metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[[μ-1,4-bis­­(pyridin-4-ylcarbon­yl)piperazine-κ2N:N′][μ-2-(2-carboxyl­atoeth-1-en-1-yl)benzoato-κ2O:O2]zinc(II)] 2.5 hydrate]: a tri-periodic coordination polymer with a dimer-based six-connected pcu topology

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 6 September 2023; accepted 16 September 2023; online 22 September 2023)

The title compound, {[Zn(C10H6O4)(C16H16N4O2]·2.5H2O}n, contains five-coordinate ZnII ions inter­mediate between square-pyramidal and trigonal–bipyramidal coordination environments. The ZnII ions are connected by 2-carb­oxy­cinnamate (cca) ligands and N,N′-bis-(pyridine-4-carboxamido)­piperazine (4-pcap) ligands to construct a non-inter­penetrated, tri-periodic coordination polymer with embedded [Zn2(OCO)2] dimeric units. Treating these as six-connected nodes reveals an overall (41263) pcu topology. One of the 4-pcap piperazinyl rings is disordered equally over two sets of crystallographic positions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Previously our group reported a series of coordination polymers synthesized from 2-carb­oxy­cinnamic acid (ccaH2) and N-(pyridin-3-yl)isonicotinamide (3-pina), which resulted in in situ lactonization of the ccaH2 to form 1,3-di­hydro-3-oxo-1-isobenzo­furan­acetate (dibf). The final crystallized products contained di-periodic layered coordination polymers of formulation [M(dibf)2(3-pina)2]n, where M = Zn, Cd, Mn, Co, and Ni (Murray & LaDuca, 2014[Murray, N. H. & LaDuca, R. L. (2014). Inorg. Chim. Acta 421, 141-151.]). The title complex was obtained during attempts to prepare a divalent zinc coordination polymer containing cca and N,N′-bis-(pyridine-4-carboxamido)­piperazine (4-pcap) ligands. Isomerization of ccaH2 to dibf did not occur during the synthesis of the title compound.

The title compound displays an asymmetric unit containing a five-coordinate ZnII ion, a complete cca ligand, and halves of two crystallographically distinct 4-pcap ligands whose chair-conformation piperazinyl rings are situated about crystallographic inversion centers (Fig. 1[link]). In one of these 4-pcap ligands, the piperazinyl ring atoms (N4, C25, C26) are disordered equally over two sets of positions. The ZnII ion is five-coordinate inter­mediate between square-pyramidal and trigonal–bipyramidal, with a τ trigonality index of 0.45 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). Two of the `trans' coordination sites are occupied by pyridyl N-atom donors belonging to crystallographically distinct 4-pcap ligands. The other three coordination sites are taken up by carboxyl­ate O-atom donors belonging to three distinct cca ligands. Bond lengths and angles within the coordination environment at Zn are listed in Table 1[link]. Bridging carboxyl­ate groups from cca ligands form [Zn2(OCO)2] dimeric units with a Zn⋯Zn through-space distance of 4.360 (1) Å.

Table 1
Selected geometric parameters (Å, °)

Zn1—O1 2.020 (2) Zn1—N1 2.169 (2)
Zn1—O2i 2.0249 (19) Zn1—N3 2.139 (2)
Zn1—O3ii 2.0555 (19)    
       
O1—Zn1—O2i 112.24 (8) O2i—Zn1—N1 87.90 (8)
O1—Zn1—O3ii 101.58 (8) O2i—Zn1—N3 89.27 (8)
O1—Zn1—N1 90.05 (8) O3ii—Zn1—N1 86.39 (8)
O1—Zn1—N3 97.32 (9) O3ii—Zn1—N3 92.14 (8)
O2i—Zn1—O3ii 145.68 (8) N3—Zn1—N1 172.63 (8)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x-1, y, z].
