metal-organic compounds
Poly[[μ-1,3-bis(pyridin-3-yl)urea]bis(μ4-glutarato)dicopper(II)]
aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu
The title compound, [Cu2(C5H6O4)2(C11H10N4O)]n, contains square-pyramidally coordinated CuII ions linked by anti-gauche conformation glutarate (glu) ligands into [Cu2(glu)2]n di-periodic coordination polymer layers with embedded [Cu2(OCO)4] paddlewheel clusters. In turn, the layer motifs are connected by 1,3-di(pyridin-3-yl)urea (3-dpu) linkers to form a [Cu2(glu)2(3-dpu)]n tri-periodic coordination Treating the [Cu2(OCO)4] clusters as 6-connected nodes reveals an underlying 41263 pcu topology according to TOPOSPRO software [Blatov et al. (2014). Cryst. Growth Des. 14, 3576–3586].
Keywords: crystal structure; copper; coordination polymer; tri-periodic.
CCDC reference: 2296561
Structure description
The conformationally flexible glutarate (glu) ligand has been used in our group previously to generate divalent copper coordination polymers, whose resulting topologies depend greatly on the nature of a dipyridyl-type co-ligand (Martin et al., 2008). Use of 1,4-bis(pyridin-4-ylmethyl)piperazine (4-bpmp) generated the tri-periodic coordination polymer {[Cu2(glu)2(4-bpmp)]·4H2O}n, which adopted a rare self-penetrated 446108 mab topology. Using the isomeric N-(pyridin-3-yl)nicotinamide (3-pna) and N-(pyridin-4-yl)nicotinamide (4-pna) ligands afforded the non-interpenetrated (4,4) grid di-periodic coordination polymer {[Cu(glu)(3-pna)(H2O)]·H2O}n and the twofold interpenetrated (6,3) grid di-periodic coordination polymer {[Cu(glu)(4-pna)(H2O)]·H2O}n, respectively (Uebler et al., 2013). The title compound was prepared during an effort to prepare divalent copper coordination polymers containing both glu and 1,3-di(pyridin-3-yl)urea (3-dpu) ligands.
The II atoms are both coordinated in an {O4N} square-pyramidal fashion (Fig. 1, Table 1) with a pyridyl N atom from a 3-dpu ligand in its Jahn–Teller-elongated axial positions. The basal planes of the coordination polyhedra around CuII are taken up by four O atoms belonging to different glu ligands. The bridging termini of the glu ligands form [Cu2(OCO)4] paddlewheel clusters with a Cu—Cu distance of 2.6512 (7) Å (Fig. 1). The crystallographically distinct glu ligands both adopt anti-gauche conformations [torsion angles = 59.9 (5) and 174.3 (3)°; 62.8 (4) and 171.9 (3)°.
of the title compound contains two divalent Cu atoms, two fully deprotonated glu ligands, and a 3-dpu ligand. The CuThe full span of the glu ligands connects the [Cu2(OCO)4] paddlewheel clusters into di-periodic [Cu2(glu)2]n coordination polymer layers that are oriented parallel to the ab crystallographic plane (Fig. 2). These layer motifs are pillared into a tri-periodic non-interpenetrated [Cu2(glu)2(3-dpu)]n coordination by 3-dpu ligands that span a Cu⋯Cu distance of 11.970 (1) Å (Fig. 3). Hydrogen-bonding interactions between the N—H moieties of the 3-dpu ligand and ligated carboxylate O atoms (O8) of the glu ligands stabilize the tri-periodic network (Table 2). Treating the [Cu2(OCO)4] paddlewheel clusters as 6-connected nodes reveals an underlying 41263 pcu topology (Fig. 4).
