metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[μ-1,3-bis­­(pyridin-3-yl)urea]bis­­(μ4-glutarato)dicopper(II)]

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 15 September 2023; accepted 21 September 2023; online 26 September 2023)

The title compound, [Cu2(C5H6O4)2(C11H10N4O)]n, contains square-pyramidally coordinated CuII ions linked by anti-gauche conformation glutarate (glu) ligands into [Cu2(glu)2]n di-periodic coordination polymer layers with embedded [Cu2(OCO)4] paddlewheel clusters. In turn, the layer motifs are connected by 1,3-di(pyridin-3-yl)urea (3-dpu) linkers to form a [Cu2(glu)2(3-dpu)]n tri-periodic coordination polymer network. Treating the [Cu2(OCO)4] clusters as 6-connected nodes reveals an underlying 41263 pcu topology according to TOPOSPRO software [Blatov et al. (2014[Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576-3586.]). Cryst. Growth Des. 14, 3576–3586].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The conformationally flexible glutarate (glu) ligand has been used in our group previously to generate divalent copper coordination polymers, whose resulting topologies depend greatly on the nature of a dipyridyl-type co-ligand (Martin et al., 2008[Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2008). Cryst. Growth Des. 8, 3518-3520.]). Use of 1,4-bis­(pyridin-4-ylmeth­yl)piperazine (4-bpmp) generated the tri-periodic coordination polymer {[Cu2(glu)2(4-bpmp)]·4H2O}n, which adopted a rare self-penetrated 446108 mab topology. Using the isomeric N-(pyridin-3-yl)nicotinamide (3-pna) and N-(pyridin-4-yl)nicotinamide (4-pna) ligands afforded the non-inter­penetrated (4,4) grid di-periodic coordination polymer {[Cu(glu)(3-pna)(H2O)]·H2O}n and the twofold inter­penetrated (6,3) grid di-periodic coordination polymer {[Cu(glu)(4-pna)(H2O)]·H2O}n, respectively (Uebler et al., 2013[Uebler, J. W., Pochodylo, A. L. & LaDuca, R. L. (2013). Inorg. Chim. Acta, 405, 31-42.]). The title compound was prepared during an effort to prepare divalent copper coordination polymers containing both glu and 1,3-di(pyridin-3-yl)urea (3-dpu) ligands.

The asymmetric unit of the title compound contains two divalent Cu atoms, two fully deprotonated glu ligands, and a 3-dpu ligand. The CuII atoms are both coordinated in an {O4N} square-pyramidal fashion (Fig. 1[link], Table 1[link]) with a pyridyl N atom from a 3-dpu ligand in its Jahn–Teller-elongated axial positions. The basal planes of the coordination polyhedra around CuII are taken up by four O atoms belonging to different glu ligands. The bridging termini of the glu ligands form [Cu2(OCO)4] paddlewheel clusters with a Cu—Cu distance of 2.6512 (7) Å (Fig. 1[link]). The crystallographically distinct glu ligands both adopt anti-gauche conformations [torsion angles = 59.9 (5) and 174.3 (3)°; 62.8 (4) and 171.9 (3)°.

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.967 (3) Cu2—O2 1.981 (3)
Cu1—O3i 2.000 (3) Cu2—O4i 1.954 (3)
Cu1—O6ii 1.992 (3) Cu2—O5ii 1.950 (3)
Cu1—O7 1.973 (2) Cu2—O8 2.001 (3)
Cu1—N1 2.167 (3) Cu2—N4iii 2.194 (3)
       