[Figure 1]
Figure 1
Zinc coordination environment in the title compound with full ligand set. Displacement ellipsoids are drawn at the 50% probability level. Only one disordered component of a 4-pcap ligand's piperazinyl ring (N4, C25, C26) is shown. Color code: Zn, gray; O, red; N, light blue; C, black. H-atom positions are shown as gray sticks. Symmetry codes are as listed in Table 1[link].

The full span of the cca ligands connect these dimeric units into [Zn2(cca)2]n mono-periodic coordination polymer chains oriented along the a axis (Fig. 2[link]). The chain motifs are linked into a tri-periodic non-inter­penetrated coordination polymer network with formulation [Zn(cca)(4-pcap)]n by the 4-pcap ligands (Fig. 3[link]). Water mol­ecules of crystallization with partial occupancy are anchored to the coordination polymer network by donating hydrogen bonds to cca carboxyl­ate O atoms and 4-pcap carboxamide O atoms (Table 2[link]). Considering the [Zn2(OCO)2] dimeric units as 6-connected nodes results in a (41263) pcu topology for the title compound, as determined by inspection (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2WA⋯O3ii 0.87 1.87 2.732 (4) 172
O2W—H2WB⋯O3W 0.87 1.92 2.770 (7) 165
O3W—H3WA⋯O4W 0.87 1.85 2.585 (13) 140
O3W—H3WB⋯O5iii 0.87 2.08 2.888 (5) 154
Symmetry codes: (ii) [x-1, y, z]; (iii) [-x, -y+1, -z+2].
[Figure 2]
Figure 2
[Zn2(cca)2]n mono-periodic coordination polymer chain motif in the title compound.
[Figure 3]
Figure 3
[Zn(cca)(4-pcap)]n tri-periodic coordination polymer network in the title compound. The [Zn2(cca)2]n chain motifs are shown in red.
[Figure 4]
Figure 4
Schematic perspective of the 6-connected pcu topology in the title compound.

Synthesis and crystallization

Zn(NO3)2.6H2O (110 mg, 0.37 mmol), 2-carb­oxy­cinnamic acid (ccaH2) (71 mg, 0.37 mmol), N,N′-bis-(pyridine-4-carbox­amido)­piperazine (4-pcap) (110 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml of distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Colorless crystals of the title complex were obtained in 54% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms attached to C atoms were placed in calculated positions and refined with a riding model. The H atoms belonging to water mol­ecules of crystallization O1W and O2W were placed in calculated positions and refined with a riding model. The H atoms belonging to water mol­ecules of crystallization O3W and O4W were placed in calculated positions and then refined with fixed positions. The piperazinyl ring in one of the 4-pcap ligands was disordered equally over two sets of positions and was treated using PART commands. EADP commands were used to enforce identical atomic displacement parameters for the C and N atoms involved in the disorder, in order to avoid non-positive definite Uij values.

