organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N′-[1,4-Phenyl­enebis(imino­carbon­yl)]bis­­(L-phenyl­alanine) tetra­hydro­furan disolvate

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany
*Correspondence e-mail: manuel.stapf@chemie.tu-freiberg.de

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 30 June 2023; accepted 24 August 2023; online 8 September 2023)

The title compound, C26H26N4O6·2C4H8O, representing a bis-urea with terminal phenyl­alanine units, crystallized with two tetra­hydro­furan (THF) mol­ecules. The main mol­ecule is located on a crystallographic twofold axis, while the solvent mol­ecule is disordered over two positions, with occupancies of 0.571 (15) and 0.429 (15). The host mol­ecules are linked by N—H⋯O=C hydrogen bonds and C—H⋯O contacts with R21(6) and R21(7) ring motifs. The THF mol­ecules enclosed in the crystal are connected to the bis-urea compound via O—H⋯O and C—H⋯O inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Bis-urea compounds containing a central 1,4-phenyl­ene unit have been shown to be suitable mol­ecules for anion recognition (Stapf et al., 2015[Stapf, M., Seichter, W. & Weber, E. (2015). Z. Naturforsch. Teil B, 70, 409-419.]; Casula et al., 2016[Casula, A., Bazzicalupi, C., Bettoschi, A., Cadoni, E., Coles, S. J., Horton, P. N., Isaia, F., Lippolis, V., Mapp, L. K., Marini, G. M., Montis, R., Scorciapino, M. A. & Caltagirone, C. (2016). Dalton Trans. 45, 3078-3085.]; Manna et al., 2018[Manna, U., Das, A. & Das, G. (2018). Cryst. Growth Des. 18, 6801-6815.]; Manna & Das, 2019[Manna, U. & Das, G. (2019). CrystEngComm, 21, 65-76.], 2020[Manna, U. & Das, G. (2020). J. Mol. Struct. 1202, 127289.]; Das et al., 2020[Das, A., Nayak, B. & Das, G. (2020). CrystEngComm, 22, 2197-2207.]). In this context, we introduced compounds combining this scaffold and various amino acids [such as L-valine, L-leucine, L-proline, (R)-3-piperidine­carb­oxy­lic acid, L-threonine or even L-phenyl­alanine], whose amino group is part of the urea moiety, among them the title compound, possessing L-phenyl­alanine units (Stapf et al., 2015[Stapf, M., Seichter, W. & Weber, E. (2015). Z. Naturforsch. Teil B, 70, 409-419.]). Furthermore, we have already reported the crystal structure of a supra­molecular coordination polymer of the title compound with lead(II) (Stapf et al., 2012[Stapf, M., Böhle, T., Seichter, W., Mertens, F. O. R. L. & Weber, E. (2012). Z. Naturforsch. Teil B, 67, 1166-1172.]). In the present article, we describe the crystal structure of the tetra­hydro­furan (THF) disolvate.

The title compound was found to crystallize in the tetra­gonal space group I41 with half a mol­ecule of the bis-urea compound and one THF mol­ecule (Fig. 1[link]), which is disordered over two positions (57:43). Within a single mol­ecule possessing a twofold rotation axis, the plane of the phenyl­ene unit includes a dihedral angle with the peripheral arene rings of 88.4 (1)° and with the planes of the urea moieties of 19.4 (2)°. This small angle may be associated with an intra­molecular C—H⋯O inter­action (H⋯O = 2.35 Å) between the phenyl­ene core and the urea moiety. Furthermore, the carb­oxy group is almost perpendicular to the central aromatic ring, showing a dihedral angle of 82.9 (1)°, and the phenyl­ene units of adjacent mol­ecules are oriented orthogonal with respect to each other.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, including the atom-numbering scheme. Atoms are drawn with displacement ellipsoids at the 50% probability level. The intra­molecular C—H⋯O inter­action, as well as the inter­molecular hydrogen bonding between the carb­oxy group and the THF mol­ecule, are shown as dashed lines. Both disordered parts (57:43) of the THF mol­ecule are displayed. Unlabelled atoms are generated by the symmetry operation −x + 1, −y, z.

