metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[μ-1,3-bis­­(pyridin-3-yl)urea]bis­­(μ4-succinato)dicopper(II)], a ribbon-like coordination polymer

crossmark logo

aE-35 Holmes Hall, Michigan State University, Lyman Briggs College, 919 E. Shaw Lane, East Lansing, MI 48825, USA
*Correspondence e-mail: laduca@msu.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 24 July 2023; accepted 26 August 2023; online 8 September 2023)

In the title com­pound, [Cu2(C4H4O4)2(C11H10N4O)]n, mono-periodic coordination polymer ribbons are held into the crystal structure by means of N—H⋯O hydrogen bonding and crystal packing forces.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title com­pound was isolated during an exploratory synthetic effort aiming to produce a copper coordination polymer containing both succinate (succ) and 1,3-bis­(pyridin-3-yl)urea (or 3,3′-di­pyridyl­urea, 3-dpu) ligands. Previously, our group had isolated a series of cadmium succinate coordination polymers featuring isomeric di­pyridyl­amide coligands. Structural topologies were highly dependent on the specific di­pyridyl­amide ligand used (Uebler et al., 2013[Uebler, J. W., Pochodylo, A. L., Staples, R. J. & LaDuca, R. L. (2013). Cryst. Growth Des. 13, 2220-2232.]).

The asymmetric unit of the title com­pound contains two divalent Cu atoms, two crystallographically distinct fully deprotonated succ ligands, and a full 3-dpu ligand. The Cu1 and Cu2 atoms display [NO4] square-pyramidal coordination environments, with elongated apical positions occupied by pyridyl N-atom donors from 3-dpu ligands. Their basal planes com­prise four carboxyl­ate O-atom donors from four different succ ligands (Table 1[link]). The Cu1 and Cu2 atoms possess trigonality factors τ of 0.044 and 0.035 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), indicating only a slight variance from idealized square-pyramidal geometry. Complete coordination environments and ligand sets are shown in Fig. 1[link].

Table 1
Selected geometric parameters (Å, °)

Cu1—O2 1.960 (4) Cu2—O1 1.979 (4)
Cu1—O4i 2.023 (4) Cu2—O3i 1.990 (4)
Cu1—O6 1.963 (4) Cu2—O5 1.980 (4)
Cu1—O8i 1.961 (4) Cu2—O7i 1.973 (4)
Cu1—N4ii 2.197 (5) Cu2—N1 2.167 (5)
       
O2—Cu1—O4i 90.48 (18) O1—Cu2—O3i 89.16 (18)
O2—Cu1—O6 87.41 (18) O1—Cu2—O5 90.34 (18)
O2—Cu1—O8i 166.45 (17) O1—Cu2—N1 95.10 (17)
O2—Cu1—N4ii 91.11 (18) O3i—Cu2—N1 99.11 (18)
O4i—Cu1—N4ii 89.25 (17) O5—Cu2—O3i 166.52 (17)
O6—Cu1—O4i 169.11 (17) O5—Cu2—N1 94.36 (18)
O6—Cu1—N4ii 101.47 (18) O7i—Cu2—O1 168.62 (18)
O8i—Cu1—O4i 88.52 (17) O7i—Cu2—O3i 88.50 (18)
O8i—Cu1—O6 91.03 (18) O7i—Cu2—O5 89.35 (19)
O8i—Cu1—N4ii 102.38 (18) O7i—Cu2—N1 96.27 (18)
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The copper coordination environments in the title com­pound with the full ligand set and the com­plete {Cu2(OCO)4} paddlewheel cluster. Displacement ellipsoids are drawn at the 50% probability level. Color code: Cu dark blue, O red, N light blue, and C black. H-atom positions are represented as sticks. The symmetry codes are as listed in Table 1[link].

The carboxyl­ate groups of the succ ligands bridge Cu1 and Cu2 atoms in a synsyn fashion, giving rise to {Cu2(OCO)4} paddlewheel dimers with a Cu⋯Cu separation of 2.657 (1) Å. The full span of the gauche-conformation succ ligands connect the dimeric clusters into [Cu2(succ)2]n coordination polymer chains oriented parallel to the b crystal direction (Fig. 2[link]). The 3-dpu ligands, which adopt a syn conformation, conjoin Cu1 and Cu2 along the top and bottom of the [Cu2(succ)2]n chain motifs, affording [Cu2(succ)2(3-dpu)]n coordination polymer ribbons oriented parallel to the b crystal direction (Fig. 3[link]).

