 (3)
C40.033 (7)0.028 (7)0.068 (9)0.008 (6)0.039 (7)0.011 (7)
C50.060 (9)0.034 (7)0.054 (9)0.002 (7)0.046 (8)0.005 (7)
C60.026 (5)0.044 (6)0.054 (7)0.008 (4)0.027 (5)0.030 (5)
C70.016 (4)0.034 (4)0.025 (4)0.003 (3)0.012 (3)0.002 (3)
C80.035 (4)0.055 (5)0.039 (5)0.001 (4)0.026 (4)0.011 (4)
C90.034 (4)0.049 (5)0.032 (4)0.002 (3)0.021 (4)0.008 (4)
C100.016 (4)0.034 (4)0.025 (4)0.003 (3)0.012 (3)0.002 (3)
C110.021 (7)0.052 (9)0.028 (9)0.000 (7)0.016 (7)0.003 (7)
C120.044 (9)0.038 (8)0.039 (9)0.004 (6)0.032 (8)0.001 (7)
C130.040 (9)0.038 (8)0.025 (9)0.005 (7)0.022 (7)0.001 (6)
C140.031 (8)0.047 (9)0.024 (8)0.005 (7)0.018 (7)0.007 (7)
C150.026 (8)0.062 (10)0.030 (8)0.005 (7)0.019 (7)0.002 (7)
C160.044 (9)0.035 (8)0.033 (9)0.006 (7)0.026 (7)0.008 (6)
C170.0454 (17)0.0312 (15)0.0290 (14)0.0073 (12)0.0263 (14)0.0071 (12)
C180.0454 (17)0.0312 (15)0.0290 (14)0.0073 (12)0.0263 (14)0.0071 (12)
C190.0454 (17)0.0312 (15)0.0290 (14)0.0073 (12)0.0263 (14)0.0071 (12)
C200.0454 (17)0.0312 (15)0.0290 (14)0.0073 (12)0.0263 (14)0.0071 (12)
C210.050 (9)0.033 (8)0.028 (8)0.005 (7)0.027 (7)0.006 (6)
C220.026 (7)0.037 (8)0.024 (8)0.003 (7)0.014 (7)0.003 (7)
C230.024 (7)0.037 (7)0.031 (8)0.002 (6)0.017 (6)0.002 (6)
C240.039 (9)0.025 (7)0.025 (8)0.004 (6)0.022 (7)0.004 (6)
C250.029 (8)0.052 (10)0.028 (9)0.005 (7)0.013 (7)0.007 (7)
C260.023 (7)0.045 (8)0.021 (7)0.004 (6)0.014 (6)0.006 (6)
Geometric parameters (Å, º) top
Ni1—O12.068 (10)C7—C81.302 (14)
Ni1—O4i2.071 (10)C7—C101.501 (17)
Ni1—O52.112 (9)C8—H80.9500
Ni1—O62.089 (11)C8—C91.393 (11)
Ni1—N12.089 (12)C9—H90.9500
Ni1—N4ii2.109 (10)C11—H110.9500
O1—C11.258 (18)C11—C121.43 (2)
O2—C11.243 (18)C12—H120.9500
O3—C101.272 (16)C12—C131.35 (2)
O4—C101.273 (16)C13—C141.39 (2)
O5—H5A0.84 (3)C13—C161.490 (19)
O5—H5B0.83 (3)C14—H140.9500
O6—H6A0.83 (3)C14—C151.39 (2)
O6—H6B0.85 (3)C15—H150.9500
N1—C111.368 (18)C16—H16A0.9900
N1—C151.349 (17)C16—H16B0.9900
N2—C161.442 (17)C17—H17A0.9900
N2—C171.482 (18)C17—H17B0.9900
N2—C191.510 (15)C17—C181.530 (19)
N3—C181.423 (15)C18—H18A0.9900
N3—C201.454 (17)C18—H18B0.9900
N3—C211.476 (16)C19—H19A0.9900
N4—C221.309 (18)C19—H19B0.9900
N4—C261.323 (16)C19—C201.495 (19)
C1—C21.531 (19)C20—H20A0.9900
C2—H2A0.9900C20—H20B0.9900
C2—H2B0.9900C21—H21A0.9900
C2—C31.479 (19)C21—H21B0.9900
C3—H3A0.9900C21—C241.543 (19)
C3—H3B0.9900C22—H220.9500
C3—C41.47 (2)C22—C231.347 (19)
