organic compounds
1-(Pyrrolidin-1-yl)ethan-1-iminium chloride
aDepartment of Biochemistry, Chemistry and Physics, Georgia Southern University, Armstrong Campus, 11935 Abercorn Street, Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu
The title compound, C6H13N2+·Cl−, is as an amidinium salt that was isolated as unexpected product from the reaction between acetonitrile, chloroform and pyrrolidine under refluxing conditions. The packing features two N—H⋯Cl hydrogen bonds to generate centrosymmetric tetramers (two cations and two anions) and van der Waals interactions.
Keywords: acetonitrile; amidinium salt; chloroform; crystal structure; Pinner reaction; pyrrolidine.
CCDC reference: 2293948
Structure description
Amidinium salts are protonated amidine compounds characterized by a central carbon atom bound to a protonated imine (iminium) group and a neutral amine. They were first prepared by reacting a Pinner salt with an amine (Pinner & Klein, 1877). Although acetamidinium salts are generally unstable, an acetamidinium chloride salt was reported in 1976 (Cannon et al., 1976). This salt has been exploited for its strong hydrogen-bonding properties in subsequent research (Ferretti et al., 2004; Norrestam, 1984; Yang et al., 2022). It has been observed as a counter-ion for anionic transition/main-group metal complexes and perovskites (Liu et al., 2018; Singh et al., 2021; Biller et al., 2002). Amidinium salts derived from alkylated and cyclic exhibit greater stability and have also been observed as counter-ions for transition-metal complexes (Podjed & Modec, 2023).
In regards to the cation in the title compound, C6H13N2+·Cl−, (1), it has mainly been observed in transition and rare-earth metal complexes (Podjed et al., 2020; Masci & Thuéry, 2003; Podjed & Modec, 2022). A piperidine amidinium chloride salt has been reported (Podjed & Modec, 2023). Herein, we report the structure (Fig. 1) of the title compound, which crystallizes in the monoclinic in P21/c. The carbon atoms of the pyrrolodine ring are disordered over two sets of sites in a 0.590 (11):0.410 (11) ratio with both disorder components leading to a twisted conformation of the ring.
In the extended structure of (1), a pair of amidinium cations are hydrogen bonded to two chloride ions (Table 1) forming a hydrogen-bonded tetramer (two cations and two anions) with graph set R42(8) as shown in Fig. 2. The tetramer forms a square with a N⋯Cl ⋯N⋯Cl dihedral angle of 0.00 (8)°. The packing is shown in Fig. 3. This structural motif closely resembles that of 1-(piperidin-1-yl)ethan-1-iminium chloride (pipim Cl) as reported by Podjed & Modec (2023). However, the N⋯Cl hydrogen-bond distances in (1) (mean = 3.211 Å) are slightly longer than those in pipim Cl, which measure 3.183 Å. Additionally, the C—N bond distances in (1) are slightly shorter than those of pipim Cl: in (1), C1—N1 is 1.311 (2) Å and C1—N2 is 1.310 (2) Å, while in pipim Cl, they are 1.321 (2) and 1.317 (2) Å, respectively. The geometries at C1 and N1 are nearly perfectly trigonal planar, with a sum of the bond angles around each atom equaling 360.1 and 359.9°, respectively, which are within the expected margin of error.
Synthesis and crystallization
Pyrrolidine (325 µl, 0.251 g, 3.96 mmol), acetonitrile (5 ml, 3.93 g, 96.5 mmol) and chloroform (1.5 ml, 2.24 g, 18.8 mmol) were combined in a pressure tube. A stir bar was added, and the tube was capped. The mixture was then heated with stirring at 70°C for 8 days. After cooling to room temperature, colorless needle-like crystals formed, yielding 305.6 mg (52%) of the title compound.