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C10H6O4)(C16H16N4O2]·2.5H2O
Mr 596.88
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 9.7753 (7), 11.2349 (8), 12.6422 (9)
α, β, γ (°) 90.946 (1), 111.500 (1), 94.586 (1)
V3) 1286.11 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.02
Crystal size (mm) 0.32 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.683, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21745, 4731, 4072
Rint 0.042
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.05
No. of reflections 4731
No. of parameters 379
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker X (Palmer, 2020[Palmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker X (Palmer, 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Poly[[[µ-1,4-bis(pyridin-4-ylcarbonyl)piperazine-κ2N:N'][µ-2-(2-carboxylatoeth-1-en-1-yl)benzoato-κ2O:O2]zinc(II)] 2.5 hydrate] top
Crystal data top
[Zn(C10H6O4)(C16H16N4O2]·2.5H2OZ = 2
Mr = 596.88F(000) = 618
Triclinic, P1Dx = 1.541 Mg m3
a = 9.7753 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2349 (8) ÅCell parameters from 9996 reflections
c = 12.6422 (9) Åθ = 2.3–25.3°
α = 90.946 (1)°µ = 1.02 mm1
β = 111.500 (1)°T = 173 K
γ = 94.586 (1)°Plate, colourless
V = 1286.11 (16) Å30.32 × 0.18 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
4072 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 25.4°, θmin = 1.7°
Tmin = 0.683, Tmax = 0.745h = 1111
21745 measured reflectionsk = 1313
4731 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0576P)2 + 1.1933P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4731 reflectionsΔρmax = 0.59 e Å3
379 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.15546 (3)0.62686 (3)0.50462 (3)0.02129 (12)
O10.0637 (2)0.6167 (2)0.58481 (18)0.0335 (5)
O20.2592 (2)0.52624 (16)0.58582 (16)0.0243 (4)
O30.8181 (2)0.79023 (17)0.56657 (17)0.0267 (4)
O40.5903 (2)0.70545 (17)0.48281 (17)0.0280 (4)
O50.1940 (2)0.3588 (2)0.99632 (19)0.0423 (6)
O60.2907 (3)0.7848 (3)0.0556 (2)0.0754 (10)
N10.1944 (2)0.5527 (2)0.64955 (19)0.0214 (5)
N20.4061 (3)0.4473 (2)0.9549 (2)0.0343 (6)
N30.1472 (3)0.7006 (2)0.3520 (2)0.0243 (5)
N40.0913 (12)0.9139 (10)0.0150 (10)0.055 (2)0.5
N4A0.0617 (12)0.8707 (10)0.0061 (10)0.055 (2)0.5
C10.1968 (3)0.6189 (3)0.5937 (2)0.0229 (6)
C20.2851 (3)0.7357 (3)0.6161 (2)0.0269 (6)
H20.2387360.8049340.6231520.032*