O1—Cu1—O3i 91.61 (12) O2—Cu2—O8 164.87 (11)
O1—Cu1—O6ii 87.72 (11) O2—Cu2—N4iii 93.03 (11)
O1—Cu1—O7 171.10 (11) O4i—Cu2—O2 92.11 (11)
O1—Cu1—N1 100.51 (11) O4i—Cu2—O8 86.16 (11)
O3i—Cu1—N1 99.46 (12) O4i—Cu2—N4iii 93.08 (11)
O6ii—Cu1—O3i 165.11 (11) O5ii—Cu2—O2 89.12 (11)
O6ii—Cu1—N1 95.28 (12) O5ii—Cu2—O4i 169.86 (11)
O7—Cu1—O3i 88.61 (11) O5ii—Cu2—O8 90.03 (11)
O7—Cu1—O6ii 89.78 (11) O5ii—Cu2—N4iii 96.90 (11)
O7—Cu1—N1 88.22 (11) O8—Cu2—N4iii 102.07 (11)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Copper coordination environments in the title compound with glu and 3-dpu ligands. Displacement ellipsoids are drawn at the 50% probability level. Color code: Cu, dark blue; O, red; N, light blue; C, black. H-atom positions are shown as gray sticks. Symmetry codes are as listed in Table 1[link].

The full span of the glu ligands connects the [Cu2(OCO)4] paddlewheel clusters into di-periodic [Cu2(glu)2]n coordination polymer layers that are oriented parallel to the ab crystallographic plane (Fig. 2[link]). These layer motifs are pillared into a tri-periodic non-inter­penetrated [Cu2(glu)2(3-dpu)]n coordination polymer network by 3-dpu ligands that span a Cu⋯Cu distance of 11.970 (1) Å (Fig. 3[link]). Hydrogen-bonding inter­actions between the N—H moieties of the 3-dpu ligand and ligated carboxyl­ate O atoms (O8) of the glu ligands stabilize the tri-periodic network (Table 2[link]). Treating the [Cu2(OCO)4] paddlewheel clusters as 6-connected nodes reveals an underlying 41263 pcu topology (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O8iv 0.88 1.93 2.767 (4) 157
N3—H3⋯O8iv 0.88 2.35 3.087 (4) 142
Symmetry code: (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
[Cu2(glu)2]n layered motif in the title compound viewed in projection down the a-axis, featuring [Cu2(OCO)4] paddlewheel clusters.
[Figure 3]
Figure 3
[Cu2(glu)2(3-dpu)]n tri-periodic coordination polymer network in the title compound with unit cell outlines shown. [Cu2(glu)2]n layered motifs are drawn in red.
[Figure 4]
Figure 4
Schematic representation of the pcu network topology in the title compound. The centroids of the [Cu2(OCO)4] paddlewheel clusters are shown as gold spheres. The glu and 3-dpu ligand connections are shown as red rods and blue rods, respectively.

Synthesis and crystallization

Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), glutaric acid (gluH2) (50 mg, 0.37 mmol), 1,3-di(pyridin-3-yl)urea (3-dpu) (79 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 373 K for 24 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 58% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C5H6O4)2(C11H10N4O)]
Mr 601.50
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 8.5042 (11), 13.3095 (17), 20.921 (3)
β (°) 101.348 (1)
V3) 2321.7 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.89
Crystal size (mm) 0.22 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.669, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18339, 4229, 3163
Rint 0.060
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.03
No. of reflections 4229
No. of parameters 325
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.72, −0.60
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMaker (Palmer, 2020[Palmer, D. (2020). CrystalMaker X. Crystal Maker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Poly[[µ-1,3-bis(pyridin-3-yl)urea]bis(µ4-glutarato)dicopper(II)] top
Crystal data top
[Cu2(C5H6O4)2(C11H10N4O)]F(000) = 1224
Mr = 601.50Dx = 1.721 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.5042 (11) ÅCell parameters from 5350 reflections
b = 13.3095 (17) Åθ = 2.5–25.3°
c = 20.921 (3) ŵ = 1.89 mm1
β = 101.348 (1)°T = 173 K
V = 2321.7 (5) Å3Block, green
Z = 40.22 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
4229 independent reflections
Radiation source: sealed tube3163 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 8.36 pixels mm-1θmax = 25.3°, θmin = 1.8°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1516
Tmin = 0.669, Tmax = 0.745l = 2425
18339 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0481P)2 + 1.6221P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4229 reflectionsΔρmax = 0.72 e Å3
325 parametersΔρmin = 0.60 e Å3
0 restraints
Special details top