Refinement
Crystal data, data collection and structure
details are summarized in Table 2Structural data
CCDC reference: 2293948
https://doi.org/10.1107/S2414314623007903/hb4444sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623007903/hb4444Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623007903/hb4444Isup3.cml
Data collection: CrysAlis PRO 1.171.42.84a (Rigaku OD, 2023); cell
CrysAlis PRO 1.171.42.84a (Rigaku OD, 2023); data reduction: CrysAlis PRO 1.171.42.84a (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009).C6H13N2+·Cl− | F(000) = 320 |
Mr = 148.63 | Dx = 1.221 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 5.7234 (1) Å | Cell parameters from 5627 reflections |
b = 11.2961 (1) Å | θ = 3.5–69.3° |
c = 12.6591 (2) Å | µ = 3.53 mm−1 |
β = 98.820 (1)° | T = 300 K |
V = 808.76 (2) Å3 | Needle, clear light yellow |
Z = 4 | 0.3 × 0.1 × 0.1 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 1514 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 1343 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.034 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 69.8°, θmin = 5.3° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −13→13 |
Tmin = 0.326, Tmax = 1.000 | l = −15→15 |
8326 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0521P)2 + 0.1032P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.100 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.20 e Å−3 |
1514 reflections | Δρmin = −0.17 e Å−3 |
111 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
7 restraints | Extinction coefficient: 0.0060 (11) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.5387 (2) | 0.28640 (11) | 0.42307 (9) | 0.0501 (3) | |
N2 | 0.2421 (3) | 0.41737 (13) | 0.44168 (12) | 0.0639 (4) | |
C1 | 0.3772 (3) | 0.36286 (13) | 0.38250 (12) | 0.0493 (4) | |
C2 | 0.3413 (3) | 0.38872 (15) | 0.26616 (13) | 0.0610 (4) | |
H2C | 0.485848 | 0.418222 | 0.246373 | 0.091* | |
H2D | 0.219266 | 0.447140 | 0.249911 | 0.091* | |
H2E | 0.295598 | 0.317535 | 0.226955 | 0.091* | |
C3 | 0.6948 (3) | 0.22165 (16) | 0.36067 (14) | 0.0637 (4) | |
H3AA | 0.823737 | 0.271321 | 0.345347 | 0.076* | 0.590 (11) |
H3AB | 0.607714 | 0.192420 | 0.293987 | 0.076* | 0.590 (11) |
H3BC | 0.774587 | 0.275324 | 0.318169 | 0.076* | 0.410 (11) |
H3BD | 0.607101 | 0.163573 | 0.313957 | 0.076* | 0.410 (11) |
C6 | 0.5776 (3) | 0.25090 (17) | 0.53598 (13) | 0.0645 (5) | |
H6AA | 0.442485 | 0.207796 | 0.553965 | 0.077* | 0.590 (11) |
H6AB | 0.606325 | 0.319377 | 0.582389 | 0.077* | 0.590 (11) |
H6BC | 0.429154 | 0.235374 | 0.561480 | 0.077* | 0.410 (11) |
H6BD | 0.664313 | 0.311035 | 0.580605 | 0.077* | 0.410 (11) |
C4 | 0.7858 (13) | 0.1195 (5) | 0.4355 (4) | 0.0712 (14) | 0.590 (11) |
H4A | 0.679085 | 0.052351 | 0.425390 | 0.085* | 0.590 (11) |
H4B | 0.941834 | 0.094355 | 0.423829 | 0.085* | 0.590 (11) |
C5 | 0.7933 (11) | 0.1725 (6) | 0.5457 (4) | 0.0648 (14) | 0.590 (11) |
H5A | 0.786343 | 0.111081 | 0.598645 | 0.078* | 0.590 (11) |
H5B | 0.936561 | 0.218358 | 0.565710 | 0.078* | 0.590 (11) |