[Figure 2]
Figure 2
The [Cu2(succ)2]n coordination polymer chain in the title com­pound, featuring {Cu2(OCO)4} paddlewheel clusters.
[Figure 3]
Figure 3
A [Cu2(succ)2(3-dpu)]n coordination polymer ribbon in the title com­pound, with a [Cu2(succ)2]n chain motif drawn in red.

Regarding supra­molecular inter­actions, adjacent [Cu2(succ)2(3-dpu)]n motifs aggregate into supra­molecular layers parallel to the bc crystal planes by means of N—H⋯O hydrogen bonding between the urea groups of 3-dpu ligands in one ribbon, and succ carboxyl­ate O atoms in the next ribbon (Fig. 4[link]). In turn, the supra­molecular layers aggregate into the three-dimensional crystal structure of the title com­pound by crystal packing forces (Fig. 5[link]). Details regarding the hydrogen bonding patterns in the title com­pound are listed in Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4iii 0.88 2.21 3.042 (6) 157
N3—H3⋯O4iii 0.88 2.36 3.174 (6) 154
Symmetry code: (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
Supra­molecular layer formed by N—H⋯O hydrogen bonding (hatched bonds) between [Cu2(succ)2(3-dpu)]n ribbon motifs.
[Figure 5]
Figure 5
Aggregation of supra­molecular layer motifs in the title com­pound.

Synthesis and crystallization

Cu(NO3)2·2.5H2O (86 mg, 0.37 mmol), succinic acid (succH2; 44 mg, 0.37 mmol), 3,3′-di­pyridyl­urea (3-dpu; 79 mg, 0.37 mmol), and 0.75 ml of a 1.0 M NaOH solution were placed into 10 ml distilled water in a Teflon-lined acid digestion bomb. The bomb was sealed and heated in an oven at 393 K for 48 h, and then cooled slowly to 273 K. Green crystals of the title com­plex were obtained in 43% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in calculated positions and refined with a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C4H4O4)2(C11H10N4O)]
Mr 573.45
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 15.587 (2), 6.7579 (10), 20.942 (3)
β (°) 111.614 (2)
V3) 2050.9 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.14
Crystal size (mm) 0.24 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.568, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 15941, 3758, 2378
Rint 0.110
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.151, 0.99
No. of reflections 3758
No. of parameters 307
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.12, −0.60
Computer programs: COSMO (Bruker, 2009[Bruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystalMakerX (Palmer, 2020[Palmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: COSMO (Bruker, 2009); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: CrystalMakerX (Palmer, 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[[µ-1,3-bis(pyridin-3-yl)urea]bis(µ4-succinato)dicopper(II)] top
Crystal data top
[Cu2(C4H4O4)2(C11H10N4O)]F(000) = 1160
Mr = 573.45Dx = 1.857 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.587 (2) ÅCell parameters from 2446 reflections
b = 6.7579 (10) Åθ = 2.8–25.1°
c = 20.942 (3) ŵ = 2.14 mm1
β = 111.614 (2)°T = 173 K
V = 2050.9 (5) Å3Plate, green
Z = 40.24 × 0.12 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3758 independent reflections
Radiation source: sealed tube2378 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 8.36 pixels mm-1θmax = 25.4°, θmin = 1.4°
ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 88
Tmin = 0.568, Tmax = 0.745l = 2525
15941 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0685P)2]
where P = (Fo2 + 2Fc2)/3
3758 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 1.12 e Å3
0 restraintsΔρmin = 0.60 e Å3
Special details top