The dominant inter­molecular inter­actions between urea moieties of neighbouring mol­ecules are inverse bifurcated hydrogen bonds of the N—H⋯O=C type [H⋯O = 2.08 (4) and 2.32 (3) Å; Table 1[link]], which can be described by the graph set [R_{2}^{1}](6) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Fig. 2[link]). Unlike in the previously published coordination polymer (Stapf et al., 2012[Stapf, M., Böhle, T., Seichter, W., Mertens, F. O. R. L. & Weber, E. (2012). Z. Naturforsch. Teil B, 67, 1166-1172.]), in which the urea groups form two-dimensional hydrogen-bridged ribbons (H⋯O = 2.06–2.26 Å), the structure presented here is characterized by supra­molecular chains [graph set C(4)]. The angle between the planes of adjacent urea moieties is 83.7 (1)°, thus they are nearly perpendicular to one other. Such a motif is also well known in the literature (for examples, see: Albrecht et al., 2002[Albrecht, M., Witt, K., Fröhlich, R. & Kataeva, O. (2002). Tetrahedron, 58, 561-567.]; Berkessel et al., 2006[Berkessel, A., Mukherjee, S., Müller, T. N., Cleemann, F., Roland, K., Brandenburg, M., Neudörfl, J.-M. & Lex, J. (2006). Org. Biomol. Chem. 4, 4319-4330.]; Saxena et al., 2014[Saxena, P., Thirupathi, N. & Nethaji, M. (2014). Organometallics, 33, 5554-5565.]; Shugrue et al., 2019[Shugrue, C. R., Sculimbrene, B. R., Jarvo, E. R., Mercado, B. Q. & Miller, S. J. (2019). J. Org. Chem. 84, 1664-1672.]). The N atoms do not act as acceptors for hydrogen bonds. Instead, the linkage of two adjacent mol­ecules is supported by the formation of C—H⋯O=C contacts (H⋯O = 2.55 and 2.70 Å) between the C—H groups of phenyl­alanine and an O atom of a carb­oxy group which acts as a bifurcated acceptor [graph set [R_{2}^{1}](7); Fig. 2[link]].

Table 1
Hydrogen-bond geometry (Å, °)

Cg is defined as the centre of gravity of the rings: Cg1 is ring C1–C6 and Cg2 is C10/C11/C12/C10′/C11′/C12′, with primed atoms generated by the symmetry code (−x + 1, −y, z).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (4) 2.32 (3) 3.091 (3) 153 (3)
N2—H2N⋯O1i 0.88 (3) 2.08 (4) 2.937 (3) 163 (3)
O3—H3O⋯O4Aii 0.90 (3) 1.73 (3) 2.623 (7) 175 (7)
C5—H5⋯O2iii 0.95 2.55 3.464 (4) 161
C8—H8⋯O2iii 1.00 2.70 3.629 (4) 155
C11—H11⋯O1 0.95 2.35 2.916 (3) 118
C14A—H14B⋯O3iv 0.99 2.78 3.581 (18) 139
C16A—H16ACg1v 0.99 2.61 3.497 (8) 149
C16B—H16DCg1v 0.99 2.82 3.449 (10) 122
C17A—H17BCg2vi 0.99 3.00 3.574 (8) 118
Symmetry codes: (i) [-y+{\script{1\over 2}}, x, z-{\script{1\over 4}}]; (ii) [-y, x-{\script{1\over 2}}, z+{\script{1\over 4}}]; (iii) [y, -x+{\script{1\over 2}}, z+{\script{1\over 4}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) x, y+1, z; (vi) [y+{\script{1\over 2}}, -x+1, z-{\script{1\over 4}}].
[Figure 2]
Figure 2
Excerpt of the crystal packing showing the [R_{2}^{1}](6) and [R_{2}^{1}](7) ring motifs of the N—H⋯O=C and C—H⋯O=C(OH) inter­actions drawn as dashed lines. The THF mol­ecules and the H atoms not involved in the inter­actions have been omitted for clarity.

