organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Z)-Benzyl 2-(5-methyl-2-oxoindolin-3-yl­­idene)hydrazinecarbodi­thio­ate

crossmark logo

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, bEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom, cOrganic Synthesis Research Laboratory, Institute of Science, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia, dCentre for Bio-aromatic Research, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia, and eDepartment of Chemistry, Kuliyyah of Science, International Islamic University Malaysia, 25200 Bandar Indera Mahkota, Kuantan, Pahang, Malaysia
*Correspondence e-mail: abdfatah@uitm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 6 September 2023; accepted 7 September 2023; online 12 September 2023)

The title compound, C17H15N3OS2 was obtained from the condensation reaction of S-benzyl­dithio­carbazate and 5-methyl­isatin. In the solid-state, the mol­ecule adopts a Z configuration with the 5-methyl­isatin and di­thio­carbazate groups located on the same side of the C=N bond, involving an intra­molecular N—H⋯O hydrogen bond.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­thio­carbazate-based imines and some of their metal complexes possess diverse biological applications (e.g., Manan & Cordes, 2022[Manan, M. A. F. A. & Cordes, D. B. (2022). Trends Sci. 19, 5796.]). In addition, the applications of these compounds have evolved in research areas such as semiconductor devices (Irfan et al., 2020[Irfan, A., Al-Sehemi, A. G., Assiri, M. A. & Ullah, S. (2020). Mater. Sci. Semicond. Process. 107, 104855.]) and the photocatalytic production of hydrogen (Wise et al., 2015[Wise, C. F., Liu, D., Mayer, K. J., Crossland, P. M., Hartley, C. L. & McNamara, W. R. (2015). Dalton Trans. 44, 14265-14271.]). In a contin­uation of our previous work on isatin-based imines derived from di­thio­carbazate compounds (Manan et al., 2011[Manan, M. A. F. A., Crouse, K. A., Tahir, M. I. M., Rosli, R., How, F. N. F., Watkin, D. J. & Slawin, A. M. Z. (2011). J. Chem. Crystallogr. 41, 1630-1641.]), the title compound was synthesized and its crystal structure is reported herein.

The title compound, C17H15N3OS2 crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in asymmetric unit. The structure is present as the thio­amide tautomer and in the Z isomeric form (Fig. 1[link]) as a consequence of the formation of an intra­molecular N3—H3⋯O1 hydrogen bond (Table 1[link]). The C10=S10 and C10—S11 lengths of 1.6544 (16) and 1.7449 (16) Å, respectively, are comparable to those reported for S-benzyl 3–2(bromo­benzyl­idene)di­thio­carbazate (Qiu & Luo, 2007[Qiu, X.-Y. & Luo, Z.-G. (2007). Acta Cryst. E63, o4339.]), benzyl 3-(3,4,5-tri­meth­oxy­benzyl­idene)di­thio­carbazate (Islam et al., 2016[Islam, M. A. A. A., Sheikh, M. C., Mahmud, A. A., Miyatake, R. & Zangrando, E. (2016). IUCrData, 1, x160190.]) and benzyl 3-(10-oxo-9,10-di­hydro­phenanthren-9-yl­idene)di­thio­carbazate (Liu et al., 2009[Liu, Q.-R., Chu, S.-M., Zhao, G.-Q., Chen, L.-H. & Han, Y.-J. (2009). Acta Cryst. E65, o2853.]). The observed C—S bond lengths are both inter­mediate between reference values of 1.82 Å for a C—S single bond and 1.56 Å for a C=S double bond (Tarafder et al., 2002[Tarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691-2698.]), indicative of conjugation effects through the π-system. As a result of the delocalization of electrons in the 5-methyl­isatin ring, the N2—N3 bond distance of 1.3509 (19) Å is slightly shorter than the corresponding bond in the unsubstituted precursor compound (Shanmuga Sundara Raj et al., 2000[Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236-1237.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O1 0.91 (2) 2.00 (2) 2.7539 (17) 139 (2)
N9—H9⋯O1i 0.94 (2) 1.91 (2) 2.8341 (18) 166 (2)
Symmetry code: (i) [-x+2, -y, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