Experimental. Data was collected using a BRUKER CCD (charge-coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using ω scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software, which corrects for Lp. Scaling and absorption corrections were applied using SADABS multi-scan technique, supplied by George Sheldrick. The structure was solved by dual-space methods using the SHELXT program and refined by the least squares method on F2, SHELXL, incorporated in Olex2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was refined by least-squares using version 2018/3 of SHELXL (Sheldrick, 2015b) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the hydrogen atom on the nitrogen atom which was found by difference-Fourier methods and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.51833 (5)0.46750 (3)0.69093 (2)0.01968 (15)
Cu20.47185 (5)0.55687 (3)0.79894 (2)0.01879 (15)
O10.2886 (3)0.4836 (2)0.65382 (13)0.0266 (6)
O20.2499 (3)0.55198 (19)0.74755 (13)0.0248 (6)
O30.0222 (3)0.84023 (19)0.76407 (14)0.0290 (7)
O40.0402 (3)0.9183 (2)0.67157 (13)0.0282 (7)
O50.9976 (3)0.18497 (18)0.74221 (13)0.0266 (6)
O60.9526 (3)0.11028 (19)0.83279 (13)0.0264 (6)
O70.7420 (3)0.46407 (19)0.73954 (12)0.0223 (6)
O80.7091 (3)0.5446 (2)0.82984 (13)0.0266 (7)
O90.7057 (4)0.1263 (2)0.45026 (13)0.0437 (9)
N10.6018 (4)0.4047 (2)0.60804 (15)0.0235 (7)
N20.7042 (4)0.1563 (3)0.55713 (15)0.0290 (8)
H20.7070050.1271200.5950970.035*
N30.7539 (4)0.0029 (2)0.52353 (15)0.0272 (8)
H30.7529400.0204250.5640120.033*
N40.8952 (4)0.1190 (2)0.38504 (15)0.0213 (7)
C10.2035 (4)0.5284 (3)0.6882 (2)0.0222 (9)
C20.0334 (4)0.5567 (3)0.6570 (2)0.0245 (9)
H2A0.0391490.5010400.6634550.029*
H2B0.0265500.5647750.6094610.029*
C30.0253 (5)0.6543 (3)0.6844 (2)0.0267 (9)
H3A0.1373700.6677480.6624060.032*
H3B0.0234920.6457280.7315690.032*
C40.0800 (5)0.7435 (3)0.6744 (2)0.0298 (10)
H4A0.1931840.7255720.6920560.036*
H4B0.0695370.7545820.6269320.036*
C50.0429 (4)0.8420 (3)0.70553 (18)0.0198 (8)
C60.9644 (4)0.1855 (3)0.79894 (18)0.0200 (8)
C70.9325 (4)0.2872 (3)0.82592 (19)0.0237 (9)
H7A0.9583440.2834870.8741140.028*
H7B0.8164690.3018170.8128970.028*
C81.0251 (4)0.3746 (3)0.80450 (18)0.0211 (8)
H8A1.0116600.3740290.7564160.025*