C4—C51.377 (10)C23—H230.9500
C4—C91.404 (17)C23—C241.40 (2)
C5—H50.9500C24—C251.37 (2)
C5—C61.42 (2)C25—H250.9500
C6—H60.9500C25—C261.37 (2)
C6—C71.427 (16)C26—H260.9500
O1—Ni1—O4i174.77 (15)O3—C10—C7116.7 (12)
O1—Ni1—O590.3 (4)O4—C10—C7118.8 (12)
O1—Ni1—O685.0 (4)N1—C11—H11118.9
O1—Ni1—N189.5 (4)N1—C11—C12122.3 (13)
O1—Ni1—N4ii93.6 (4)C12—C11—H11118.9
O4i—Ni1—O585.8 (4)C11—C12—H12120.1
O4i—Ni1—O691.6 (3)C13—C12—C11119.9 (15)
O4i—Ni1—N194.4 (4)C13—C12—H12120.1
O4i—Ni1—N4ii89.8 (4)C12—C13—C14118.4 (15)
O6—Ni1—O590.47 (17)C12—C13—C16120.2 (15)
O6—Ni1—N4ii178.3 (4)C14—C13—C16121.2 (13)
N1—Ni1—O5179.7 (5)C13—C14—H14120.3
N1—Ni1—O689.3 (4)C13—C14—C15119.4 (14)
N1—Ni1—N4ii89.56 (16)C15—C14—H14120.3
N4ii—Ni1—O590.6 (4)N1—C15—C14124.0 (15)
C1—O1—Ni1128.8 (10)N1—C15—H15118.0
C10—O4—Ni1iii130.1 (9)C14—C15—H15118.0
Ni1—O5—H5A103 (7)N2—C16—C13112.7 (13)
Ni1—O5—H5B93 (6)N2—C16—H16A109.1
H5A—O5—H5B114 (6)N2—C16—H16B109.1
Ni1—O6—H6A89 (6)C13—C16—H16A109.1
Ni1—O6—H6B125 (6)C13—C16—H16B109.1
H6A—O6—H6B115 (6)H16A—C16—H16B107.8
C11—N1—Ni1120.6 (9)N2—C17—H17A109.8
C15—N1—Ni1123.2 (11)N2—C17—H17B109.8
C15—N1—C11115.9 (13)N2—C17—C18109.2 (12)
C16—N2—C17108.4 (12)H17A—C17—H17B108.3
C16—N2—C19111.0 (11)C18—C17—H17A109.8
C17—N2—C19107.8 (10)C18—C17—H17B109.8
C18—N3—C20111.3 (10)N3—C18—C17110.2 (11)
C18—N3—C21109.9 (12)N3—C18—H18A109.6
C20—N3—C21112.5 (12)N3—C18—H18B109.6
C22—N4—Ni1iv121.5 (9)C17—C18—H18A109.6
C22—N4—C26116.6 (12)C17—C18—H18B109.6
C26—N4—Ni1iv121.8 (10)H18A—C18—H18B108.1
O1—C1—C2113.2 (14)N2—C19—H19A109.6
O2—C1—O1126.6 (14)N2—C19—H19B109.6
O2—C1—C2120.2 (14)H19A—C19—H19B108.1
C1—C2—H2A108.7C20—C19—N2110.5 (11)
C1—C2—H2B108.7C20—C19—H19A109.6
H2A—C2—H2B107.6C20—C19—H19B109.6
C3—C2—C1114.1 (12)N3—C20—C19111.9 (13)
C3—C2—H2A108.7N3—C20—H20A109.2
C3—C2—H2B108.7N3—C20—H20B109.2
C2—C3—H3A108.0C19—C20—H20A109.2
C2—C3—H3B108.0C19—C20—H20B109.2
H3A—C3—H3B107.3H20A—C20—H20B107.9
C4—C3—C2117.1 (13)N3—C21—H21A109.5
C4—C3—H3A108.0N3—C21—H21B109.5
C4—C3—H3B108.0N3—C21—C24110.6 (12)
C5—C4—C3123.7 (10)H21A—C21—H21B108.1
C5—C4—C9113.4 (8)C24—C21—H21A109.5
C9—C4—C3122.9 (14)C24—C21—H21B109.5
C4—C5—H5119.0N4—C22—H22117.4
C4—C5—C6122.0 (10)N4—C22—C23125.1 (13)
C6—C5—H5119.0C23—C22—H22117.4
C5—C6—H6119.8C22—C23—H23120.4
C5—C6—C7120.5 (12)C22—C23—C24119.1 (14)
C7—C6—H6119.8C24—C23—H23120.4
C6—C7—C10120.0 (11)C23—C24—C21123.2 (14)