The central CN2S2 residue in the title compound is close to planar (r.m.s deviation = 0.052 Å) and forms dihedral angles of 9.34 (3) and 72.80 (5)° with the substituted benzyl and 5-methyl­isatin rings, respectively, indicating a highly twisted mol­ecule; the dihedral angle between the rings is 70.87 (5)°. The N2—N3—C10—S10 fragment adopts an anti conformation with a torsion angle of 174.23 (11)°, while the N2—N3—C10—S11 fragment is syn with a torsion angle of −6.67 (19)°. This conformation is similar to those of three closely related compounds benzyl 2-(5-chloro-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazinecarbodi­thio­ate, benzyl 2-(5-fluoro-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazine­carbodi­thio­ate and benzyl 2-(5-bromo-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazinecarbodi­thio­ate (Manan et al., 2011[Manan, M. A. F. A., Crouse, K. A., Tahir, M. I. M., Rosli, R., How, F. N. F., Watkin, D. J. & Slawin, A. M. Z. (2011). J. Chem. Crystallogr. 41, 1630-1641.]).

In the crystal, the title compound forms inversion dimers joined by pairs of N9—H9⋯O1 hydrogen bonds (Fig. 2[link], Table 1[link]) in the common R22(8) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The dimers then pack into sheets propagating in the (001) plane through carbonyl-to-π [O⋯centroid distance = 3.418 (2) Å] and C—H⋯π [H⋯centroid distance = 3.142 (1) Å, C⋯centroid distance = 3.846 (2) Å] inter­actions. Equivalent dimers are observed in the 5-bromo and 5-chloro compounds mentioned above, as well as in 2-(5-nitro-2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazinecarbodi­thio­ate (Pereira et al., 2021[Pereira, P., Lima, J., Deflon, V., Malpass, G., De Oliveira, R. & Maia, P. (2021). Eur. J. Chem. 12, 235-241.]) and the parent compound 2-(2-oxo-1,2-di­hydro-3H-indol-3-yl­idene)hydrazinecarbodi­thio­ate (Ali et al., 2011[Ali, M. A., Mirza, A. H., Bakar, H. J. H. A. & Bernhardt, P. V. (2011). Polyhedron, 30, 556-564.]). The aceto­nitrile solvate of the parent compound (Ali et al., 2011[Ali, M. A., Mirza, A. H., Bakar, H. J. H. A. & Bernhardt, P. V. (2011). Polyhedron, 30, 556-564.]) does not form dimers and instead forms discrete N—H⋯N hydrogen bonds to the solvate. Unlike the majority of related compounds, the 5-fluoro compound (Manan et al., 2011[Manan, M. A. F. A., Crouse, K. A., Tahir, M. I. M., Rosli, R., How, F. N. F., Watkin, D. J. & Slawin, A. M. Z. (2011). J. Chem. Crystallogr. 41, 1630-1641.]) does not form dimers and instead packs through strong imine to π inter­actions (centroid⋯centroid separation = 3.213 Å), with weaker N—H⋯S=C hydrogen bonds involving the amide site.

[Figure 2]
Figure 2
View of a hydrogen-bonded dimer of the title compound showing both intra­molecular and inter­molecular N—H⋯O hydrogen bonds. The right-hand mol­ecule is generated by the symmetry operation 2 − x, −y, 1 − z.