H8B1.1406530.3664720.8232490.025*
C90.9671 (4)0.4753 (3)0.82633 (19)0.0204 (8)
H9A0.9796230.4754010.8743850.024*
H9B1.0349810.5298040.8142580.024*
C100.7939 (4)0.4961 (3)0.79597 (18)0.0183 (8)
C110.6422 (5)0.4641 (3)0.56210 (19)0.0286 (10)
H110.6280700.5347040.5645790.034*
C120.7044 (5)0.4241 (3)0.5107 (2)0.0368 (11)
H120.7328020.4676210.4788140.044*
C130.7252 (5)0.3215 (3)0.5058 (2)0.0328 (10)
H130.7662860.2935440.4706300.039*
C140.6838 (5)0.2605 (3)0.55413 (18)0.0240 (9)
C150.6222 (4)0.3057 (3)0.60408 (18)0.0235 (9)
H150.5934480.2640710.6368220.028*
C160.7203 (5)0.0954 (3)0.50550 (19)0.0274 (9)
C170.8596 (4)0.0510 (3)0.42751 (18)0.0224 (9)
H170.8826060.0178380.4214860.027*
C180.7902 (5)0.0778 (3)0.48003 (19)0.0239 (9)
C190.7588 (5)0.1777 (3)0.4894 (2)0.0353 (11)
H190.7125090.1981640.5250820.042*
C200.7964 (6)0.2481 (3)0.4455 (2)0.0405 (12)
H200.7769810.3175470.4510560.049*
C210.8624 (5)0.2156 (3)0.3938 (2)0.0323 (10)
H210.8852800.2636840.3633040.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0195 (3)0.0170 (3)0.0230 (3)0.00133 (19)0.0054 (2)0.00298 (19)
Cu20.0198 (3)0.0156 (3)0.0222 (3)0.00055 (19)0.0071 (2)0.00043 (19)
O10.0186 (14)0.0299 (16)0.0298 (16)0.0036 (12)0.0014 (12)0.0097 (13)
O20.0209 (14)0.0278 (16)0.0263 (16)0.0039 (12)0.0061 (12)0.0004 (12)
O30.0356 (17)0.0153 (15)0.0383 (18)0.0027 (12)0.0126 (14)0.0039 (12)
O40.0403 (17)0.0177 (15)0.0288 (16)0.0006 (13)0.0123 (13)0.0039 (13)
O50.0406 (17)0.0150 (14)0.0268 (16)0.0012 (12)0.0126 (13)0.0037 (12)
O60.0357 (16)0.0146 (15)0.0289 (16)0.0016 (12)0.0068 (13)0.0029 (12)
O70.0187 (14)0.0276 (16)0.0199 (14)0.0035 (11)0.0023 (11)0.0037 (12)
O80.0194 (14)0.0308 (17)0.0295 (16)0.0049 (12)0.0042 (12)0.0090 (12)
O90.080 (2)0.0320 (18)0.0171 (16)0.0251 (17)0.0046 (16)0.0016 (13)
N10.0268 (18)0.0211 (18)0.0239 (18)0.0048 (14)0.0079 (15)0.0017 (14)
N20.044 (2)0.027 (2)0.0167 (17)0.0117 (16)0.0086 (16)0.0003 (14)
N30.042 (2)0.0256 (19)0.0178 (17)0.0054 (16)0.0148 (15)0.0005 (15)
N40.0242 (17)0.0174 (17)0.0237 (17)0.0003 (13)0.0078 (14)0.0056 (14)
C10.022 (2)0.013 (2)0.033 (2)0.0033 (16)0.0097 (18)0.0042 (17)
C20.022 (2)0.021 (2)0.029 (2)0.0002 (16)0.0010 (17)0.0038 (17)
C30.022 (2)0.024 (2)0.034 (2)0.0012 (17)0.0072 (18)0.0019 (18)