The crystal structure exhibits cavities which are occupied by THF mol­ecules requiring about 961 Å3 (corresponding to about 29% of the unit-cell volume). The cavities are bounded by the nonpolar phenyl­ene and arene units of the title compound. In addition, the carb­oxy groups point into the inter­ior of these cavities and form O—H⋯O hydrogen bonds with the THF O atom [H⋯O = 1.73 (3) Å]. Further stabilization of the mol­ecular network, each involving the THF mol­ecules, is realized by C—H⋯O contacts with the carb­oxy group of an adjacent mol­ecule (H⋯O = 2.78 Å) and weak C—H⋯π contacts (H⋯Cg = 2.61–3.00 Å) with the central benzene core or peripheral arene substituents.

Synthesis and crystallization

The synthetic and spectroscopic details for the title compound have been reported previously (Stapf et al., 2012[Stapf, M., Böhle, T., Seichter, W., Mertens, F. O. R. L. & Weber, E. (2012). Z. Naturforsch. Teil B, 67, 1166-1172.], 2015[Stapf, M., Seichter, W. & Weber, E. (2015). Z. Naturforsch. Teil B, 70, 409-419.]). Single crystals suitable for X-ray analysis were obtained as colourless prisms by slow evaporation of a saturated solution of the bis-urea compound in tetra­hydro­furan.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms at N1 and N2 were located in a difference Fourier map and refined freely. The H atom at O3 was also located in the difference Fourier map but refined using a DFIX restraint at 0.84 (2) Å. Other H atoms were included using a riding model starting from calculated positions (aromatic C—H = 0.95 Å, methyl­ene C—H = 0.99 Å, and alkyl C—H = 1.00 Å). The Uiso(H) values were fixed at 1.2 times the equivalent Ueq value of the parent C atoms. The THF solvent mol­ecule is disordered over at least two positions [refined occupancies 0.571 (15) and 0.429 (15)]. Therefore, the solvent mol­ecule was refined using ISOR for C16A, C16B, C17A and C17B (approximate isotropic behaviour) and SADI (same distances over pairs of bonded atoms) restraints (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The absolute structure of the title compound has been assigned by reference to an unchanging chiral centre in the synthetic procedure, not by anomalous dispersion effects in the diffraction experiment.

Table 2
Experimental details

Crystal data
Chemical formula C26H26N4O6·2C4H8O
Mr 634.71
Crystal system, space group Tetragonal, I41
Temperature (K) 153
a, c (Å) 13.632 (4), 17.507 (6)
V3) 3253 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.10 × 0.05 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2T
No. of measured, independent and observed [I > 2σ(I)] reflections 25670, 3554, 3269
Rint 0.028
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.05
No. of reflections 3554
No. of parameters 266
No. of restraints 95
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.20
Computer programs: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and shelXle (Hübschle et al., 2011).