Synthesis and crystallization

The di­thio­carbazate precursor, SBDTC was prepared by a literature method (Ali & Tarafder, 1977[Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785-1791.]). The title compound was prepared by adding 5-methyl­isatin (1.61 g, 10.0 mmol, 1.0 eq) dissolved in hot ethanol (10 ml), to a solution of the precursor, SBDTC (1.98 g, 10.0 mmol, 1.0 e.q) in hot ethanol (35 ml). The mixture was heated (80°C) with continuous stirring for 15 min and later allowed to stand for about 20 min at room temperature until a precipitate was formed, which was then filtered and dried over silica gel, yielding orange crystals on recrystallization from ethanol solution (yield: 2.73 g, 80%). m.p. 216–217°C; 1H (400 MHz, d6-DMSO) δ: (p.p.m): 2.26 (3H, s), 4.52 (2H, s), 6.82–7.45 (8H, m), 11.26 (1H, s), 13.94 (1H, s); GCMS: [M]+ at m/z 341.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H15N3OS2
Mr 341.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 6.5733 (2), 8.0601 (2), 15.8280 (4)
α, β, γ (°) 95.442 (2), 99.527 (2), 90.360 (2)
V3) 823.09 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.99
Crystal size (mm) 0.12 × 0.09 × 0.02
 
Data collection
Diffractometer Rigaku XtaLAB P100K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.748, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14207, 2876, 2623
Rint 0.034
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.07
No. of reflections 2876
No. of parameters 217
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.18
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.42.94a (Rigaku OD, 2023); cell refinement: CrysAlis PRO 1.171.42.94a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.94a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).