C40.031 (2)0.021 (2)0.040 (3)0.0023 (18)0.014 (2)0.0032 (19)
C50.0117 (18)0.026 (2)0.022 (2)0.0026 (16)0.0054 (16)0.0031 (17)
C60.0151 (19)0.022 (2)0.023 (2)0.0032 (16)0.0029 (16)0.0012 (17)
C70.026 (2)0.019 (2)0.027 (2)0.0011 (17)0.0095 (18)0.0001 (17)
C80.022 (2)0.018 (2)0.023 (2)0.0011 (16)0.0047 (16)0.0013 (16)
C90.019 (2)0.017 (2)0.025 (2)0.0013 (15)0.0029 (16)0.0017 (16)
C100.023 (2)0.0101 (18)0.024 (2)0.0015 (15)0.0094 (17)0.0038 (16)
C110.035 (2)0.024 (2)0.026 (2)0.0072 (18)0.0043 (19)0.0038 (18)
C120.052 (3)0.034 (3)0.029 (2)0.006 (2)0.018 (2)0.006 (2)
C130.047 (3)0.028 (2)0.026 (2)0.006 (2)0.014 (2)0.0016 (19)
C140.029 (2)0.026 (2)0.016 (2)0.0046 (18)0.0012 (17)0.0011 (17)
C150.026 (2)0.027 (2)0.019 (2)0.0012 (17)0.0062 (17)0.0015 (17)
C160.029 (2)0.027 (2)0.025 (2)0.0079 (18)0.0035 (18)0.0015 (19)
C170.026 (2)0.021 (2)0.020 (2)0.0034 (16)0.0038 (17)0.0002 (16)
C180.026 (2)0.022 (2)0.023 (2)0.0048 (17)0.0069 (17)0.0015 (17)
C190.053 (3)0.026 (2)0.035 (3)0.002 (2)0.027 (2)0.0012 (19)
C200.068 (3)0.019 (2)0.042 (3)0.002 (2)0.029 (3)0.000 (2)
C210.047 (3)0.025 (2)0.030 (2)0.004 (2)0.019 (2)0.0010 (19)
Geometric parameters (Å, º) top
Cu1—Cu22.6512 (7)C2—C31.542 (5)
Cu1—O11.967 (3)C3—H3A0.9900
Cu1—O3i2.000 (3)C3—H3B0.9900
Cu1—O6ii1.992 (3)C3—C41.527 (5)
Cu1—O71.973 (2)C4—H4A0.9900
Cu1—N12.167 (3)C4—H4B0.9900
Cu2—O21.981 (3)C4—C51.525 (5)
Cu2—O4i1.954 (3)C6—C71.512 (5)
Cu2—O5ii1.950 (3)C7—H7A0.9900
Cu2—O82.001 (3)C7—H7B0.9900
Cu2—N4iii2.194 (3)C7—C81.520 (5)
O1—C11.266 (4)C8—H8A0.9900
O2—C11.266 (5)C8—H8B0.9900
O3—C51.271 (4)C8—C91.529 (5)
O4—C51.236 (5)C9—H9A0.9900
O5—C61.273 (4)C9—H9B0.9900
O6—C61.242 (4)C9—C101.511 (5)
O7—C101.251 (4)C11—H110.9500
O8—C101.280 (4)C11—C121.394 (6)
O9—C161.210 (5)C12—H120.9500
N1—C111.340 (5)C12—C131.383 (6)
N1—C151.334 (5)C13—H130.9500
N2—H20.8800C13—C141.396 (5)
N2—C141.398 (5)C14—C151.394 (5)
N2—C161.378 (5)C15—H150.9500
N3—H30.8800C17—H170.9500
N3—C161.376 (5)C17—C181.392 (5)
N3—C181.424 (5)C18—C191.378 (6)
N4—C171.344 (5)C19—H190.9500
N4—C211.336 (5)C19—C201.392 (6)
C1—C21.513 (5)C20—H200.9500
C2—H2A0.9900C20—C211.384 (6)
C2—H2B0.9900C21—H210.9500
O1—Cu1—Cu289.12 (8)C3—C4—H4B108.3
O1—Cu1—O3i91.61 (12)H4A—C4—H4B107.4