Experimental. Data was collected using a BRUKER CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 173 K. A suitable crystal was chosen and mounted on a nylon loop using Paratone oil. Data were measured using omega scans of 0.5° per frame for 30 s. The total number of images were based on results from the program COSMO where redundancy was expected to be 4 and completeness to 0.83Å to 100%. Cell parameters were retrieved using APEX II software and refined using SAINT on all observed reflections.Data reduction was performed using the SAINT software which corrects for Lp. Scaling and absorption corrections were applied using SADABS6 multi-scan technique, supplied by George Sheldrick. The structure was solved by the direct method using the SHELXT program and refined by least squares method on F2, SHELXL, incorporated in OLEX2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76095 (5)0.56430 (10)0.20555 (4)0.0199 (2)
Cu20.77124 (5)0.49295 (10)0.33295 (4)0.0198 (2)
O10.6695 (3)0.6855 (6)0.3154 (2)0.0241 (10)
O20.6730 (3)0.7626 (6)0.2124 (2)0.0257 (11)
O30.6784 (3)1.2834 (6)0.2892 (2)0.0250 (10)
O40.6616 (3)1.3542 (6)0.1809 (2)0.0228 (10)
O50.8617 (3)0.7122 (6)0.3540 (2)0.0272 (11)
O60.8587 (3)0.7601 (6)0.2474 (2)0.0269 (11)
O70.8683 (3)1.3085 (6)0.3309 (2)0.0284 (11)
O80.8527 (3)1.3529 (6)0.2213 (2)0.0232 (10)
O90.5334 (3)0.3287 (7)0.4400 (2)0.0355 (12)
N10.7897 (3)0.4419 (7)0.4394 (3)0.0190 (12)
N20.6521 (4)0.3177 (7)0.5442 (3)0.0226 (12)
H20.6650610.2981170.5883210.027*
N30.5065 (4)0.2208 (7)0.5341 (3)0.0225 (12)
H30.5333150.1956290.5782930.027*
N40.2765 (4)0.1280 (7)0.4043 (2)0.0207 (12)
C10.6429 (4)0.7848 (8)0.2603 (3)0.0196 (14)
C20.5697 (4)0.9394 (8)0.2500 (3)0.0194 (14)
H2A0.5792591.0029250.2947590.023*
H2B0.5085460.8740230.2340800.023*
C30.5692 (4)1.0992 (9)0.1984 (3)0.0190 (14)
H3A0.5766891.0346950.1583110.023*
H3B0.5081951.1651470.1819400.023*
C40.6433 (4)1.2555 (8)0.2259 (3)0.0181 (14)
C50.8876 (4)0.7960 (9)0.3111 (3)0.0197 (14)
C60.9644 (4)0.9500 (8)0.3372 (3)0.0225 (15)
H6A0.9618731.0104620.3795680.027*
H6B1.0245510.8816530.3497820.027*
C70.9604 (4)1.1147 (9)0.2866 (3)0.0240 (15)
H7A1.0214011.1805730.3016500.029*
H7B0.9489731.0548000.2410520.029*
C80.8870 (4)1.2704 (9)0.2789 (3)0.0213 (15)
C90.8712 (5)0.4774 (9)0.4890 (3)0.0280 (16)
H90.9220540.5137110.4768430.034*
C100.8834 (5)0.4625 (9)0.5578 (3)0.0279 (16)
H100.9420910.4879200.5922950.034*
C110.8108 (4)0.4111 (9)0.5757 (3)0.0250 (15)
H110.8184170.4012570.6226870.030*
C120.7253 (4)0.3733 (8)0.5245 (3)0.0213 (14)