(Z)-Benzyl 2-(5-methyl-2-oxoindolin-3-ylidene)hydrazinecarbodithioate top
Crystal data top
C17H15N3OS2Z = 2
Mr = 341.44F(000) = 356
Triclinic, P1Dx = 1.378 Mg m3
a = 6.5733 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.0601 (2) ÅCell parameters from 8603 reflections
c = 15.8280 (4) Åθ = 2.8–66.0°
α = 95.442 (2)°µ = 2.99 mm1
β = 99.527 (2)°T = 173 K
γ = 90.360 (2)°Plate, yellow
V = 823.09 (4) Å30.12 × 0.09 × 0.02 mm
Data collection top
Rigaku XtaLAB P100K
diffractometer
2876 independent reflections
Radiation source: Rotating Anode, Rigaku MM-007HF2623 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.034
Detector resolution: 5.8140 pixels mm-1θmax = 66.5°, θmin = 2.8°
shutterless scansh = 77
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 99
Tmin = 0.748, Tmax = 1.000l = 1818
14207 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.1676P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2876 reflectionsΔρmax = 0.38 e Å3
217 parametersΔρmin = 0.17 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Carbon-bound H atoms were included in calculated positions (C—H distances are 0.98 Å for methyl H atoms, 0.99 Å for methylene H atoms 0.95 Å for phenyl H atoms) and refined as riding atoms with Uiso(H) = 1.2 Ueq(parent atom, methylene and phenyl H atoms) or Uiso(H) = 1.5 Ueq(parent atom, methyl H atoms). Nitrogen-bound hydrogen atoms were located from the difference Fourier map and refined isotropically subject to a distance restraint.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.21331 (6)0.33788 (5)0.21855 (2)0.03493 (14)
S100.58661 (6)0.23720 (6)0.13457 (3)0.04020 (15)
O10.86838 (18)0.08666 (16)0.40267 (8)0.0398 (3)
N30.5546 (2)0.22521 (17)0.29604 (9)0.0341 (3)
N20.4614 (2)0.26067 (17)0.36534 (9)0.0326 (3)
N90.7901 (2)0.11126 (18)0.54096 (9)0.0358 (3)
C120.1188 (3)0.5709 (2)0.10260 (10)0.0337 (3)
C10.7576 (2)0.1314 (2)0.45642 (11)0.0335 (3)
C20.5567 (2)0.22039 (19)0.43850 (10)0.0325 (3)
C100.4621 (2)0.26451 (19)0.21733 (10)0.0319 (3)
C80.6299 (2)0.1807 (2)0.58149 (11)0.0340 (3)
C30.4846 (2)0.24993 (19)0.52025 (10)0.0324 (3)
C50.2894 (3)0.3413 (2)0.63055 (11)0.0378 (4)
C110.1296 (3)0.3858 (2)0.10785 (10)0.0359 (4)
H11A0.2275070.3382830.0712810.043*
H11B0.0079880.3337080.0856400.043*
C40.3146 (3)0.3301 (2)0.54485 (11)0.0365 (4)
H40.2161080.3768920.5033460.044*
C70.6075 (3)0.1888 (2)0.66702 (11)0.0394 (4)
H70.7051500.1407610.7083910.047*
C60.4357 (3)0.2702 (2)0.69000 (11)0.0415 (4)
H60.4172420.2775890.7485100.050*
C170.0561 (3)0.6540 (2)0.11867 (12)0.0452 (4)
H170.1699730.5937310.1315450.054*
C130.2833 (3)0.6589 (3)0.08239 (12)0.0478 (5)
H130.4033010.6020500.0708030.057*
C90.1083 (3)0.4309 (3)0.65976 (12)0.0474 (4)
H9A0.0236980.4757030.6104690.071*
H9B0.1588670.5225360.7035880.071*
H9C0.0248010.3526660.6841700.071*
C160.0654 (5)0.8257 (3)0.11601 (14)0.0685 (7)
H160.1848860.8831580.1277390.082*
C140.2728 (5)0.8293 (3)0.07910 (14)0.0690 (8)
H140.3853490.8892300.0649340.083*
C150.1000 (6)0.9125 (3)0.09623 (15)0.0803 (10)
H150.0941061.0299310.0944820.096*
H30.680 (3)0.177 (3)0.3057 (14)0.052 (6)*
H90.901 (3)0.053 (3)0.5684 (14)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0346 (2)0.0399 (2)0.0312 (2)0.01365 (17)0.00499 (16)0.00834 (16)
S100.0370 (2)0.0487 (3)0.0375 (2)0.00624 (18)0.01188 (17)0.00715 (18)
O10.0344 (6)0.0487 (7)0.0373 (6)0.0126 (5)0.0052 (5)0.0097 (5)
N30.0297 (7)0.0389 (7)0.0345 (7)0.0087 (6)0.0044 (6)0.0085 (6)
N20.0320 (7)0.0332 (7)0.0325 (7)0.0056 (5)0.0030 (5)0.0060 (5)
N90.0306 (7)0.0424 (8)0.0334 (7)0.0086 (6)0.0001 (5)0.0081 (6)
C120.0413 (9)0.0329 (8)0.0249 (7)0.0039 (7)0.0017 (6)0.0050 (6)
C10.0294 (8)0.0337 (8)0.0365 (8)0.0042 (6)0.0015 (6)0.0063 (6)
C20.0300 (8)0.0310 (8)0.0360 (8)0.0046 (6)0.0021 (6)0.0067 (6)
C100.0320 (8)0.0278 (7)0.0353 (8)0.0019 (6)0.0031 (6)0.0046 (6)
C80.0306 (8)0.0349 (8)0.0351 (8)0.0018 (6)0.0005 (6)0.0054 (6)