O1—Cu1—O6ii87.72 (11)C5—C4—C3115.7 (3)
O1—Cu1—O7171.10 (11)C5—C4—H4A108.3
O1—Cu1—N1100.51 (11)C5—C4—H4B108.3
O3i—Cu1—Cu284.86 (8)O3—C5—C4118.4 (3)
O3i—Cu1—N199.46 (12)O4—C5—O3125.3 (4)
O6ii—Cu1—Cu280.26 (8)O4—C5—C4116.3 (3)
O6ii—Cu1—O3i165.11 (11)O5—C6—C7116.2 (3)
O6ii—Cu1—N195.28 (12)O6—C6—O5125.8 (4)
O7—Cu1—Cu282.03 (7)O6—C6—C7118.0 (3)
O7—Cu1—O3i88.61 (11)C6—C7—H7A108.4
O7—Cu1—O6ii89.78 (11)C6—C7—H7B108.4
O7—Cu1—N188.22 (11)C6—C7—C8115.7 (3)
N1—Cu1—Cu2169.27 (9)H7A—C7—H7B107.4
O2—Cu2—Cu178.96 (8)C8—C7—H7A108.4
O2—Cu2—O8164.87 (11)C8—C7—H7B108.4
O2—Cu2—N4iii93.03 (11)C7—C8—H8A109.3
O4i—Cu2—Cu182.61 (8)C7—C8—H8B109.3
O4i—Cu2—O292.11 (11)C7—C8—C9111.5 (3)
O4i—Cu2—O886.16 (11)H8A—C8—H8B108.0
O4i—Cu2—N4iii93.08 (11)C9—C8—H8A109.3
O5ii—Cu2—Cu187.76 (8)C9—C8—H8B109.3
O5ii—Cu2—O289.12 (11)C8—C9—H9A109.1
O5ii—Cu2—O4i169.86 (11)C8—C9—H9B109.1
O5ii—Cu2—O890.03 (11)H9A—C9—H9B107.9
O5ii—Cu2—N4iii96.90 (11)C10—C9—C8112.3 (3)
O8—Cu2—Cu185.91 (8)C10—C9—H9A109.1
O8—Cu2—N4iii102.07 (11)C10—C9—H9B109.1
N4iii—Cu2—Cu1170.71 (8)O7—C10—O8124.2 (3)
C1—O1—Cu1117.5 (2)O7—C10—C9117.9 (3)
C1—O2—Cu2128.3 (2)O8—C10—C9117.9 (3)
C5—O3—Cu1iv120.4 (2)N1—C11—H11119.4
C5—O4—Cu2iv126.1 (3)N1—C11—C12121.2 (4)
C6—O5—Cu2v119.3 (2)C12—C11—H11119.4
C6—O6—Cu1v126.8 (3)C11—C12—H12119.7
C10—O7—Cu1127.1 (2)C13—C12—C11120.5 (4)
C10—O8—Cu2120.3 (2)C13—C12—H12119.7
C11—N1—Cu1121.2 (3)C12—C13—H13121.1
C15—N1—Cu1119.8 (3)C12—C13—C14117.8 (4)
C15—N1—C11118.9 (3)C14—C13—H13121.1
C14—N2—H2117.3C13—C14—N2124.3 (4)
C16—N2—H2117.3C15—C14—N2117.2 (3)
C16—N2—C14125.3 (3)C15—C14—C13118.5 (4)
C16—N3—H3118.3N1—C15—C14123.1 (4)
C16—N3—C18123.4 (3)N1—C15—H15118.5
C18—N3—H3118.3C14—C15—H15118.5
C17—N4—Cu2vi115.5 (3)O9—C16—N2122.8 (4)
C21—N4—Cu2vi125.3 (3)O9—C16—N3124.2 (4)
C21—N4—C17118.5 (3)N3—C16—N2113.0 (3)
O1—C1—C2118.5 (3)N4—C17—H17118.8
O2—C1—O1124.9 (4)N4—C17—C18122.3 (4)
O2—C1—C2116.7 (3)C18—C17—H17118.8
C1—C2—H2A108.8C17—C18—N3120.3 (4)
C1—C2—H2B108.8C19—C18—N3120.8 (4)
C1—C2—C3113.6 (3)C19—C18—C17118.9 (4)
H2A—C2—H2B107.7C18—C19—H19120.7
C3—C2—H2A108.8C18—C19—C20118.7 (4)
C3—C2—H2B108.8C20—C19—H19120.7
C2—C3—H3A109.4C19—C20—H20120.4
C2—C3—H3B109.4C21—C20—C19119.1 (4)
H3A—C3—H3B108.0C21—C20—H20120.4
C4—C3—C2111.2 (3)N4—C21—C20122.4 (4)
