organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Nitro­benzo­nitrile

crossmark logo

aJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
*Correspondence e-mail: miha.virant@ijs.si

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 13 September 2023; accepted 18 September 2023; online 22 September 2023)

The crystal structure of 3-nitrobenzonitrile, C7H4N2O2, was elucidated by low-temperature single-crystal X-ray diffraction. The compound crystallizes in the Sohncke space group P21 and features two mol­ecules in the unit cell. Aromatic ππ stacking leads to stacks of mol­ecules in the [100] direction. The absolute structure was established from anomalous dispersion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

3-Nitro­benzo­nitrile crystallizes in the monoclinic Sohncke space group P21 with one mol­ecule in the asymmetric unit (Fig. 1[link]). The nitro group is not coplanar with the benzene ring, but slightly tilted. The corresponding angle between the benzene ring and NO2 plane normals is 11.22 (6)° with atom O1 located 0.163 (3) Å below and atom O2 0.253 (3) Å above the plane of the benzene ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids. Hydrogen atoms are depicted as spheres of arbitrary radius.

This tilt of the NO2 group is presumably the result of the crystal packing, which locks the orientation of the NO2 group. The corresponding non-coplanar orientation of the NO2 group induces the asymmetry of the mol­ecule and, in turn, the chirality of the crystal. In solution, where the barriers for the rotation of the nitro group are usually low, for instance, 19 kJ mol−1 in nitrobenzene determined by gas-phase electron diffraction (Borisenko & Hargittai, 1996[Borisenko, K. B. & Hargittai, I. (1996). J. Mol. Struct. 382, 171-176.]), the rotation is not hindered, and the mol­ecule can readily adopt different conformations.

The C—C and C—H bonds of the benzene ring span the ranges 1.3851 (19)–1.397 (2) Å and 0.91 (3)–0.96 (2) Å, respectively. The substituents are bonded to the benzene ring by a C—N bond of 1.4697 (19) Å in the case of the nitro group and a C—C bond of 1.447 (2) Å in the case of the nitrile group. The observed N—O distances of the nitro group are essentially equal [1.2258 (17) and 1.2262 (18) Å]. The length of the C≡N triple bond in the nitrile group is 1.141 (2) Å. In the crystal (Fig. 2[link]), the mol­ecules are π-stacked along the shortest crystallographic axis, a, with an inter­planar distance of 3.3700 (9) Å.

[Figure 2]
Figure 2
Packing diagrams and the unit cell of the title compound viewed along [100] (top), [010] (middle) and [001] (bottom).

Of the three positional isomers of nitro­benzo­nitrile, only the crystal structure of 4-nitro­benzo­nitrile has been previously reported (Cambridge Structural Database refcode PNBZNT; Higashi & Osaki, 1977[Higashi, T. & Osaki, K. (1977). Acta Cryst. B33, 2337-2339.]). It also crystallizes in the Sohncke space group P21 and the tilt angle of the nitro group out of the benzene ring plane (10.3°) is similar to the angle reported herein for the meta isomer [11.22 (6)°].

Synthesis and crystallization

The title compound was obtained by decomposition of the corresponding diazo­nium salt in ethanol. The diazo­nium salt was synthesized by the previously published procedure (Mihelač et al., 2021[Mihelač, M., Siljanovska, A. & Košmrlj, J. (2021). Dyes Pigments, 184, 108726.]). p-Toluene­sulfonic acid monohydrate (570.7 mg; 3 mmol) was dissolved in 15 mL of ethyl acetate and 2-amino-5-nitro­benzo­nitrile (489.3 mg; 3 mmol) was added to the solution. The dropwise addition of tert-butyl nitrite (1068 µL, 9 mmol) resulted in the formation of a yellow sol­ution, which was stirred for 5 minutes at room temperature. The yellow precipitate of 2-cyano-4-nitro­benzene­diazo­nium tosyl­ate was obtained by filtration and washed thoroughly with ethyl acetate. This solid was then dissolved in 10 mL of EtOH and stirred for 3 days at room temperature. 3-Nitro­benzo­nitrile was isolated by filtration as an off-white solid. Single crystals were grown from a concentrated ethanol solution at −20 °C. A crystal suitable for single-crystal X-ray diffraction analysis was selected under a polarizing microscope and mounted on a MiTeGen Dual Thickness MicroLoop LD using Baysilone-Paste (Bayer-Silicone, mittelviskos).

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 1[link]. The positions of the hydrogen atoms were freely refined, including their isotropic displacement parameter U (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]). The absolute structure was established based on the anomalous dispersion effects [Flack x = 0.02 (5); Hooft y = 0.05 (3); Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]); Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.])].

Table 1
Experimental details

Crystal data
Chemical formula C7H4N2O2
Mr 148.12
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 3.73339 (4), 6.97307 (5), 12.87327 (9)
β (°) 97.1579 (8)
V3) 332.52 (1)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.95
Crystal size (mm) 0.28 × 0.06 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.])
Tmin, Tmax 0.565, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10190, 1360, 1353
Rint 0.025
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 1.09
No. of reflections 1360
No. of parameters 116
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.17, −0.17
Absolute structure Flack x determined using 611 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.02 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]), OLEX2.solve (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.42.92a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.92a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.92a (Rigaku OD, 2023); program(s) used to solve structure: olex2.solve (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2019/3 (Sheldrick, 2015); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