C130.7181 (5)0.3899 (9)0.4566 (3)0.0234 (15)
H130.6602910.3633790.4210600.028*
C140.5621 (5)0.2911 (9)0.5012 (3)0.0235 (15)
C150.2276 (5)0.0979 (9)0.4441 (4)0.0260 (16)
H150.1639560.0661160.4232850.031*
C160.2677 (5)0.1121 (8)0.5150 (3)0.0253 (15)
H160.2314470.0933170.5424170.030*
C170.3608 (4)0.1539 (9)0.5456 (3)0.0249 (15)
H170.3896720.1608560.5941760.030*
C180.4114 (4)0.1852 (8)0.5044 (3)0.0188 (14)
C190.3656 (5)0.1700 (9)0.4340 (3)0.0251 (15)
H190.3999840.1908720.4053680.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0226 (5)0.0173 (4)0.0204 (4)0.0010 (3)0.0088 (4)0.0007 (3)
Cu20.0227 (5)0.0170 (4)0.0207 (4)0.0002 (3)0.0092 (4)0.0002 (3)
O10.030 (3)0.021 (2)0.025 (3)0.0066 (19)0.015 (2)0.0068 (19)
O20.034 (3)0.021 (2)0.025 (3)0.009 (2)0.015 (2)0.0029 (19)
O30.031 (3)0.023 (2)0.022 (3)0.007 (2)0.010 (2)0.0049 (19)
O40.026 (3)0.024 (2)0.018 (2)0.0066 (19)0.008 (2)0.0026 (19)
O50.032 (3)0.022 (2)0.025 (3)0.012 (2)0.007 (2)0.001 (2)
O60.032 (3)0.024 (3)0.028 (3)0.006 (2)0.015 (2)0.006 (2)
O70.029 (3)0.026 (3)0.032 (3)0.012 (2)0.012 (2)0.003 (2)
O80.025 (3)0.022 (2)0.021 (2)0.0053 (19)0.007 (2)0.0023 (19)
O90.028 (3)0.049 (3)0.027 (3)0.003 (2)0.006 (2)0.013 (2)
N10.019 (3)0.015 (3)0.019 (3)0.002 (2)0.004 (2)0.002 (2)
N20.029 (3)0.019 (3)0.024 (3)0.001 (2)0.015 (3)0.004 (2)
N30.029 (3)0.017 (3)0.021 (3)0.001 (2)0.009 (3)0.005 (2)
N40.028 (3)0.015 (3)0.019 (3)0.002 (2)0.008 (3)0.001 (2)
C10.024 (4)0.012 (3)0.025 (4)0.009 (3)0.012 (3)0.006 (3)
C20.018 (3)0.018 (3)0.024 (3)0.002 (3)0.010 (3)0.004 (3)
C30.018 (3)0.020 (3)0.021 (3)0.001 (3)0.009 (3)0.002 (3)
C40.016 (3)0.010 (3)0.026 (4)0.005 (2)0.005 (3)0.002 (3)
C50.013 (3)0.020 (3)0.024 (4)0.005 (3)0.003 (3)0.005 (3)
C60.017 (4)0.020 (4)0.028 (4)0.004 (3)0.005 (3)0.003 (3)
C70.021 (4)0.023 (4)0.028 (4)0.001 (3)0.009 (3)0.002 (3)
C80.021 (4)0.016 (3)0.032 (4)0.007 (3)0.014 (3)0.004 (3)
C90.023 (4)0.036 (4)0.028 (4)0.001 (3)0.013 (3)0.001 (3)
C100.024 (4)0.029 (4)0.021 (4)0.001 (3)0.002 (3)0.008 (3)
C110.032 (4)0.026 (4)0.017 (3)0.006 (3)0.009 (3)0.000 (3)
C120.028 (4)0.012 (3)0.027 (4)0.001 (3)0.014 (3)0.001 (3)
C130.031 (4)0.021 (4)0.019 (3)0.002 (3)0.011 (3)0.001 (3)
C140.027 (4)0.017 (3)0.029 (4)0.003 (3)0.012 (3)0.002 (3)
C150.019 (4)0.019 (4)0.040 (4)0.002 (3)0.011 (3)0.003 (3)
C160.038 (4)0.014 (3)0.033 (4)0.001 (3)0.024 (4)0.005 (3)
C170.026 (4)0.026 (4)0.024 (4)0.001 (3)0.011 (3)0.002 (3)
C180.024 (4)0.015 (3)0.018 (3)0.000 (3)0.008 (3)0.001 (3)
C190.029 (4)0.021 (4)0.027 (4)0.001 (3)0.013 (3)0.001 (3)