N,N'-[1,4-Phenylenebis(iminocarbonyl)]bis(L-phenylalanine) tetrahydrofuran disolvate top
Crystal data top
C26H26N4O6·2C4H8ODx = 1.296 Mg m3
Mr = 634.71Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41Cell parameters from 1266 reflections
a = 13.632 (4) Åθ = 3.1–26.7°
c = 17.507 (6) ŵ = 0.09 mm1
V = 3253 (2) Å3T = 153 K
Z = 4Chunk, colourless
F(000) = 13520.10 × 0.05 × 0.04 mm
Data collection top
STOE IPDS 2T
diffractometer
3269 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.028
Plane graphite monochromatorθmax = 27.0°, θmin = 3.0°
Detector resolution: 6.67 pixels mm-1h = 1717
rotation method scansk = 1717
25670 measured reflectionsl = 2222
3554 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0557P)2 + 2.0532P]
where P = (Fo2 + 2Fc2)/3
3554 reflections(Δ/σ)max = 0.002
266 parametersΔρmax = 0.31 e Å3
95 restraintsΔρmin = 0.20 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.38152 (16)0.16933 (16)0.54757 (12)0.0285 (4)
H1N0.376 (2)0.194 (2)0.504 (2)0.030 (8)*
N20.27971 (16)0.29428 (15)0.58122 (12)0.0278 (4)
H2N0.285 (2)0.310 (2)0.533 (2)0.034 (8)*
O10.31329 (14)0.17368 (13)0.66808 (10)0.0302 (4)
O20.11068 (16)0.19008 (15)0.57508 (14)0.0445 (5)
O30.02642 (16)0.30373 (19)0.63921 (15)0.0529 (6)
H3O0.023 (4)0.263 (4)0.627 (5)0.14 (3)*
C10.3225 (2)0.5393 (2)0.54681 (18)0.0389 (6)
H10.3026270.5245280.4960960.047*
C20.4061 (2)0.5960 (2)0.55894 (19)0.0460 (7)
H2A0.4427630.6195100.5165910.055*
C30.4360 (2)0.6185 (2)0.6331 (2)0.0497 (8)
H30.4930130.6570490.6415310.060*
C40.3818 (3)0.5840 (2)0.69431 (19)0.0466 (7)
H40.4017260.5990880.7449670.056*
C50.2986 (2)0.5276 (2)0.68217 (16)0.0380 (6)
H50.2620050.5045950.7247420.046*
C60.26774 (19)0.50397 (18)0.60822 (16)0.0313 (5)
C70.17887 (19)0.44008 (19)0.59624 (15)0.0327 (6)
H7A0.1612320.4401970.5413780.039*
H7B0.1228630.4676600.6251260.039*
C80.19711 (18)0.33349 (18)0.62249 (14)0.0283 (5)
H80.2130170.3337950.6782560.034*
C90.32327 (17)0.20934 (17)0.60329 (13)0.0252 (5)
C100.43982 (17)0.08384 (17)0.55283 (14)0.0250 (5)
C110.47052 (18)0.04159 (18)0.62133 (14)0.0275 (5)
H110.4509350.0699670.6684860.033*
C120.4700 (2)0.0413 (2)0.48385 (14)0.0341 (6)
H120.4493940.0689880.4367340.041*
C130.1072 (2)0.2663 (2)0.60914 (15)0.0370 (6)
O4A0.6924 (5)0.1252 (4)0.3577 (7)0.048 (2)0.571 (15)
C14A0.5578 (8)0.2254 (9)0.3317 (12)0.062 (5)0.571 (15)
H14A0.5194200.2243670.3796700.074*0.571 (15)
H14B0.5152060.2476030.2892620.074*0.571 (15)
C15A0.6031 (10)0.1256 (10)0.3148 (10)0.046 (4)0.571 (15)
H15A0.5590790.0719680.3316440.055*0.571 (15)
H15B0.6163520.1180030.2595580.055*0.571 (15)
C16A0.7185 (6)0.2206 (5)0.3801 (6)0.057 (2)0.571 (15)
H16A0.7871870.2348620.3655130.068*0.571 (15)
H16B0.7119660.2281350.4361020.068*0.571 (15)