C30.4259 (3)0.7495 (2)0.6269 (2)0.0230 (6)
H30.4732370.6793610.6247480.028*
C40.5140 (3)0.8655 (2)0.6420 (2)0.0230 (6)
C50.4832 (3)0.9620 (3)0.6986 (3)0.0316 (7)
H50.4109010.9496270.7319750.038*
C60.5551 (3)1.0745 (3)0.7070 (3)0.0340 (7)
H60.5323541.1382000.7462110.041*
C70.6603 (3)1.0948 (3)0.6585 (3)0.0301 (7)
H70.7056511.1731360.6601430.036*
C80.6988 (3)1.0000 (2)0.6077 (2)0.0247 (6)
H80.7743321.0130930.5776040.030*
C90.6284 (3)0.8850 (2)0.5999 (2)0.0199 (5)
C100.6782 (3)0.7860 (2)0.5446 (2)0.0217 (6)
C110.3122 (3)0.4749 (3)0.6345 (2)0.0256 (6)
H110.3726590.4467650.5592490.031*
C120.3492 (3)0.4339 (3)0.7242 (2)0.0274 (6)
H120.4340160.3792780.7103590.033*
C130.2611 (3)0.4735 (3)0.8342 (2)0.0247 (6)
C140.1389 (3)0.5547 (3)0.8502 (2)0.0285 (6)
H140.0762110.5840590.9245170.034*
C150.1109 (3)0.5916 (3)0.7564 (2)0.0258 (6)
H150.0279630.6475790.7678640.031*
C160.2858 (3)0.4230 (3)0.9354 (2)0.0280 (6)
C170.5221 (4)0.5169 (3)0.8825 (3)0.0398 (8)
H17A0.6112240.4626030.8402730.048*
H17B0.4881640.5573300.8263340.048*
C180.4399 (4)0.3913 (3)1.0475 (3)0.0393 (8)
H18A0.3533740.3519671.0967140.047*
H18B0.5239260.3293251.0153400.047*
C190.2282 (5)0.7892 (3)0.3032 (3)0.0560 (11)
H190.2810120.8260110.3427370.067*
C200.2390 (5)0.8297 (4)0.1985 (4)0.0632 (12)
H200.3009010.8910420.1662200.076*
C210.1611 (3)0.7821 (3)0.1415 (3)0.0333 (7)
C220.0800 (4)0.6893 (3)0.1895 (3)0.0476 (9)
H220.0263520.6515470.1512600.057*
C230.0767 (4)0.6512 (3)0.2932 (3)0.0422 (9)
H230.0210780.5860340.3242480.051*
C240.1805 (4)0.8208 (3)0.0238 (3)0.0427 (8)
C250.1099 (11)0.9534 (11)0.1007 (9)0.055 (2)0.5
H25A0.0764110.8910930.1395220.066*0.5
H25B0.2167540.9570400.1439840.066*0.5
C25A0.0797 (12)0.9105 (10)0.0941 (10)0.055 (2)0.5
H25C0.1625750.8909430.0717080.066*0.5
H25D0.0902870.8741460.1672100.066*0.5
C260.0516 (12)0.9594 (10)0.1064 (10)0.055 (2)0.5
H26C0.0338410.9629630.1785190.066*0.5
H26D0.1212960.8978750.1138900.066*0.5
H26A0.181 (11)0.894 (8)0.158 (8)0.082*0.5
H26B0.016 (11)0.886 (8)0.124 (8)0.082*0.5
C26A0.0701 (11)0.9102 (12)0.1049 (9)0.055 (2)0.5
O1W0.0231 (8)0.9573 (7)0.5214 (8)0.084 (2)0.5
H1WA0.0291690.9173470.5539730.126*0.5
H1WB0.0356070.9582200.4504050.126*0.5
O2W0.0639 (5)0.9328 (4)0.6978 (4)0.0783 (13)0.75
H2WA0.0181420.8894700.6601370.117*0.75
H2WB0.1109350.8990430.7607340.117*0.75
O3W0.2431 (5)0.8664 (4)0.9103 (5)0.1026 (18)0.75