Geometric parameters (Å, º) top
Cu1—O21.960 (4)C2—H2A0.9900
Cu1—O4i2.023 (4)C2—H2B0.9900
Cu1—O61.963 (4)C2—C31.526 (8)
Cu1—O8i1.961 (4)C3—H3A0.9900
Cu1—N4ii2.197 (5)C3—H3B0.9900
Cu2—O11.979 (4)C3—C41.515 (8)
Cu2—O3i1.990 (4)C5—C61.528 (8)
Cu2—O51.980 (4)C6—H6A0.9900
Cu2—O7i1.973 (4)C6—H6B0.9900
Cu2—N12.167 (5)C6—C71.522 (8)
O1—C11.265 (7)C7—H7A0.9900
O2—C11.264 (7)C7—H7B0.9900
O3—C41.248 (7)C7—C81.519 (8)
O4—C41.271 (7)C9—H90.9500
O5—C51.249 (7)C9—C101.386 (9)
O6—C51.263 (7)C10—H100.9500
O7—C81.254 (7)C10—C111.361 (9)
O8—C81.256 (7)C11—H110.9500
O9—C141.218 (7)C11—C121.392 (8)
N1—C91.333 (8)C12—C131.389 (8)
N1—C131.340 (7)C13—H130.9500
N2—H20.8800C15—H150.9500
N2—C121.401 (8)C15—C161.387 (9)
N2—C141.371 (8)C16—H160.9500
N3—H30.8800C16—C171.383 (9)
N3—C141.376 (8)C17—H170.9500
N3—C181.400 (8)C17—C181.383 (8)
N4—C151.335 (8)C18—C191.385 (8)
N4—C191.327 (8)C19—H190.9500
C1—C21.504 (8)
O2—Cu1—O4i90.48 (18)O3—C4—O4125.4 (5)
O2—Cu1—O687.41 (18)O3—C4—C3119.0 (5)
O2—Cu1—O8i166.45 (17)O4—C4—C3115.5 (5)
O2—Cu1—N4ii91.11 (18)O5—C5—O6126.1 (6)
O4i—Cu1—N4ii89.25 (17)O5—C5—C6117.9 (6)
O6—Cu1—O4i169.11 (17)O6—C5—C6115.9 (5)
O6—Cu1—N4ii101.47 (18)C5—C6—H6A108.5
O8i—Cu1—O4i88.52 (17)C5—C6—H6B108.5
O8i—Cu1—O691.03 (18)H6A—C6—H6B107.5
O8i—Cu1—N4ii102.38 (18)C7—C6—C5115.0 (5)
O1—Cu2—O3i89.16 (18)C7—C6—H6A108.5
O1—Cu2—O590.34 (18)C7—C6—H6B108.5
O1—Cu2—N195.10 (17)C6—C7—H7A108.6
O3i—Cu2—N199.11 (18)C6—C7—H7B108.6
O5—Cu2—O3i166.52 (17)H7A—C7—H7B107.6
O5—Cu2—N194.36 (18)C8—C7—C6114.6 (5)
O7i—Cu2—O1168.62 (18)C8—C7—H7A108.6
O7i—Cu2—O3i88.50 (18)C8—C7—H7B108.6
O7i—Cu2—O589.35 (19)O7—C8—O8126.2 (6)
O7i—Cu2—N196.27 (18)O7—C8—C7117.2 (6)
C1—O1—Cu2119.2 (4)O8—C8—C7116.6 (5)
C1—O2—Cu1127.8 (4)N1—C9—H9119.2
C4—O3—Cu2iii123.8 (4)N1—C9—C10121.6 (6)
C4—O4—Cu1iii122.6 (4)C10—C9—H9119.2
C5—O5—Cu2124.8 (4)C9—C10—H10120.2
C5—O6—Cu1121.1 (4)C11—C10—C9119.7 (6)
C8—O7—Cu2iii125.0 (4)C11—C10—H10120.2
C8—O8—Cu1iii120.7 (4)C10—C11—H11120.3
C9—N1—Cu2120.0 (4)C10—C11—C12119.5 (6)
C9—N1—C13119.1 (5)C12—C11—H11120.3
C13—N1—Cu2120.7 (4)C11—C12—N2118.4 (6)
C12—N2—H2116.9C13—C12—N2123.7 (6)
C14—N2—H2116.9C13—C12—C11117.9 (6)
C14—N2—C12126.1 (5)N1—C13—C12122.3 (6)
C14—N3—H3116.7N1—C13—H13118.8
C14—N3—C18126.5 (5)C12—C13—H13118.8
C18—N3—H3116.7O9—C14—N2123.6 (6)
C15—N4—Cu1iv129.1 (4)O9—C14—N3122.9 (6)
C19—N4—Cu1iv111.2 (4)N2—C14—N3113.4 (6)
C19—N4—C15118.6 (6)N4—C15—H15119.2
O1—C1—C2118.4 (5)N4—C15—C16121.5 (6)
O2—C1—O1124.7 (6)C16—C15—H15119.2
O2—C1—C2116.9 (5)C15—C16—H16120.3
C1—C2—H2A108.9C17—C16—C15119.4 (6)
C1—C2—H2B108.9C17—C16—H16120.3