Synthesis and crystallization
Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), glutaric acid (gluH2) (50 mg, 0.37 mmol), 1,3-di(pyridin-3-yl)urea (3-dpu) (79 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled H2O in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 373 K for 24 h, and then cooled slowly to 273 K. Green crystals of the title complex were obtained in 58% yield.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 2296561
https://doi.org/10.1107/S2414314623008337/pk4043sup1.cif
contains datablocks I, 1R. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623008337/pk4043Isup2.hkl
Data collection: COSMO (Bruker, 2009); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: CrystalMaker (Palmer, 2020); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[Cu2(C5H6O4)2(C11H10N4O)] | F(000) = 1224 |
Mr = 601.50 | Dx = 1.721 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5042 (11) Å | Cell parameters from 5350 reflections |
b = 13.3095 (17) Å | θ = 2.5–25.3° |
c = 20.921 (3) Å | µ = 1.89 mm−1 |
β = 101.348 (1)° | T = 173 K |
V = 2321.7 (5) Å3 | Block, green |
Z = 4 | 0.22 × 0.13 × 0.10 mm |
Bruker APEXII CCD diffractometer | 4229 independent reflections |
Radiation source: sealed tube | 3163 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
Detector resolution: 8.36 pixels mm-1 | θmax = 25.3°, θmin = 1.8° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −15→16 |
Tmin = 0.669, Tmax = 0.745 | l = −24→25 |
18339 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.042 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0481P)2 + 1.6221P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
4229 reflections | Δρmax = 0.72 e Å−3 |
325 parameters | Δρmin = −0.60 e Å−3 |
0 restraints |
Experimental. Data was collected using a BRUKER CCD (charge-coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using ω scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software, which corrects for Lp. Scaling and absorption corrections were applied using SADABS multi-scan technique, supplied by George Sheldrick. The structure was solved by dual-space methods using the SHELXT program and refined by the least squares method on F2, SHELXL, incorporated in Olex2. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was refined by least-squares using version 2018/3 of SHELXL (Sheldrick, 2015b) incorporated in Olex2 (Dolomanov et al., 2009). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model, except for the hydrogen atom on the nitrogen atom which was found by difference-Fourier methods and refined isotropically. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.51833 (5) | 0.46750 (3) | 0.69093 (2) | 0.01968 (15) | |
Cu2 | 0.47185 (5) | 0.55687 (3) | 0.79894 (2) | 0.01879 (15) | |
O1 | 0.2886 (3) | 0.4836 (2) | 0.65382 (13) | 0.0266 (6) | |
O2 | 0.2499 (3) | 0.55198 (19) | 0.74755 (13) | 0.0248 (6) | |
O3 | 0.0222 (3) | 0.84023 (19) | 0.76407 (14) | 0.0290 (7) | |
O4 | 0.0402 (3) | 0.9183 (2) | 0.67157 (13) | 0.0282 (7) | |
O5 | 0.9976 (3) | 0.18497 (18) | 0.74221 (13) | 0.0266 (6) | |
O6 | 0.9526 (3) | 0.11028 (19) | 0.83279 (13) | 0.0264 (6) | |
O7 | 0.7420 (3) | 0.46407 (19) | 0.73954 (12) | 0.0223 (6) | |
O8 | 0.7091 (3) | 0.5446 (2) | 0.82984 (13) | 0.0266 (7) | |
O9 | 0.7057 (4) | 0.1263 (2) | 0.45026 (13) | 0.0437 (9) | |
N1 | 0.6018 (4) | 0.4047 (2) | 0.60804 (15) | 0.0235 (7) | |
N2 | 0.7042 (4) | 0.1563 (3) | 0.55713 (15) | 0.0290 (8) | |
H2 | 0.707005 | 0.127120 | 0.595097 | 0.035* | |
N3 | 0.7539 (4) | −0.0029 (2) | 0.52353 (15) | 0.0272 (8) | |
H3 | 0.752940 | −0.020425 | 0.564012 | 0.033* | |
N4 | 0.8952 (4) | −0.1190 (2) | 0.38504 (15) | 0.0213 (7) | |
C1 | 0.2035 (4) | 0.5284 (3) | 0.6882 (2) | 0.0222 (9) | |
C2 | 0.0334 (4) | 0.5567 (3) | 0.6570 (2) | 0.0245 (9) | |
H2A | −0.039149 | 0.501040 | 0.663455 | 0.029* | |
H2B | 0.026550 | 0.564775 | 0.609461 | 0.029* | |
C3 | −0.0253 (5) | 0.6543 (3) | 0.6844 (2) | 0.0267 (9) | |
H3A | −0.137370 | 0.667748 | 0.662406 | 0.032* | |
H3B | −0.023492 | 0.645728 | 0.731569 | 0.032* | |
C4 | 0.0800 (5) | 0.7435 (3) | 0.6744 (2) | 0.0298 (10) | |
H4A | 0.193184 | 0.725572 | 0.692056 | 0.036* | |
H4B | 0.069537 | 0.754582 | 0.626932 | 0.036* | |
C5 | 0.0429 (4) | 0.8420 (3) | 0.70553 (18) | 0.0198 (8) | |
C6 | 0.9644 (4) | 0.1855 (3) | 0.79894 (18) | 0.0200 (8) | |
C7 | 0.9325 (4) | 0.2872 (3) | 0.82592 (19) | 0.0237 (9) | |
H7A | 0.958344 | 0.283487 | 0.874114 | 0.028* | |
H7B | 0.816469 | 0.301817 | 0.812897 | 0.028* | |
C8 | 1.0251 (4) | 0.3746 (3) | 0.80450 (18) | 0.0211 (8) | |
H8A | 1.011660 | 0.374029 | 0.756416 | 0.025* | |
H8B | 1.140653 | 0.366472 | 0.823249 | 0.025* | |