C17A0.6488 (4)0.2893 (4)0.3391 (4)0.0483 (19)0.571 (15)
H17A0.6746770.3086540.2884020.058*0.571 (15)
H17B0.6354960.3489370.3696270.058*0.571 (15)
O4B0.6865 (10)0.1184 (7)0.3439 (12)0.081 (5)0.429 (15)
C14B0.5595 (10)0.2278 (11)0.3178 (12)0.043 (4)0.429 (15)
H14C0.4915710.2256480.3377870.052*0.429 (15)
H14D0.5604010.2684100.2708820.052*0.429 (15)
C15B0.5969 (15)0.1248 (10)0.3012 (13)0.046 (4)0.429 (15)
H15C0.5491840.0747720.3185030.056*0.429 (15)
H15D0.6091680.1158310.2459040.056*0.429 (15)
C16B0.7256 (7)0.2178 (7)0.3503 (8)0.053 (3)0.429 (15)
H16C0.7489520.2435470.3006630.064*0.429 (15)
H16D0.7786080.2224870.3887810.064*0.429 (15)
C17B0.6294 (8)0.2691 (10)0.3774 (10)0.088 (4)0.429 (15)
H17C0.6107770.2492810.4298180.105*0.429 (15)
H17D0.6342100.3414530.3744490.105*0.429 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0345 (11)0.0309 (10)0.0202 (9)0.0040 (9)0.0040 (8)0.0030 (8)
N20.0338 (11)0.0261 (10)0.0235 (10)0.0025 (8)0.0050 (8)0.0009 (8)
O10.0355 (10)0.0342 (9)0.0209 (8)0.0044 (7)0.0033 (7)0.0026 (7)
O20.0431 (11)0.0363 (11)0.0540 (13)0.0057 (8)0.0076 (10)0.0039 (9)
O30.0357 (11)0.0657 (15)0.0574 (14)0.0110 (10)0.0096 (10)0.0175 (12)
C10.0424 (15)0.0388 (14)0.0355 (13)0.0037 (12)0.0062 (12)0.0026 (12)
C20.0465 (17)0.0469 (17)0.0445 (17)0.0021 (13)0.0145 (14)0.0026 (13)
C30.0425 (16)0.0437 (17)0.063 (2)0.0089 (13)0.0042 (15)0.0104 (15)
C40.0492 (18)0.0451 (17)0.0454 (16)0.0092 (14)0.0022 (13)0.0104 (13)
C50.0451 (16)0.0353 (14)0.0337 (14)0.0013 (12)0.0016 (12)0.0016 (11)
C60.0337 (13)0.0249 (11)0.0353 (13)0.0066 (10)0.0010 (10)0.0003 (10)
C70.0294 (12)0.0328 (13)0.0360 (14)0.0061 (10)0.0019 (10)0.0012 (11)
C80.0277 (11)0.0333 (12)0.0240 (11)0.0004 (10)0.0008 (9)0.0005 (9)
C90.0268 (11)0.0263 (11)0.0224 (11)0.0041 (9)0.0001 (9)0.0019 (9)
C100.0250 (11)0.0284 (11)0.0218 (10)0.0018 (9)0.0011 (9)0.0006 (9)
C110.0309 (11)0.0306 (12)0.0210 (11)0.0013 (10)0.0007 (9)0.0018 (9)
C120.0396 (14)0.0427 (15)0.0199 (11)0.0115 (12)0.0000 (10)0.0012 (10)
C130.0344 (13)0.0479 (16)0.0289 (13)0.0011 (12)0.0001 (11)0.0060 (11)
O4A0.038 (3)0.034 (3)0.072 (5)0.003 (2)0.021 (3)0.001 (2)
C14A0.048 (6)0.054 (7)0.083 (9)0.003 (5)0.003 (5)0.012 (5)
C15A0.037 (5)0.059 (7)0.043 (5)0.006 (4)0.002 (3)0.015 (4)
C16A0.057 (3)0.055 (3)0.059 (3)0.003 (2)0.009 (2)0.002 (2)
C17A0.049 (3)0.038 (2)0.058 (3)0.0014 (19)0.006 (2)0.000 (2)
O4B0.113 (10)0.064 (6)0.065 (6)0.058 (6)0.020 (5)0.008 (5)
C14B0.040 (7)0.047 (7)0.042 (5)0.024 (5)0.003 (4)0.003 (4)
C15B0.056 (8)0.025 (6)0.058 (9)0.009 (5)0.011 (5)0.010 (5)
C16B0.052 (3)0.053 (3)0.055 (4)0.001 (2)0.007 (3)0.003 (3)
C17B0.088 (5)0.087 (5)0.089 (5)0.009 (3)0.004 (3)0.004 (3)
Geometric parameters (Å, º) top
N1—C91.371 (3)C11—H110.9500