C1—C2—C3113.5 (5)C16—C17—H17120.5
H2A—C2—H2B107.7C18—C17—C16119.0 (6)
C3—C2—H2A108.9C18—C17—H17120.5
C3—C2—H2B108.9C17—C18—N3120.1 (6)
C2—C3—H3A108.6C17—C18—C19117.7 (6)
C2—C3—H3B108.6C19—C18—N3122.1 (6)
H3A—C3—H3B107.5N4—C19—C18123.7 (6)
C4—C3—C2114.8 (5)N4—C19—H19118.2
C4—C3—H3A108.6C18—C19—H19118.2
C4—C3—H3B108.6
Cu1—O2—C1—O14.2 (9)N4—C15—C16—C171.5 (9)
Cu1—O2—C1—C2175.2 (4)C1—C2—C3—C478.3 (7)
Cu1iii—O4—C4—O35.2 (8)C2—C3—C4—O322.2 (8)
Cu1iii—O4—C4—C3177.9 (4)C2—C3—C4—O4160.7 (5)
Cu1—O6—C5—O52.4 (9)C5—C6—C7—C875.8 (7)
Cu1—O6—C5—C6179.4 (4)C6—C7—C8—O732.4 (8)
Cu1iii—O8—C8—O70.4 (9)C6—C7—C8—O8149.6 (5)
Cu1iii—O8—C8—C7177.5 (4)C9—N1—C13—C120.7 (9)
Cu1iv—N4—C15—C16167.8 (4)C9—C10—C11—C120.3 (9)
Cu1iv—N4—C19—C18169.4 (5)C10—C11—C12—N2179.0 (6)
Cu2—O1—C1—O24.5 (8)C10—C11—C12—C130.0 (9)
Cu2—O1—C1—C2176.2 (4)C11—C12—C13—N10.5 (9)
Cu2iii—O3—C4—O40.4 (8)C12—N2—C14—O96.2 (9)
Cu2iii—O3—C4—C3176.4 (4)C12—N2—C14—N3175.0 (5)
Cu2—O5—C5—O62.4 (9)C13—N1—C9—C100.3 (9)
Cu2—O5—C5—C6174.6 (4)C14—N2—C12—C11174.2 (5)
Cu2iii—O7—C8—O85.8 (9)C14—N2—C12—C136.8 (9)
Cu2iii—O7—C8—C7176.4 (4)C14—N3—C18—C17166.6 (6)
Cu2—N1—C9—C10174.5 (5)C14—N3—C18—C1916.7 (9)
Cu2—N1—C13—C12174.1 (4)C15—N4—C19—C180.2 (9)
O1—C1—C2—C3157.7 (5)C15—C16—C17—C181.6 (9)
O2—C1—C2—C322.9 (8)C16—C17—C18—N3177.7 (5)
O5—C5—C6—C7150.1 (6)C16—C17—C18—C190.9 (9)
O6—C5—C6—C732.6 (8)C17—C18—C19—N40.3 (9)
N1—C9—C10—C110.2 (10)C18—N3—C14—O91.0 (10)
N2—C12—C13—N1179.5 (5)C18—N3—C14—N2177.8 (5)
N3—C18—C19—N4177.0 (5)C19—N4—C15—C160.8 (9)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O4v0.882.213.042 (6)157
N3—H3···O4v0.882.363.174 (6)154
C2—H2A···O30.992.482.815 (7)100
C3—H3A···O20.992.382.744 (7)101
C6—H6A···O70.992.472.825 (7)100
C7—H7B···O60.992.472.824 (8)101
C9—H9···O50.952.743.196 (8)110
C13—H13···O90.952.172.800 (8)123
C19—H19···O2iv0.952.352.965 (8)122
C19—H19···O4vi0.952.843.126 (7)98
C19—H19···O90.952.152.786 (8)124
Symmetry codes: (iv) x+1, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x+1, y3/2, z+1/2.
 

Funding information

Funding for this research was provided by: Lyman Briggs College, Michigan State University.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). COSMO. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalmer, D. (2020). CrystalMakerX. Crystal Maker Software, Begbroke, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUebler, J. W., Pochodylo, A. L., Staples, R. J. & LaDuca, R. L. (2013). Cryst. Growth Des. 13, 2220–2232.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146