H3WA0.3384760.8659300.9331760.154*0.75
H3WB0.2114260.7928500.9154460.154*0.75
O4W0.5073 (13)0.9704 (11)0.9673 (7)0.117 (4)0.5
H4WA0.5699790.9969460.9370020.176*0.5
H4WB0.5204090.8949760.9758420.176*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02256 (19)0.02113 (19)0.02374 (19)0.00199 (12)0.01265 (14)0.00330 (13)
O10.0190 (10)0.0462 (13)0.0380 (12)0.0021 (9)0.0135 (9)0.0066 (10)
O20.0244 (10)0.0236 (10)0.0272 (10)0.0003 (8)0.0128 (8)0.0004 (8)
O30.0231 (10)0.0238 (10)0.0375 (12)0.0020 (8)0.0162 (9)0.0005 (9)
O40.0299 (11)0.0253 (11)0.0282 (11)0.0009 (9)0.0110 (9)0.0042 (9)
O50.0352 (12)0.0607 (16)0.0360 (13)0.0133 (11)0.0166 (10)0.0184 (11)
O60.073 (2)0.101 (2)0.0319 (14)0.0514 (18)0.0073 (14)0.0112 (15)
N10.0218 (11)0.0226 (12)0.0232 (12)0.0028 (9)0.0119 (10)0.0020 (9)
N20.0335 (14)0.0461 (16)0.0317 (14)0.0104 (12)0.0199 (12)0.0160 (12)
N30.0303 (13)0.0205 (12)0.0272 (13)0.0037 (10)0.0162 (10)0.0050 (10)
N40.036 (3)0.090 (6)0.0246 (16)0.021 (3)0.0004 (19)0.025 (3)
N4A0.036 (3)0.090 (6)0.0246 (16)0.021 (3)0.0004 (19)0.025 (3)
C10.0194 (14)0.0339 (16)0.0157 (13)0.0009 (12)0.0071 (11)0.0042 (11)
C20.0269 (15)0.0257 (15)0.0319 (16)0.0049 (12)0.0147 (13)0.0005 (12)
C30.0263 (14)0.0221 (14)0.0220 (14)0.0043 (11)0.0102 (12)0.0011 (11)
C40.0228 (14)0.0224 (14)0.0243 (14)0.0054 (11)0.0084 (12)0.0008 (11)
C50.0296 (16)0.0292 (16)0.0389 (18)0.0022 (13)0.0166 (14)0.0028 (13)
C60.0348 (17)0.0253 (15)0.0418 (18)0.0049 (13)0.0142 (14)0.0075 (13)
C70.0297 (16)0.0201 (14)0.0366 (17)0.0007 (12)0.0080 (13)0.0012 (12)
C80.0213 (14)0.0240 (14)0.0264 (15)0.0013 (11)0.0061 (12)0.0040 (12)
C90.0179 (13)0.0209 (13)0.0188 (13)0.0041 (10)0.0037 (11)0.0014 (10)
C100.0253 (14)0.0226 (14)0.0203 (14)0.0027 (11)0.0116 (11)0.0066 (11)
C110.0245 (14)0.0279 (15)0.0249 (15)0.0005 (12)0.0102 (12)0.0008 (12)
C120.0246 (14)0.0323 (16)0.0265 (15)0.0053 (12)0.0124 (12)0.0017 (12)
C130.0235 (14)0.0291 (15)0.0244 (15)0.0033 (12)0.0120 (12)0.0014 (12)
C140.0262 (15)0.0334 (16)0.0248 (15)0.0015 (12)0.0094 (12)0.0018 (12)
C150.0214 (14)0.0267 (15)0.0299 (16)0.0029 (11)0.0114 (12)0.0010 (12)
C160.0230 (14)0.0353 (17)0.0239 (15)0.0034 (12)0.0076 (12)0.0010 (13)
C170.0353 (17)0.061 (2)0.0318 (17)0.0126 (16)0.0196 (14)0.0180 (16)
C180.0392 (18)0.047 (2)0.0425 (19)0.0087 (15)0.0259 (16)0.0181 (16)
C190.088 (3)0.053 (2)0.053 (2)0.043 (2)0.048 (2)0.0306 (19)