C9 | 0.9671 (4) | 0.4753 (3) | 0.82633 (19) | 0.0204 (8) | |
H9A | 0.979623 | 0.475401 | 0.874385 | 0.024* | |
H9B | 1.034981 | 0.529804 | 0.814258 | 0.024* | |
C10 | 0.7939 (4) | 0.4961 (3) | 0.79597 (18) | 0.0183 (8) | |
C11 | 0.6422 (5) | 0.4641 (3) | 0.56210 (19) | 0.0286 (10) | |
H11 | 0.628070 | 0.534704 | 0.564579 | 0.034* | |
C12 | 0.7044 (5) | 0.4241 (3) | 0.5107 (2) | 0.0368 (11) | |
H12 | 0.732802 | 0.467621 | 0.478814 | 0.044* | |
C13 | 0.7252 (5) | 0.3215 (3) | 0.5058 (2) | 0.0328 (10) | |
H13 | 0.766286 | 0.293544 | 0.470630 | 0.039* | |
C14 | 0.6838 (5) | 0.2605 (3) | 0.55413 (18) | 0.0240 (9) | |
C15 | 0.6222 (4) | 0.3057 (3) | 0.60408 (18) | 0.0235 (9) | |
H15 | 0.593448 | 0.264071 | 0.636822 | 0.028* | |
C16 | 0.7203 (5) | 0.0954 (3) | 0.50550 (19) | 0.0274 (9) | |
C17 | 0.8596 (4) | −0.0510 (3) | 0.42751 (18) | 0.0224 (9) | |
H17 | 0.882606 | 0.017838 | 0.421486 | 0.027* | |
C18 | 0.7902 (5) | −0.0778 (3) | 0.48003 (19) | 0.0239 (9) | |
C19 | 0.7588 (5) | −0.1777 (3) | 0.4894 (2) | 0.0353 (11) | |
H19 | 0.712509 | −0.198164 | 0.525082 | 0.042* | |
C20 | 0.7964 (6) | −0.2481 (3) | 0.4455 (2) | 0.0405 (12) | |
H20 | 0.776981 | −0.317547 | 0.451056 | 0.049* | |
C21 | 0.8624 (5) | −0.2156 (3) | 0.3938 (2) | 0.0323 (10) | |
H21 | 0.885280 | −0.263684 | 0.363304 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0195 (3) | 0.0170 (3) | 0.0230 (3) | 0.00133 (19) | 0.0054 (2) | −0.00298 (19) |
Cu2 | 0.0198 (3) | 0.0156 (3) | 0.0222 (3) | 0.00055 (19) | 0.0071 (2) | 0.00043 (19) |
O1 | 0.0186 (14) | 0.0299 (16) | 0.0298 (16) | 0.0036 (12) | 0.0014 (12) | −0.0097 (13) |
O2 | 0.0209 (14) | 0.0278 (16) | 0.0263 (16) | 0.0039 (12) | 0.0061 (12) | 0.0004 (12) |
O3 | 0.0356 (17) | 0.0153 (15) | 0.0383 (18) | 0.0027 (12) | 0.0126 (14) | 0.0039 (12) |
O4 | 0.0403 (17) | 0.0177 (15) | 0.0288 (16) | 0.0006 (13) | 0.0123 (13) | −0.0039 (13) |
O5 | 0.0406 (17) | 0.0150 (14) | 0.0268 (16) | 0.0012 (12) | 0.0126 (13) | −0.0037 (12) |
O6 | 0.0357 (16) | 0.0146 (15) | 0.0289 (16) | −0.0016 (12) | 0.0068 (13) | −0.0029 (12) |
O7 | 0.0187 (14) | 0.0276 (16) | 0.0199 (14) | 0.0035 (11) | 0.0023 (11) | −0.0037 (12) |
O8 | 0.0194 (14) | 0.0308 (17) | 0.0295 (16) | 0.0049 (12) | 0.0042 (12) | −0.0090 (12) |
O9 | 0.080 (2) | 0.0320 (18) | 0.0171 (16) | 0.0251 (17) | 0.0046 (16) | 0.0016 (13) |