C8—C7—C6118.0 (11)C25—C24—C21121.0 (13)
C8—C7—C10122.0 (11)C25—C24—C23115.7 (14)
C7—C8—H8119.6C24—C25—H25119.6
C7—C8—C9120.8 (8)C24—C25—C26120.8 (14)
C9—C8—H8119.6C26—C25—H25119.6
C4—C9—H9117.4N4—C26—C25122.4 (14)
C8—C9—C4125.3 (9)N4—C26—H26118.8
C8—C9—H9117.4C25—C26—H26118.8
O3—C10—O4124.6 (12)
Ni1—O1—C1—O24 (2)C9—C4—C5—C60.7 (13)
Ni1—O1—C1—C2176.3 (8)C10—C7—C8—C9176.9 (11)
Ni1iii—O4—C10—O33 (2)C11—N1—C15—C141 (2)
Ni1iii—O4—C10—C7176.3 (8)C11—C12—C13—C143 (2)
Ni1—N1—C11—C12174.9 (10)C11—C12—C13—C16171.6 (13)
Ni1—N1—C15—C14174.7 (11)C12—C13—C14—C153 (2)
Ni1iv—N4—C22—C23170.4 (11)C12—C13—C16—N2139.0 (15)
Ni1iv—N4—C26—C25171.1 (11)C13—C14—C15—N12 (2)
O1—C1—C2—C3175.1 (11)C14—C13—C16—N236 (2)
O2—C1—C2—C35 (2)C15—N1—C11—C121 (2)
N1—C11—C12—C132 (2)C16—N2—C17—C18179.9 (11)
N2—C17—C18—N361.5 (14)C16—N2—C19—C20176.2 (13)
N2—C19—C20—N355.7 (15)C16—C13—C14—C15171.7 (14)
N3—C21—C24—C23134.8 (15)C17—N2—C16—C1373.5 (16)
N3—C21—C24—C2548 (2)C17—N2—C19—C2057.6 (13)
N4—C22—C23—C243 (2)C18—N3—C20—C1956.5 (14)
C1—C2—C3—C4174.7 (12)C18—N3—C21—C24173.1 (11)
C2—C3—C4—C52.3 (16)C19—N2—C16—C13168.2 (11)
C2—C3—C4—C9179.4 (11)C19—N2—C17—C1859.7 (13)
C3—C4—C5—C6176.6 (19)C20—N3—C18—C1758.4 (14)
C3—C4—C9—C8177.3 (11)C20—N3—C21—C2462.3 (16)
C4—C5—C6—C70 (2)C21—N3—C18—C17176.2 (13)
C5—C4—C9—C80.1 (13)C21—N3—C20—C19179.7 (11)
C5—C6—C7—C82 (2)C21—C24—C25—C26179.6 (14)
C5—C6—C7—C10177.5 (14)C22—N4—C26—C255 (2)
C6—C7—C8—C92.1 (17)C22—C23—C24—C21179.0 (13)
C6—C7—C10—O36 (2)C22—C23—C24—C251 (2)
C6—C7—C10—O4173.1 (13)C23—C24—C25—C262 (2)
C7—C8—C9—C41.4 (15)C24—C25—C26—N41 (3)
C8—C7—C10—O3172.7 (12)C26—N4—C22—C236 (2)
C8—C7—C10—O48 (2)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x1, y+1, z1/2; (iv) x1/2, y+1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.84 (3)1.82 (4)2.621 (15)158 (9)
O5—H5B···O3v0.83 (3)2.30 (7)2.894 (14)129 (6)
O6—H6B···O2vi0.85 (3)2.05 (4)2.880 (15)166 (9)
Symmetry codes: (v) x+1, y, z+1; (vi) x, y+1, z1/2.
 

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMartin, D. P., Staples, R. J. & LaDuca, R. L. (2008). Inorg. Chem. 47, 9754–9756.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPalmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.  Google Scholar
First citationRobinson, M. E., Mizzi, J. E., Staples, R. J. & LaDuca, R. L. (2015). Cryst. Growth Des. 15, 2260–2271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146