C200.095 (3)0.058 (3)0.062 (3)0.044 (2)0.050 (3)0.036 (2)
C210.0329 (16)0.0368 (17)0.0301 (17)0.0035 (13)0.0127 (13)0.0100 (13)
C220.061 (2)0.058 (2)0.040 (2)0.0255 (19)0.0337 (18)0.0167 (17)
C230.054 (2)0.048 (2)0.0395 (19)0.0288 (17)0.0295 (17)0.0206 (16)
C240.0389 (19)0.055 (2)0.0337 (19)0.0049 (16)0.0143 (16)0.0162 (16)
C250.036 (3)0.090 (6)0.0246 (16)0.021 (3)0.0004 (19)0.025 (3)
C25A0.036 (3)0.090 (6)0.0246 (16)0.021 (3)0.0004 (19)0.025 (3)
C260.036 (3)0.090 (6)0.0246 (16)0.021 (3)0.0004 (19)0.025 (3)
C26A0.036 (3)0.090 (6)0.0246 (16)0.021 (3)0.0004 (19)0.025 (3)
O1W0.069 (5)0.072 (5)0.122 (7)0.012 (4)0.050 (5)0.016 (5)
O2W0.054 (3)0.071 (3)0.093 (4)0.011 (2)0.011 (2)0.020 (2)
O3W0.082 (3)0.063 (3)0.136 (5)0.010 (2)0.007 (3)0.031 (3)
O4W0.109 (6)0.157 (11)0.081 (8)0.009 (7)0.029 (6)0.042 (7)
Geometric parameters (Å, º) top
Zn1—O12.020 (2)C11—C121.387 (4)
Zn1—O2i2.0249 (19)C12—H120.9500
Zn1—O3ii2.0555 (19)C12—C131.384 (4)
Zn1—N12.169 (2)C13—C141.394 (4)
Zn1—N32.139 (2)C13—C161.499 (4)
O1—C11.262 (3)C14—H140.9500
O2—C11.269 (3)C14—C151.375 (4)
O3—C101.289 (3)C15—H150.9500
O4—C101.236 (3)C17—H17A0.9900
O5—C161.238 (4)C17—H17B0.9900
O6—C241.207 (4)C17—C18iii1.502 (5)
N1—C111.341 (4)C18—H18A0.9900
N1—C151.341 (4)C18—H18B0.9900
N2—C161.334 (4)C19—H190.9500
N2—C171.462 (4)C19—C201.377 (5)
N2—C181.466 (4)C20—H200.9500
N3—C191.337 (4)C20—C211.357 (5)
N3—C231.326 (4)C21—C221.373 (5)
N4—C241.340 (13)C21—C241.506 (4)
N4—C251.486 (10)C22—H220.9500
N4—C261.494 (10)C22—C231.376 (5)
N4A—C241.343 (12)C23—H230.9500
N4A—C25A1.451 (10)C25—H25A0.9900
N4A—C26A1.454 (10)C25—H25B0.9900
C1—C21.475 (4)C25—C26iv1.11 (2)
C2—H20.9500C25A—H25C0.9900
C2—C31.328 (4)C25A—H25D0.9900
C3—H30.9500C25A—C26Aiv2.029 (19)
C3—C41.473 (4)C26—H26C0.9900
C4—C51.400 (4)C26—H26D0.9900
C4—C91.409 (4)C26A—H26A1.05 (10)
C5—H50.9500C26A—H26B1.01 (9)
C5—C61.378 (4)O1W—H1WA0.8694
C6—H60.9500O1W—H1WB0.8705
C6—C71.384 (4)O2W—H2WA0.8702
C7—H70.9500O2W—H2WB0.8706
C7—C81.380 (4)O3W—H3WA0.8699
C8—H80.9500O3W—H3WB0.8704
C8—C91.398 (4)O4W—H4WA0.8697
C9—C101.508 (4)O4W—H4WB0.8700
C11—H110.9500
O1—Zn1—O2i112.24 (8)C15—C14—C13118.8 (3)
O1—Zn1—O3ii101.58 (8)C15—C14—H14120.6
O1—Zn1—N190.05 (8)N1—C15—C14123.4 (3)
O1—Zn1—N397.32 (9)N1—C15—H15118.3
O2i—Zn1—O3ii145.68 (8)C14—C15—H15118.3
O2i—Zn1—N187.90 (8)O5—C16—N2123.0 (3)
O2i—Zn1—N389.27 (8)O5—C16—C13118.1 (3)