C4A | 0.8700 (14) | 0.1621 (8) | 0.4477 (6) | 0.0741 (19) | 0.410 (11) |
H4AA | 0.930051 | 0.088867 | 0.422068 | 0.089* | 0.410 (11) |
H4AB | 1.001716 | 0.213995 | 0.472880 | 0.089* | 0.410 (11) |
C5A | 0.7221 (17) | 0.1389 (8) | 0.5339 (8) | 0.079 (3) | 0.410 (11) |
H5AA | 0.820851 | 0.125641 | 0.602236 | 0.094* | 0.410 (11) |
H5AB | 0.620598 | 0.070640 | 0.516567 | 0.094* | 0.410 (11) |
Cl1 | 0.15495 (7) | 0.08401 (4) | 0.18724 (3) | 0.0659 (2) | |
H2A | 0.134 (3) | 0.4650 (16) | 0.4103 (15) | 0.074 (6)* | |
H2B | 0.250 (4) | 0.4087 (18) | 0.5110 (13) | 0.082 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0544 (7) | 0.0526 (7) | 0.0435 (6) | 0.0031 (6) | 0.0077 (5) | −0.0016 (5) |
N2 | 0.0708 (10) | 0.0699 (9) | 0.0509 (8) | 0.0214 (7) | 0.0092 (7) | 0.0035 (7) |
C1 | 0.0526 (8) | 0.0470 (8) | 0.0477 (8) | −0.0048 (6) | 0.0064 (6) | −0.0024 (6) |
C2 | 0.0707 (10) | 0.0635 (10) | 0.0476 (9) | 0.0005 (8) | 0.0059 (7) | 0.0030 (7) |
C3 | 0.0639 (10) | 0.0725 (10) | 0.0556 (9) | 0.0103 (8) | 0.0120 (7) | −0.0083 (8) |
C6 | 0.0732 (11) | 0.0722 (11) | 0.0474 (8) | 0.0148 (8) | 0.0077 (8) | 0.0055 (7) |
C4 | 0.081 (3) | 0.068 (3) | 0.063 (2) | 0.022 (2) | 0.004 (2) | −0.009 (2) |
C5 | 0.066 (3) | 0.067 (3) | 0.057 (2) | 0.011 (2) | −0.0018 (19) | −0.0028 (18) |
C4A | 0.069 (4) | 0.068 (4) | 0.084 (4) | 0.017 (3) | 0.008 (3) | −0.008 (3) |
C5A | 0.070 (5) | 0.068 (5) | 0.094 (6) | 0.010 (3) | 0.003 (4) | 0.024 (4) |
Cl1 | 0.0682 (3) | 0.0695 (3) | 0.0592 (3) | −0.01566 (18) | 0.0073 (2) | −0.00212 (17) |
N1—C1 | 1.3107 (18) | C6—H6AA | 0.9700 |
N1—C3 | 1.4746 (19) | C6—H6AB | 0.9700 |
N1—C6 | 1.4682 (19) | C6—H6BC | 0.9700 |
N2—C1 | 1.310 (2) | C6—H6BD | 0.9700 |
N2—H2A | 0.870 (15) | C6—C5 | 1.509 (6) |
N2—H2B | 0.877 (16) | C6—C5A | 1.514 (9) |
C1—C2 | 1.485 (2) | C4—H4A | 0.9700 |
C2—H2C | 0.9600 | C4—H4B | 0.9700 |
C2—H2D | 0.9600 | C4—C5 | 1.512 (6) |
C2—H2E | 0.9600 | C5—H5A | 0.9700 |
C3—H3AA | 0.9700 | C5—H5B | 0.9700 |
C3—H3AB | 0.9700 | C4A—H4AA | 0.9700 |
C3—H3BC | 0.9700 | C4A—H4AB | 0.9700 |
C3—H3BD | 0.9700 | C4A—C5A | 1.503 (10) |
C3—C4 | 1.533 (5) | C5A—H5AA | 0.9700 |
C3—C4A | 1.527 (7) | C5A—H5AB | 0.9700 |
C1—N1—C3 | 124.45 (13) | N1—C6—C5A | 102.3 (4) |
C1—N1—C6 | 123.65 (13) | H6AA—C6—H6AB | 109.0 |
C6—N1—C3 | 111.85 (12) | H6BC—C6—H6BD | 109.2 |
C1—N2—H2A | 118.2 (13) | C5—C6—H6AA | 111.0 |
C1—N2—H2B | 125.1 (14) | C5—C6—H6AB | 111.0 |
H2A—N2—H2B | 116.7 (19) | C5A—C6—H6BC | 111.3 |
N1—C1—C2 | 120.03 (14) | C5A—C6—H6BD | 111.3 |
N2—C1—N1 | 121.89 (14) | C3—C4—H4A | 111.1 |
N2—C1—C2 | 118.08 (14) | C3—C4—H4B | 111.1 |
C1—C2—H2C | 109.5 | H4A—C4—H4B | 109.1 |
C1—C2—H2D | 109.5 | C5—C4—C3 | 103.4 (4) |
C1—C2—H2E | 109.5 | C5—C4—H4A | 111.1 |
H2C—C2—H2D | 109.5 | C5—C4—H4B | 111.1 |
H2C—C2—H2E | 109.5 | C6—C5—C4 | 104.5 (4) |
H2D—C2—H2E | 109.5 | C6—C5—H5A | 110.9 |
N1—C3—H3AA | 111.2 | C6—C5—H5B | 110.9 |
N1—C3—H3AB | 111.2 | C4—C5—H5A | 110.9 |
N1—C3—H3BC | 111.3 | C4—C5—H5B | 110.9 |
N1—C3—H3BD | 111.3 | H5A—C5—H5B | 108.9 |
N1—C3—C4 | 102.6 (2) | C3—C4A—H4AA | 111.2 |