N1 | 0.0268 (18) | 0.0211 (18) | 0.0239 (18) | 0.0048 (14) | 0.0079 (15) | −0.0017 (14) |
N2 | 0.044 (2) | 0.027 (2) | 0.0167 (17) | 0.0117 (16) | 0.0086 (16) | −0.0003 (14) |
N3 | 0.042 (2) | 0.0256 (19) | 0.0178 (17) | 0.0054 (16) | 0.0148 (15) | 0.0005 (15) |
N4 | 0.0242 (17) | 0.0174 (17) | 0.0237 (17) | 0.0003 (13) | 0.0078 (14) | −0.0056 (14) |
C1 | 0.022 (2) | 0.013 (2) | 0.033 (2) | −0.0033 (16) | 0.0097 (18) | 0.0042 (17) |
C2 | 0.022 (2) | 0.021 (2) | 0.029 (2) | 0.0002 (16) | 0.0010 (17) | −0.0038 (17) |
C3 | 0.022 (2) | 0.024 (2) | 0.034 (2) | 0.0012 (17) | 0.0072 (18) | −0.0019 (18) |
C4 | 0.031 (2) | 0.021 (2) | 0.040 (3) | 0.0023 (18) | 0.014 (2) | −0.0032 (19) |
C5 | 0.0117 (18) | 0.026 (2) | 0.022 (2) | −0.0026 (16) | 0.0054 (16) | −0.0031 (17) |
C6 | 0.0151 (19) | 0.022 (2) | 0.023 (2) | −0.0032 (16) | 0.0029 (16) | −0.0012 (17) |
C7 | 0.026 (2) | 0.019 (2) | 0.027 (2) | 0.0011 (17) | 0.0095 (18) | −0.0001 (17) |
C8 | 0.022 (2) | 0.018 (2) | 0.023 (2) | 0.0011 (16) | 0.0047 (16) | 0.0013 (16) |
C9 | 0.019 (2) | 0.017 (2) | 0.025 (2) | −0.0013 (15) | 0.0029 (16) | −0.0017 (16) |
C10 | 0.023 (2) | 0.0101 (18) | 0.024 (2) | −0.0015 (15) | 0.0094 (17) | 0.0038 (16) |
C11 | 0.035 (2) | 0.024 (2) | 0.026 (2) | 0.0072 (18) | 0.0043 (19) | 0.0038 (18) |
C12 | 0.052 (3) | 0.034 (3) | 0.029 (2) | 0.006 (2) | 0.018 (2) | 0.006 (2) |
C13 | 0.047 (3) | 0.028 (2) | 0.026 (2) | 0.006 (2) | 0.014 (2) | 0.0016 (19) |
C14 | 0.029 (2) | 0.026 (2) | 0.016 (2) | 0.0046 (18) | 0.0012 (17) | −0.0011 (17) |
C15 | 0.026 (2) | 0.027 (2) | 0.019 (2) | 0.0012 (17) | 0.0062 (17) | 0.0015 (17) |
C16 | 0.029 (2) | 0.027 (2) | 0.025 (2) | 0.0079 (18) | 0.0035 (18) | −0.0015 (19) |
C17 | 0.026 (2) | 0.021 (2) | 0.020 (2) | 0.0034 (16) | 0.0038 (17) | 0.0002 (16) |
C18 | 0.026 (2) | 0.022 (2) | 0.023 (2) | 0.0048 (17) | 0.0069 (17) | −0.0015 (17) |
C19 | 0.053 (3) | 0.026 (2) | 0.035 (3) | −0.002 (2) | 0.027 (2) | −0.0012 (19) |
C20 | 0.068 (3) | 0.019 (2) | 0.042 (3) | −0.002 (2) | 0.029 (3) | 0.000 (2) |
C21 | 0.047 (3) | 0.025 (2) | 0.030 (2) | 0.004 (2) | 0.019 (2) | −0.0010 (19) |
Cu1—Cu2 | 2.6512 (7) | C2—C3 | 1.542 (5) |
Cu1—O1 | 1.967 (3) | C3—H3A | 0.9900 |
Cu1—O3i | 2.000 (3) | C3—H3B | 0.9900 |
Cu1—O6ii | 1.992 (3) | C3—C4 | 1.527 (5) |
Cu1—O7 | 1.973 (2) | C4—H4A | 0.9900 |