O3ii—Zn1—N186.39 (8)N2—C16—C13118.9 (3)
O3ii—Zn1—N392.14 (8)N2—C17—H17A109.5
N3—Zn1—N1172.63 (8)N2—C17—H17B109.5
C1—O1—Zn1156.27 (19)N2—C17—C18iii110.9 (3)
C1—O2—Zn1i125.25 (17)H17A—C17—H17B108.1
C10—O3—Zn1v103.62 (16)C18iii—C17—H17A109.5
C11—N1—Zn1120.68 (18)C18iii—C17—H17B109.5
C15—N1—Zn1121.34 (18)N2—C18—C17iii110.6 (3)
C15—N1—C11117.6 (2)N2—C18—H18A109.5
C16—N2—C17125.3 (2)N2—C18—H18B109.5
C16—N2—C18120.2 (3)C17iii—C18—H18A109.5
C17—N2—C18114.1 (2)C17iii—C18—H18B109.5
C19—N3—Zn1121.5 (2)H18A—C18—H18B108.1
C23—N3—Zn1121.7 (2)N3—C19—H19118.4
C23—N3—C19116.3 (3)N3—C19—C20123.2 (3)
C24—N4—C25118.1 (8)C20—C19—H19118.4
C24—N4—C26124.7 (7)C19—C20—H20120.0
C25—N4—C26114.8 (6)C21—C20—C19120.0 (3)
C24—N4A—C25A125.6 (7)C21—C20—H20120.0
C24—N4A—C26A122.0 (7)C20—C21—C22117.3 (3)
C25A—N4A—C26A111.6 (6)C20—C21—C24119.9 (3)
O1—C1—O2123.7 (3)C22—C21—C24122.3 (3)
O1—C1—C2118.1 (3)C21—C22—H22120.1
O2—C1—C2118.2 (2)C21—C22—C23119.7 (3)
C1—C2—H2118.2C23—C22—H22120.1
C3—C2—C1123.7 (3)N3—C23—C22123.4 (3)
C3—C2—H2118.2N3—C23—H23118.3
C2—C3—H3117.6C22—C23—H23118.3
C2—C3—C4124.8 (3)O6—C24—N4121.3 (6)
C4—C3—H3117.6O6—C24—N4A120.5 (6)
C5—C4—C3119.7 (3)O6—C24—C21119.4 (3)
C5—C4—C9117.7 (3)N4—C24—C21117.6 (6)
C9—C4—C3122.6 (2)N4A—C24—C21118.3 (6)
C4—C5—H5119.1N4—C25—H25A108.0
C6—C5—C4121.7 (3)N4—C25—H25B108.0
C6—C5—H5119.1H25A—C25—H25B107.2
C5—C6—H6119.9C26iv—C25—N4117.2 (12)
C5—C6—C7120.2 (3)C26iv—C25—H25A108.0
C7—C6—H6119.9C26iv—C25—H25B108.0
C6—C7—H7120.3N4A—C25A—H25C111.3
C8—C7—C6119.4 (3)N4A—C25A—H25D111.3
C8—C7—H7120.3N4A—C25A—C26Aiv102.4 (7)
C7—C8—H8119.5H25C—C25A—H25D109.2
C7—C8—C9121.1 (3)C26Aiv—C25A—H25C111.3
C9—C8—H8119.5C26Aiv—C25A—H25D111.3
C4—C9—C10122.4 (2)N4—C26—H26C107.0
C8—C9—C4119.7 (2)N4—C26—H26D107.0
C8—C9—C10117.9 (2)C25iv—C26—N4121.2 (11)
O3—C10—C9115.8 (2)C25iv—C26—H26C107.0
O4—C10—O3122.2 (2)C25iv—C26—H26D107.0
O4—C10—C9122.0 (2)H26C—C26—H26D106.8
N1—C11—H11118.6N4A—C26A—H26A105 (5)
N1—C11—C12122.7 (3)N4A—C26A—H26B111 (5)
C12—C11—H11118.6C25Aiv—C26A—H26A94 (5)
C11—C12—H12120.4C25Aiv—C26A—H26B114 (5)
C13—C12—C11119.1 (3)H26A—C26A—H26B125 (7)
C13—C12—H12120.4H1WA—O1W—H1WB104.5
C12—C13—C14118.4 (3)H2WA—O2W—H2WB109.4
C12—C13—C16121.7 (3)H3WA—O3W—H3WB104.5
C14—C13—C16119.7 (3)H4WA—O4W—H4WB104.5
C13—C14—H14120.6
Zn1—O1—C1—O295.1 (5)C14—C13—C16—N2116.2 (3)
Zn1—O1—C1—C285.7 (6)C15—N1—C11—C120.2 (4)