N1—C3—C4A | 102.5 (3) | C3—C4A—H4AB | 111.2 |
H3AA—C3—H3AB | 109.2 | H4AA—C4A—H4AB | 109.1 |
H3BC—C3—H3BD | 109.2 | C5A—C4A—C3 | 102.7 (6) |
C4—C3—H3AA | 111.2 | C5A—C4A—H4AA | 111.2 |
C4—C3—H3AB | 111.2 | C5A—C4A—H4AB | 111.2 |
C4A—C3—H3BC | 111.3 | C6—C5A—H5AA | 111.0 |
C4A—C3—H3BD | 111.3 | C6—C5A—H5AB | 111.0 |
N1—C6—H6AA | 111.0 | C4A—C5A—C6 | 103.7 (6) |
N1—C6—H6AB | 111.0 | C4A—C5A—H5AA | 111.0 |
N1—C6—H6BC | 111.3 | C4A—C5A—H5AB | 111.0 |
N1—C6—H6BD | 111.3 | H5AA—C5A—H5AB | 109.0 |
N1—C6—C5 | 103.9 (2) | ||
N1—C3—C4—C5 | −31.8 (6) | C3—N1—C1—C2 | 0.3 (2) |
N1—C3—C4A—C5A | 32.2 (9) | C3—N1—C6—C5 | 8.1 (3) |
N1—C6—C5—C4 | −28.2 (6) | C3—N1—C6—C5A | −13.8 (4) |
N1—C6—C5A—C4A | 34.0 (9) | C3—C4—C5—C6 | 37.6 (8) |
C1—N1—C3—C4 | −162.4 (3) | C3—C4A—C5A—C6 | −41.7 (11) |
C1—N1—C3—C4A | 171.2 (4) | C6—N1—C1—N2 | 2.5 (2) |
C1—N1—C6—C5 | −174.6 (3) | C6—N1—C1—C2 | −176.66 (15) |
C1—N1—C6—C5A | 163.5 (4) | C6—N1—C3—C4 | 14.9 (3) |
C3—N1—C1—N2 | 179.53 (16) | C6—N1—C3—C4A | −11.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cl1i | 0.87 (2) | 2.33 (2) | 3.1988 (16) | 175 (2) |
N2—H2B···Cl1ii | 0.88 (2) | 2.38 (2) | 3.2230 (16) | 162 (2) |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
BQ acknowledges the Georgia Southern University Honors Program, the Department of Biochemistry, Chemistry, and Physics, and RA acknowledges the H. Gordon Mayfield Summer Research Scholarship for partial support of this work.
Funding information
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 2215812).
References
Biller, A., Burschka, C., Penka, M. & Tacke, R. (2002). Inorg. Chem. 41, 3901–3908. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cannon, J. R., White, A. H. & Willis, A. C. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 271–272. CSD CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferretti, V., Bertolasi, V. & Pretto, L. (2004). New J. Chem. 28, 646–651. Web of Science CSD CrossRef CAS Google Scholar
Liu, S., Wang, B.-W., Wang, Z.-M. & Gao, S. (2018). Dalton Trans. 47, 11925–11933. Web of Science CSD CrossRef CAS PubMed Google Scholar
Masci, B. & Thuéry, P. (2003). Supramol. Chem. 15, 101–108. Web of Science CSD CrossRef CAS Google Scholar
Norrestam, R. (1984). Acta Cryst. C40, 297–299. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Pinner, A. & Klein, F. (1877). Ber. Dtsch. Chem. Ges. 10, 1889–1897. CrossRef Google Scholar
Podjed, N. & Modec, B. (2022). New J. Chem. 46, 23225–23238. Web of Science CSD CrossRef CAS Google Scholar
Podjed, N. & Modec, B. (2023). J. Mol. Struct. 1284, 135457. Web of Science CSD CrossRef Google Scholar
Podjed, N., Modec, B., Alcaide, M. M. & López-Serrano, J. (2020). RSC Adv. 10, 18200–18221. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, H., Dey, P., Chatterjee, S., Sen, P. & Maiti, T. (2021). Solar Energy, 220, 258–268. Web of Science CrossRef Google Scholar
Yang, W., Li, W., Yu, B. Q., Liu, C. & Wang, H. L. (2022). Inorg. Chem. Commun. 139, 109396. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.