Cu1—N1 | 2.167 (3) | C4—H4B | 0.9900 |
Cu2—O2 | 1.981 (3) | C4—C5 | 1.525 (5) |
Cu2—O4i | 1.954 (3) | C6—C7 | 1.512 (5) |
Cu2—O5ii | 1.950 (3) | C7—H7A | 0.9900 |
Cu2—O8 | 2.001 (3) | C7—H7B | 0.9900 |
Cu2—N4iii | 2.194 (3) | C7—C8 | 1.520 (5) |
O1—C1 | 1.266 (4) | C8—H8A | 0.9900 |
O2—C1 | 1.266 (5) | C8—H8B | 0.9900 |
O3—C5 | 1.271 (4) | C8—C9 | 1.529 (5) |
O4—C5 | 1.236 (5) | C9—H9A | 0.9900 |
O5—C6 | 1.273 (4) | C9—H9B | 0.9900 |
O6—C6 | 1.242 (4) | C9—C10 | 1.511 (5) |
O7—C10 | 1.251 (4) | C11—H11 | 0.9500 |
O8—C10 | 1.280 (4) | C11—C12 | 1.394 (6) |
O9—C16 | 1.210 (5) | C12—H12 | 0.9500 |
N1—C11 | 1.340 (5) | C12—C13 | 1.383 (6) |
N1—C15 | 1.334 (5) | C13—H13 | 0.9500 |
N2—H2 | 0.8800 | C13—C14 | 1.396 (5) |
N2—C14 | 1.398 (5) | C14—C15 | 1.394 (5) |
N2—C16 | 1.378 (5) | C15—H15 | 0.9500 |
N3—H3 | 0.8800 | C17—H17 | 0.9500 |
N3—C16 | 1.376 (5) | C17—C18 | 1.392 (5) |
N3—C18 | 1.424 (5) | C18—C19 | 1.378 (6) |
N4—C17 | 1.344 (5) | C19—H19 | 0.9500 |
N4—C21 | 1.336 (5) | C19—C20 | 1.392 (6) |
C1—C2 | 1.513 (5) | C20—H20 | 0.9500 |
C2—H2A | 0.9900 | C20—C21 | 1.384 (6) |
C2—H2B | 0.9900 | C21—H21 | 0.9500 |
O1—Cu1—Cu2 | 89.12 (8) | C3—C4—H4B | 108.3 |
O1—Cu1—O3i | 91.61 (12) | H4A—C4—H4B | 107.4 |
O1—Cu1—O6ii | 87.72 (11) | C5—C4—C3 | 115.7 (3) |
O1—Cu1—O7 | 171.10 (11) | C5—C4—H4A | 108.3 |
O1—Cu1—N1 | 100.51 (11) | C5—C4—H4B | 108.3 |
O3i—Cu1—Cu2 | 84.86 (8) | O3—C5—C4 | 118.4 (3) |
O3i—Cu1—N1 | 99.46 (12) | O4—C5—O3 | 125.3 (4) |
O6ii—Cu1—Cu2 | 80.26 (8) | O4—C5—C4 | 116.3 (3) |
O6ii—Cu1—O3i | 165.11 (11) | O5—C6—C7 | 116.2 (3) |
O6ii—Cu1—N1 | 95.28 (12) | O6—C6—O5 | 125.8 (4) |
O7—Cu1—Cu2 | 82.03 (7) | O6—C6—C7 | 118.0 (3) |
O7—Cu1—O3i | 88.61 (11) | C6—C7—H7A | 108.4 |
O7—Cu1—O6ii | 89.78 (11) | C6—C7—H7B | 108.4 |
O7—Cu1—N1 | 88.22 (11) | C6—C7—C8 | 115.7 (3) |
N1—Cu1—Cu2 | 169.27 (9) | H7A—C7—H7B | 107.4 |
O2—Cu2—Cu1 | 78.96 (8) | C8—C7—H7A | 108.4 |
O2—Cu2—O8 | 164.87 (11) | C8—C7—H7B | 108.4 |
O2—Cu2—N4iii | 93.03 (11) | C7—C8—H8A | 109.3 |
O4i—Cu2—Cu1 | 82.61 (8) | C7—C8—H8B | 109.3 |
O4i—Cu2—O2 | 92.11 (11) | C7—C8—C9 | 111.5 (3) |
O4i—Cu2—O8 | 86.16 (11) | H8A—C8—H8B | 108.0 |
O4i—Cu2—N4iii | 93.08 (11) | C9—C8—H8A | 109.3 |
O5ii—Cu2—Cu1 | 87.76 (8) | C9—C8—H8B | 109.3 |
O5ii—Cu2—O2 | 89.12 (11) | C8—C9—H9A | 109.1 |
O5ii—Cu2—O4i | 169.86 (11) | C8—C9—H9B | 109.1 |