Zn1i—O2—C1—O127.7 (4)C16—N2—C17—C18iii132.7 (3)
Zn1i—O2—C1—C2153.07 (19)C16—N2—C18—C17iii132.5 (3)
Zn1v—O3—C10—O410.6 (3)C16—C13—C14—C15174.1 (3)
Zn1v—O3—C10—C9169.00 (18)C17—N2—C16—O5176.5 (3)
Zn1—N1—C11—C12173.8 (2)C17—N2—C16—C132.5 (5)
Zn1—N1—C15—C14174.3 (2)C17—N2—C18—C17iii54.2 (4)
Zn1—N3—C19—C20172.3 (4)C18—N2—C16—O54.0 (5)
Zn1—N3—C23—C22173.9 (3)C18—N2—C16—C13175.0 (3)
O1—C1—C2—C3179.8 (3)C18—N2—C17—C18iii54.4 (4)
O2—C1—C2—C30.9 (4)C19—N3—C23—C222.3 (5)
N1—C11—C12—C130.6 (4)C19—C20—C21—C223.5 (6)
N3—C19—C20—C212.3 (7)C19—C20—C21—C24176.0 (4)
C1—C2—C3—C4175.9 (3)C20—C21—C22—C232.0 (6)
C2—C3—C4—C530.6 (4)C20—C21—C24—O675.0 (5)
C2—C3—C4—C9148.3 (3)C20—C21—C24—N490.5 (6)
C3—C4—C5—C6174.9 (3)C20—C21—C24—N4A120.4 (6)
C3—C4—C9—C8174.1 (2)C21—C22—C23—N30.9 (6)
C3—C4—C9—C105.3 (4)C22—C21—C24—O697.2 (5)
C4—C5—C6—C70.3 (5)C22—C21—C24—N497.4 (6)
C4—C9—C10—O3142.4 (3)C22—C21—C24—N4A67.5 (7)
C4—C9—C10—O437.1 (4)C23—N3—C19—C200.7 (6)
C5—C4—C9—C84.9 (4)C24—N4—C25—C26iv168.1 (12)
C5—C4—C9—C10175.8 (3)C24—N4—C26—C25iv168.1 (14)
C5—C6—C7—C83.9 (5)C24—N4A—C25A—C26Aiv100.9 (10)
C6—C7—C8—C93.0 (4)C24—N4A—C26A—C25Aiv100.1 (9)
C7—C8—C9—C41.5 (4)C24—C21—C22—C23174.3 (3)
C7—C8—C9—C10179.2 (2)C25—N4—C24—O614.5 (10)
C8—C9—C10—O338.2 (3)C25—N4—C24—C21179.6 (6)
C8—C9—C10—O4142.2 (3)C25—N4—C26—C25iv29.8 (17)
C9—C4—C5—C64.0 (4)C25A—N4A—C24—O6175.9 (7)
C11—N1—C15—C140.8 (4)C25A—N4A—C24—C2111.5 (11)
C11—C12—C13—C140.8 (4)C25A—N4A—C26A—C25Aiv70.2 (9)
C11—C12—C13—C16173.5 (3)C26—N4—C24—O6176.1 (7)
C12—C13—C14—C150.2 (4)C26—N4—C24—C2118.8 (11)
C12—C13—C16—O5109.4 (3)C26—N4—C25—C26iv28.5 (16)
C12—C13—C16—N269.6 (4)C26A—N4A—C24—O615.2 (11)
C13—C14—C15—N10.6 (4)C26A—N4A—C24—C21179.7 (7)
C14—C13—C16—O564.7 (4)C26A—N4A—C25A—C26Aiv69.0 (10)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x1, y+1, z+2; (iv) x, y+2, z; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2WA···O3ii0.871.872.732 (4)172
O2W—H2WB···O3W0.871.922.770 (7)165
O3W—H3WA···O4W0.871.852.585 (13)140
O3W—H3WB···O5vi0.872.082.888 (5)154
Symmetry codes: (ii) x1, y, z; (vi) x, y+1, z+2.
 

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMurray, N. H. & LaDuca, R. L. (2014). Inorg. Chim. Acta 421, 141–151.  CSD CrossRef Google Scholar
First citationPalmer, D. (2020). CrystalMaker X. CrystalMaker Software, Begbroke, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146