C30.0313 (8)0.0317 (8)0.0332 (8)0.0019 (6)0.0010 (6)0.0055 (6)
C50.0335 (8)0.0406 (9)0.0386 (9)0.0002 (7)0.0056 (7)0.0010 (7)
C110.0403 (9)0.0351 (8)0.0303 (8)0.0067 (7)0.0016 (6)0.0055 (6)
C40.0338 (8)0.0364 (9)0.0383 (9)0.0051 (7)0.0021 (7)0.0054 (7)
C70.0355 (9)0.0483 (10)0.0332 (8)0.0024 (7)0.0010 (7)0.0089 (7)
C60.0396 (9)0.0511 (10)0.0333 (9)0.0013 (8)0.0056 (7)0.0019 (7)
C170.0529 (11)0.0452 (10)0.0376 (9)0.0157 (8)0.0049 (8)0.0083 (7)
C130.0509 (10)0.0534 (11)0.0367 (9)0.0098 (9)0.0009 (8)0.0076 (8)
C90.0419 (10)0.0576 (11)0.0428 (10)0.0067 (8)0.0102 (8)0.0013 (8)
C160.105 (2)0.0485 (12)0.0467 (12)0.0390 (13)0.0009 (12)0.0012 (9)
C140.104 (2)0.0527 (13)0.0441 (12)0.0332 (14)0.0100 (12)0.0135 (10)
C150.155 (3)0.0294 (10)0.0451 (12)0.0012 (15)0.0179 (15)0.0056 (9)
Geometric parameters (Å, º) top
S11—C101.7449 (16)C5—C61.396 (3)
S11—C111.8260 (16)C5—C91.510 (3)
S10—C101.6544 (16)C11—H11A0.9900
O1—C11.239 (2)C11—H11B0.9900
N3—N21.3509 (19)C4—H40.9500
N3—C101.360 (2)C7—H70.9500
N3—H30.912 (16)C7—C61.392 (3)
N2—C21.293 (2)C6—H60.9500
N9—C11.345 (2)C17—H170.9500
N9—C81.413 (2)C17—C161.390 (3)
N9—H90.938 (16)C13—H130.9500
C12—C111.503 (2)C13—C141.381 (3)
C12—C171.381 (3)C9—H9A0.9800
C12—C131.387 (2)C9—H9B0.9800
C1—C21.505 (2)C9—H9C0.9800
C2—C31.449 (2)C16—H160.9500
C8—C31.402 (2)C16—C151.384 (4)
C8—C71.381 (2)C14—H140.9500
C3—C41.387 (2)C14—C151.375 (4)
C5—C41.388 (2)C15—H150.9500
C10—S11—C11103.16 (8)C12—C11—H11B109.4
N2—N3—C10119.92 (14)H11A—C11—H11B108.0
N2—N3—H3116.6 (14)C3—C4—C5119.52 (16)
C10—N3—H3123.4 (14)C3—C4—H4120.2
C2—N2—N3117.17 (14)C5—C4—H4120.2
C1—N9—C8111.27 (14)C8—C7—H7121.4
C1—N9—H9123.9 (15)C8—C7—C6117.16 (16)
C8—N9—H9124.7 (15)C6—C7—H7121.4
C17—C12—C11119.66 (16)C5—C6—H6118.7
C17—C12—C13119.77 (17)C7—C6—C5122.66 (16)
C13—C12—C11120.57 (16)C7—C6—H6118.7
O1—C1—N9127.80 (15)C12—C17—H17120.0
O1—C1—C2125.75 (15)C12—C17—C16120.0 (2)
N9—C1—C2106.46 (14)C16—C17—H17120.0
N2—C2—C1128.01 (15)C12—C13—H13120.0
N2—C2—C3125.68 (15)C14—C13—C12120.0 (2)
C3—C2—C1106.30 (13)C14—C13—H13120.0
S10—C10—S11128.14 (10)C5—C9—H9A109.5
N3—C10—S11112.22 (12)C5—C9—H9B109.5
N3—C10—S10119.64 (13)C5—C9—H9C109.5
C3—C8—N9109.25 (14)H9A—C9—H9B109.5
C7—C8—N9129.31 (15)H9A—C9—H9C109.5
C7—C8—C3121.43 (16)H9B—C9—H9C109.5
C8—C3—C2106.70 (14)C17—C16—H16120.1
C4—C3—C2133.05 (15)C15—C16—C17119.8 (2)
C4—C3—C8120.24 (16)C15—C16—H16120.1
C4—C5—C6118.99 (16)C13—C14—H14119.9
C4—C5—C9120.83 (16)C15—C14—C13120.3 (2)
C6—C5—C9120.18 (16)C15—C14—H14119.9
S11—C11—H11A109.4C16—C15—H15119.9
S11—C11—H11B109.4C14—C15—C16120.1 (2)
C12—C11—S11111.12 (11)C14—C15—H15119.9
C12—C11—H11A109.4
O1—C1—C2—N22.5 (3)C8—N9—C1—O1179.33 (16)
O1—C1—C2—C3178.95 (16)C8—N9—C1—C20.72 (18)
N3—N2—C2—C12.7 (2)C8—C3—C4—C50.0 (2)
N3—N2—C2—C3178.99 (14)C8—C7—C6—C50.2 (3)
N2—N3—C10—S116.67 (19)C3—C8—C7—C60.7 (3)
N2—N3—C10—S10174.23 (11)C11—S11—C10—S102.51 (13)
N2—C2—C3—C8177.57 (15)C11—S11—C10—N3178.48 (11)
N2—C2—C3—C43.7 (3)C11—C12—C17—C16178.43 (17)
N9—C1—C2—N2177.48 (15)C11—C12—C13—C14178.98 (16)
N9—C1—C2—C31.09 (17)C4—C5—C6—C70.4 (3)
N9—C8—C3—C20.65 (18)C7—C8—C3—C2179.54 (15)
N9—C8—C3—C4178.28 (14)C7—C8—C3—C40.6 (2)
N9—C8—C7—C6177.93 (16)C6—C5—C4—C30.5 (3)
C12—C17—C16—C150.8 (3)C17—C12—C11—S1184.17 (17)
C12—C13—C14—C150.3 (3)C17—C12—C13—C140.5 (3)
C1—N9—C8—C30.07 (19)C17—C16—C15—C140.1 (3)
C1—N9—C8—C7178.72 (17)C13—C12—C11—S1195.35 (16)
C1—C2—C3—C81.05 (17)C13—C12—C17—C161.1 (3)
C1—C2—C3—C4177.68 (17)C13—C14—C15—C160.7 (3)
C2—C3—C4—C5178.56 (16)C9—C5—C4—C3178.71 (16)
C10—S11—C11—C12109.04 (13)C9—C5—C6—C7178.83 (16)
C10—N3—N2—C2179.99 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O10.91 (2)2.00 (2)2.7539 (17)139 (2)
N9—H9···O1i0.94 (2)1.91 (2)2.8341 (18)166 (2)
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The a uthors acknowledge the Universiti Teknologi MARA for funding under the UMP-IIUM-UiTM Sustainable Research Collaboration Grant [600–RMC/SRC/5/3(043/2020)].