O5ii—Cu2—O8 | 90.03 (11) | H9A—C9—H9B | 107.9 |
O5ii—Cu2—N4iii | 96.90 (11) | C10—C9—C8 | 112.3 (3) |
O8—Cu2—Cu1 | 85.91 (8) | C10—C9—H9A | 109.1 |
O8—Cu2—N4iii | 102.07 (11) | C10—C9—H9B | 109.1 |
N4iii—Cu2—Cu1 | 170.71 (8) | O7—C10—O8 | 124.2 (3) |
C1—O1—Cu1 | 117.5 (2) | O7—C10—C9 | 117.9 (3) |
C1—O2—Cu2 | 128.3 (2) | O8—C10—C9 | 117.9 (3) |
C5—O3—Cu1iv | 120.4 (2) | N1—C11—H11 | 119.4 |
C5—O4—Cu2iv | 126.1 (3) | N1—C11—C12 | 121.2 (4) |
C6—O5—Cu2v | 119.3 (2) | C12—C11—H11 | 119.4 |
C6—O6—Cu1v | 126.8 (3) | C11—C12—H12 | 119.7 |
C10—O7—Cu1 | 127.1 (2) | C13—C12—C11 | 120.5 (4) |
C10—O8—Cu2 | 120.3 (2) | C13—C12—H12 | 119.7 |
C11—N1—Cu1 | 121.2 (3) | C12—C13—H13 | 121.1 |
C15—N1—Cu1 | 119.8 (3) | C12—C13—C14 | 117.8 (4) |
C15—N1—C11 | 118.9 (3) | C14—C13—H13 | 121.1 |
C14—N2—H2 | 117.3 | C13—C14—N2 | 124.3 (4) |
C16—N2—H2 | 117.3 | C15—C14—N2 | 117.2 (3) |
C16—N2—C14 | 125.3 (3) | C15—C14—C13 | 118.5 (4) |
C16—N3—H3 | 118.3 | N1—C15—C14 | 123.1 (4) |
C16—N3—C18 | 123.4 (3) | N1—C15—H15 | 118.5 |
C18—N3—H3 | 118.3 | C14—C15—H15 | 118.5 |
C17—N4—Cu2vi | 115.5 (3) | O9—C16—N2 | 122.8 (4) |
C21—N4—Cu2vi | 125.3 (3) | O9—C16—N3 | 124.2 (4) |
C21—N4—C17 | 118.5 (3) | N3—C16—N2 | 113.0 (3) |
O1—C1—C2 | 118.5 (3) | N4—C17—H17 | 118.8 |
O2—C1—O1 | 124.9 (4) | N4—C17—C18 | 122.3 (4) |
O2—C1—C2 | 116.7 (3) | C18—C17—H17 | 118.8 |
C1—C2—H2A | 108.8 | C17—C18—N3 | 120.3 (4) |
C1—C2—H2B | 108.8 | C19—C18—N3 | 120.8 (4) |
C1—C2—C3 | 113.6 (3) | C19—C18—C17 | 118.9 (4) |
H2A—C2—H2B | 107.7 | C18—C19—H19 | 120.7 |
C3—C2—H2A | 108.8 | C18—C19—C20 | 118.7 (4) |
C3—C2—H2B | 108.8 | C20—C19—H19 | 120.7 |
C2—C3—H3A | 109.4 | C19—C20—H20 | 120.4 |
C2—C3—H3B | 109.4 | C21—C20—C19 | 119.1 (4) |
H3A—C3—H3B | 108.0 | C21—C20—H20 | 120.4 |
C4—C3—C2 | 111.2 (3) | N4—C21—C20 | 122.4 (4) |
C4—C3—H3A | 109.4 | N4—C21—H21 | 118.8 |
C4—C3—H3B | 109.4 | C20—C21—H21 | 118.8 |
C3—C4—H4A | 108.3 | ||
Cu1—O1—C1—O2 | −9.7 (5) | N4—C17—C18—C19 | 0.9 (6) |
Cu1—O1—C1—C2 | 170.2 (2) | C1—C2—C3—C4 | 59.9 (5) |
Cu1iv—O3—C5—O4 | −0.2 (5) | C2—C3—C4—C5 | −174.3 (3) |
Cu1iv—O3—C5—C4 | 177.6 (2) | C3—C4—C5—O3 | 46.1 (5) |
Cu1v—O6—C6—O5 | 0.0 (5) | C3—C4—C5—O4 | −135.9 (4) |
Cu1v—O6—C6—C7 | 178.2 (2) | C6—C7—C8—C9 | 171.9 (3) |
Cu1—O7—C10—O8 | −5.9 (5) | C7—C8—C9—C10 | −62.8 (4) |
Cu1—O7—C10—C9 | 173.4 (2) | C8—C9—C10—O7 | −33.2 (5) |