3-Nitrobenzonitrile top
Crystal data top
C7H4N2O2F(000) = 152
Mr = 148.12Dx = 1.479 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 3.73339 (4) ÅCell parameters from 9014 reflections
b = 6.97307 (5) Åθ = 3.5–75.7°
c = 12.87327 (9) ŵ = 0.95 mm1
β = 97.1579 (8)°T = 100 K
V = 332.52 (1) Å3Needle, colourless
Z = 20.28 × 0.06 × 0.04 mm
Data collection top
XtaLAB Synergy-S, Dualflex, Eiger2 R CdTe 1M
diffractometer
1360 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1353 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 13.3333 pixels mm-1θmax = 75.9°, θmin = 3.5°
ω scansh = 44
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 88
Tmin = 0.565, Tmax = 1.000l = 1616
10190 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.0377P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.17 e Å3
1360 reflectionsΔρmin = 0.17 e Å3
116 parametersAbsolute structure: Flack x determined using 611 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.02 (5)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2952 (4)0.11413 (19)0.94632 (9)0.0316 (3)
O20.5449 (3)0.03136 (17)0.81028 (9)0.0294 (3)
N10.2525 (4)0.5665 (2)0.45848 (11)0.0323 (4)
N20.3724 (3)0.14375 (19)0.85792 (10)0.0199 (3)
C10.1823 (4)0.5195 (2)0.65436 (11)0.0192 (3)
C20.2895 (4)0.3452 (2)0.70086 (12)0.0179 (3)
C30.2551 (4)0.3250 (2)0.80620 (11)0.0171 (3)
C40.1192 (4)0.4678 (2)0.86529 (12)0.0195 (3)
C50.0164 (4)0.6403 (2)0.81697 (12)0.0215 (3)
C60.0461 (4)0.6674 (2)0.71128 (13)0.0218 (3)
C70.2185 (4)0.5471 (3)0.54475 (12)0.0236 (3)
H20.387 (6)0.249 (4)0.6661 (17)0.031 (6)*
H40.108 (5)0.445 (3)0.9361 (16)0.018 (5)*
H60.009 (5)0.790 (4)0.6782 (15)0.024 (5)*
H50.071 (6)0.738 (4)0.8528 (17)0.028 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0389 (7)0.0334 (7)0.0230 (5)0.0024 (5)0.0053 (5)0.0092 (5)
O20.0321 (6)0.0201 (6)0.0368 (6)0.0076 (5)0.0073 (5)0.0018 (5)
N10.0338 (8)0.0387 (9)0.0252 (6)0.0019 (6)0.0064 (6)0.0066 (6)
N20.0181 (6)0.0192 (6)0.0220 (6)0.0006 (5)0.0014 (4)0.0019 (5)
C10.0167 (6)0.0217 (8)0.0192 (6)0.0029 (5)0.0016 (5)0.0008 (6)
C20.0151 (7)0.0184 (7)0.0206 (6)0.0003 (5)0.0034 (5)0.0018 (6)
C30.0148 (6)0.0165 (7)0.0199 (6)0.0017 (5)0.0018 (5)0.0006 (5)
C40.0165 (7)0.0231 (7)0.0190 (7)0.0010 (6)0.0021 (5)0.0023 (6)
C50.0183 (7)0.0202 (7)0.0258 (7)0.0016 (6)0.0020 (5)0.0070 (6)
C60.0181 (7)0.0190 (8)0.0275 (7)0.0005 (6)0.0004 (5)0.0013 (6)
C70.0214 (7)0.0246 (7)0.0247 (7)0.0022 (6)0.0027 (6)0.0029 (6)
Geometric parameters (Å, º) top
O1—N21.2258 (17)C2—H20.91 (3)
O2—N21.2262 (18)C3—C41.387 (2)
N1—C71.141 (2)C4—C51.386 (2)
N2—C31.4697 (19)C4—H40.93 (2)
C1—C21.392 (2)C5—C61.392 (2)
C1—C61.397 (2)C5—H50.91 (2)
C1—C71.447 (2)C6—H60.96 (2)
C2—C31.3851 (19)
O1—N2—O2123.75 (13)C4—C3—N2118.53 (12)
O1—N2—C3118.31 (12)C3—C4—H4118.7 (12)
O2—N2—C3117.93 (12)C5—C4—C3118.46 (13)
C2—C1—C6121.55 (14)C5—C4—H4122.8 (12)
C2—C1—C7118.61 (14)C4—C5—C6120.34 (14)
C6—C1—C7119.84 (14)C4—C5—H5121.5 (14)
C1—C2—H2123.1 (14)C6—C5—H5118.1 (14)
C3—C2—C1116.93 (13)C1—C6—H6119.6 (12)
C3—C2—H2119.9 (14)C5—C6—C1119.42 (14)
C2—C3—N2118.16 (12)C5—C6—H6120.9 (12)
C2—C3—C4123.30 (13)N1—C7—C1178.69 (17)
O1—N2—C3—C2169.59 (13)C2—C1—C6—C50.0 (2)
O1—N2—C3—C411.0 (2)C2—C3—C4—C50.8 (2)
O2—N2—C3—C211.01 (19)C3—C4—C5—C60.7 (2)
O2—N2—C3—C4168.36 (13)C4—C5—C6—C10.3 (2)
N2—C3—C4—C5178.55 (12)C6—C1—C2—C30.0 (2)
C1—C2—C3—N2178.92 (13)C7—C1—C2—C3179.18 (13)
C1—C2—C3—C40.4 (2)C7—C1—C6—C5179.21 (13)
 

Funding information

Funding for this research was provided by: European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant No. 950625); Jožef Stefan Institute Director's Fund; Slovenian Research Agency (Grant No. P1-0230); AS acknowledges a Young Researcher Grant from the Slovenian Research Agency.

References

First citationBorisenko, K. B. & Hargittai, I. (1996). J. Mol. Struct. 382, 171–176.  CrossRef CAS Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. & Osaki, K. (1977). Acta Cryst. B33, 2337–2339.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMihelač, M., Siljanovska, A. & Košmrlj, J. (2021). Dyes Pigments, 184, 108726.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146