C4—C3—H3A109.4N4—C21—H21118.8
C4—C3—H3B109.4C20—C21—H21118.8
C3—C4—H4A108.3
Cu1—O1—C1—O29.7 (5)N4—C17—C18—C190.9 (6)
Cu1—O1—C1—C2170.2 (2)C1—C2—C3—C459.9 (5)
Cu1iv—O3—C5—O40.2 (5)C2—C3—C4—C5174.3 (3)
Cu1iv—O3—C5—C4177.6 (2)C3—C4—C5—O346.1 (5)
Cu1v—O6—C6—O50.0 (5)C3—C4—C5—O4135.9 (4)
Cu1v—O6—C6—C7178.2 (2)C6—C7—C8—C9171.9 (3)
Cu1—O7—C10—O85.9 (5)C7—C8—C9—C1062.8 (4)
Cu1—O7—C10—C9173.4 (2)C8—C9—C10—O733.2 (5)
Cu1—N1—C11—C12176.3 (3)C8—C9—C10—O8146.2 (3)
Cu1—N1—C15—C14176.4 (3)C11—N1—C15—C140.0 (6)
Cu2—O2—C1—O115.3 (5)C11—C12—C13—C140.8 (7)
Cu2—O2—C1—C2164.6 (2)C12—C13—C14—N2177.3 (4)
Cu2iv—O4—C5—O37.5 (5)C12—C13—C14—C150.8 (6)
Cu2iv—O4—C5—C4170.3 (2)C13—C14—C15—N10.4 (6)
Cu2v—O5—C6—O61.9 (5)C14—N2—C16—O96.0 (7)
Cu2v—O5—C6—C7176.4 (2)C14—N2—C16—N3174.2 (3)
Cu2—O8—C10—O78.7 (5)C15—N1—C11—C120.0 (6)
Cu2—O8—C10—C9170.6 (2)C16—N2—C14—C1320.8 (6)
Cu2vi—N4—C17—C18171.7 (3)C16—N2—C14—C15161.2 (4)
Cu2vi—N4—C21—C20172.1 (3)C16—N3—C18—C1727.5 (6)
O1—C1—C2—C3147.7 (3)C16—N3—C18—C19153.1 (4)
O2—C1—C2—C332.2 (5)C17—N4—C21—C201.4 (6)
O5—C6—C7—C832.1 (5)C17—C18—C19—C200.6 (6)
O6—C6—C7—C8149.5 (3)C18—N3—C16—O96.1 (6)
N1—C11—C12—C130.4 (7)C18—N3—C16—N2174.1 (3)
N2—C14—C15—N1177.8 (3)C18—C19—C20—C210.6 (7)
N3—C18—C19—C20180.0 (4)C19—C20—C21—N41.6 (7)
N4—C17—C18—N3179.7 (3)C21—N4—C17—C180.1 (6)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+3/2; (v) x+3/2, y1/2, z+3/2; (vi) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O8v0.881.932.767 (4)157
N3—H3···O8v0.882.353.087 (4)142
C13—H13···O90.952.312.837 (5)115
C17—H17···O4vii0.952.332.973 (5)124
C17—H17···O90.952.252.784 (5)115
Symmetry codes: (v) x+3/2, y1/2, z+3/2; (vii) x+1, y+1, z+1.
 

Funding information

Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.

References

First citationBlatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMartin, D. P., Supkowski, R. M. & LaDuca, R. L. (2008). Cryst. Growth Des. 8, 3518–3520.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalmer, D. (2020). CrystalMaker X. Crystal Maker Software, Begbroke, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUebler, J. W., Pochodylo, A. L. & LaDuca, R. L. (2013). Inorg. Chim. Acta, 405, 31–42.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146