Cu1—N1—C11—C12 | 176.3 (3) | C8—C9—C10—O8 | 146.2 (3) |
Cu1—N1—C15—C14 | −176.4 (3) | C11—N1—C15—C14 | 0.0 (6) |
Cu2—O2—C1—O1 | 15.3 (5) | C11—C12—C13—C14 | −0.8 (7) |
Cu2—O2—C1—C2 | −164.6 (2) | C12—C13—C14—N2 | −177.3 (4) |
Cu2iv—O4—C5—O3 | 7.5 (5) | C12—C13—C14—C15 | 0.8 (6) |
Cu2iv—O4—C5—C4 | −170.3 (2) | C13—C14—C15—N1 | −0.4 (6) |
Cu2v—O5—C6—O6 | 1.9 (5) | C14—N2—C16—O9 | −6.0 (7) |
Cu2v—O5—C6—C7 | −176.4 (2) | C14—N2—C16—N3 | 174.2 (3) |
Cu2—O8—C10—O7 | 8.7 (5) | C15—N1—C11—C12 | 0.0 (6) |
Cu2—O8—C10—C9 | −170.6 (2) | C16—N2—C14—C13 | −20.8 (6) |
Cu2vi—N4—C17—C18 | 171.7 (3) | C16—N2—C14—C15 | 161.2 (4) |
Cu2vi—N4—C21—C20 | −172.1 (3) | C16—N3—C18—C17 | 27.5 (6) |
O1—C1—C2—C3 | −147.7 (3) | C16—N3—C18—C19 | −153.1 (4) |
O2—C1—C2—C3 | 32.2 (5) | C17—N4—C21—C20 | −1.4 (6) |
O5—C6—C7—C8 | −32.1 (5) | C17—C18—C19—C20 | −0.6 (6) |
O6—C6—C7—C8 | 149.5 (3) | C18—N3—C16—O9 | 6.1 (6) |
N1—C11—C12—C13 | 0.4 (7) | C18—N3—C16—N2 | −174.1 (3) |
N2—C14—C15—N1 | 177.8 (3) | C18—C19—C20—C21 | −0.6 (7) |
N3—C18—C19—C20 | 180.0 (4) | C19—C20—C21—N4 | 1.6 (7) |
N4—C17—C18—N3 | −179.7 (3) | C21—N4—C17—C18 | 0.1 (6) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x+1/2, y+1/2, −z+3/2; (v) −x+3/2, y−1/2, −z+3/2; (vi) x+1/2, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O8v | 0.88 | 1.93 | 2.767 (4) | 157 |
N3—H3···O8v | 0.88 | 2.35 | 3.087 (4) | 142 |
C13—H13···O9 | 0.95 | 2.31 | 2.837 (5) | 115 |
C17—H17···O4vii | 0.95 | 2.33 | 2.973 (5) | 124 |
C17—H17···O9 | 0.95 | 2.25 | 2.784 (5) | 115 |
Symmetry codes: (v) −x+3/2, y−1/2, −z+3/2; (vii) −x+1, −y+1, −z+1. |
Funding information
Funding for this work was provided by the Lyman Briggs College of Science at Michigan State University.
References
Blatov, V. A., Shevchenko, A. P. & Proserpio, D. M. (2014). Cryst. Growth Des. 14, 3576–3586. Web of Science CrossRef CAS Google Scholar
Bruker (2009). COSMO, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Martin, D. P., Supkowski, R. M. & LaDuca, R. L. (2008). Cryst. Growth Des. 8, 3518–3520. Web of Science CSD CrossRef CAS Google Scholar
Palmer, D. (2020). CrystalMaker X. Crystal Maker Software, Begbroke, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Uebler, J. W., Pochodylo, A. L. & LaDuca, R. L. (2013). Inorg. Chim. Acta, 405, 31–42. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.