Funding information

Funding for this research was provided by: Universiti Teknologi MARA (grant No. 600–RMC/SRC/5/3(043/2020)).

References

First citationAli, M. A., Mirza, A. H., Bakar, H. J. H. A. & Bernhardt, P. V. (2011). Polyhedron, 30, 556–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationAli, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. 39, 1785–1791.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIrfan, A., Al-Sehemi, A. G., Assiri, M. A. & Ullah, S. (2020). Mater. Sci. Semicond. Process. 107, 104855.  Web of Science CrossRef Google Scholar
First citationIslam, M. A. A. A., Sheikh, M. C., Mahmud, A. A., Miyatake, R. & Zangrando, E. (2016). IUCrData, 1, x160190.  Google Scholar
First citationLiu, Q.-R., Chu, S.-M., Zhao, G.-Q., Chen, L.-H. & Han, Y.-J. (2009). Acta Cryst. E65, o2853.  CSD CrossRef IUCr Journals Google Scholar
First citationManan, M. A. F. A. & Cordes, D. B. (2022). Trends Sci. 19, 5796.  CrossRef Google Scholar
First citationManan, M. A. F. A., Crouse, K. A., Tahir, M. I. M., Rosli, R., How, F. N. F., Watkin, D. J. & Slawin, A. M. Z. (2011). J. Chem. Crystallogr. 41, 1630–1641.  Web of Science CSD CrossRef Google Scholar
First citationPereira, P., Lima, J., Deflon, V., Malpass, G., De Oliveira, R. & Maia, P. (2021). Eur. J. Chem. 12, 235–241.  CSD CrossRef Google Scholar
First citationQiu, X.-Y. & Luo, Z.-G. (2007). Acta Cryst. E63, o4339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236–1237.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691–2698.  Web of Science CSD CrossRef CAS Google Scholar
First citationWise, C. F., Liu, D., Mayer, K. J., Crossland, P. M., Hartley, C. L. & McNamara, W. R. (2015). Dalton Trans. 44, 14265–14271.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146