N1—C101.413 (3)C12—C12i1.390 (5)
N1—H1N0.84 (4)C12—H120.9500
N2—C91.357 (3)O4A—C16A1.405 (8)
N2—C81.441 (3)O4A—C15A1.430 (8)
N2—H2N0.88 (3)C14A—C15A1.522 (9)
O1—C91.241 (3)C14A—C17A1.522 (10)
O2—C131.199 (4)C14A—H14A0.9900
O3—C131.324 (4)C14A—H14B0.9900
O3—H3O0.90 (3)C15A—H15A0.9900
C1—C21.393 (5)C15A—H15B0.9900
C1—C61.395 (4)C16A—C17A1.515 (8)
C1—H10.9500C16A—H16A0.9900
C2—C31.395 (5)C16A—H16B0.9900
C2—H2A0.9500C17A—H17A0.9900
C3—C41.383 (5)C17A—H17B0.9900
C3—H30.9500O4B—C15B1.435 (10)
C4—C51.387 (4)O4B—C16B1.460 (10)
C4—H40.9500C14B—C15B1.521 (9)
C5—C61.399 (4)C14B—C17B1.521 (11)
C5—H50.9500C14B—H14C0.9900
C6—C71.507 (4)C14B—H14D0.9900
C7—C81.544 (3)C15B—H15C0.9900
C7—H7A0.9900C15B—H15D0.9900
C7—H7B0.9900C16B—C17B1.560 (10)
C8—C131.547 (4)C16B—H16C0.9900
C8—H81.0000C16B—H16D0.9900
C10—C111.395 (3)C17B—H17C0.9900
C10—C121.402 (3)C17B—H17D0.9900
C11—C11i1.390 (5)
C9—N1—C10127.4 (2)O3—C13—C8111.8 (3)
C9—N1—H1N116 (2)C16A—O4A—C15A111.0 (7)
C10—N1—H1N116 (2)C15A—C14A—C17A101.4 (8)
C9—N2—C8121.0 (2)C15A—C14A—H14A111.5
C9—N2—H2N117 (2)C17A—C14A—H14A111.5
C8—N2—H2N117 (2)C15A—C14A—H14B111.5
C13—O3—H3O107 (5)C17A—C14A—H14B111.5
C2—C1—C6120.8 (3)H14A—C14A—H14B109.3
C2—C1—H1119.6O4A—C15A—C14A104.3 (7)
C6—C1—H1119.6O4A—C15A—H15A110.9
C1—C2—C3120.2 (3)C14A—C15A—H15A110.9
C1—C2—H2A119.9O4A—C15A—H15B110.9
C3—C2—H2A119.9C14A—C15A—H15B110.9
C4—C3—C2119.4 (3)H15A—C15A—H15B108.9
C4—C3—H3120.3O4A—C16A—C17A106.4 (6)
C2—C3—H3120.3O4A—C16A—H16A110.5
C3—C4—C5120.4 (3)C17A—C16A—H16A110.5
C3—C4—H4119.8O4A—C16A—H16B110.5
C5—C4—H4119.8C17A—C16A—H16B110.5
C4—C5—C6121.0 (3)H16A—C16A—H16B108.6
C4—C5—H5119.5C16A—C17A—C14A101.4 (6)
C6—C5—H5119.5C16A—C17A—H17A111.5
C1—C6—C5118.2 (3)C14A—C17A—H17A111.5
C1—C6—C7121.5 (3)C16A—C17A—H17B111.5
C5—C6—C7120.2 (2)C14A—C17A—H17B111.5
C6—C7—C8111.9 (2)H17A—C17A—H17B109.3
C6—C7—H7A109.2C15B—O4B—C16B107.1 (10)
C8—C7—H7A109.2C15B—C14B—C17B105.2 (7)
C6—C7—H7B109.2C15B—C14B—H14C110.7
C8—C7—H7B109.2C17B—C14B—H14C110.7
H7A—C7—H7B107.9C15B—C14B—H14D110.7
N2—C8—C7109.0 (2)C17B—C14B—H14D110.7
N2—C8—C13108.9 (2)H14C—C14B—H14D108.8
C7—C8—C13112.6 (2)O4B—C15B—C14B104.0 (8)
N2—C8—H8108.8O4B—C15B—H15C111.0
C7—C8—H8108.8C14B—C15B—H15C111.0
C13—C8—H8108.8O4B—C15B—H15D111.0
O1—C9—N2123.1 (2)C14B—C15B—H15D111.0
O1—C9—N1123.9 (2)H15C—C15B—H15D109.0
N2—C9—N1113.0 (2)O4B—C16B—C17B97.6 (8)
C11—C10—C12118.8 (2)O4B—C16B—H16C112.2
C11—C10—N1124.4 (2)C17B—C16B—H16C112.2
C12—C10—N1116.8 (2)O4B—C16B—H16D112.2
C11i—C11—C10120.70 (14)C17B—C16B—H16D112.2
C11i—C11—H11119.7H16C—C16B—H16D109.8
C10—C11—H11119.7C14B—C17B—C16B98.8 (10)
C12i—C12—C10120.52 (15)C14B—C17B—H17C112.0
C12i—C12—H12119.7C16B—C17B—H17C112.0
C10—C12—H12119.7C14B—C17B—H17D112.0
O2—C13—O3124.4 (3)C16B—C17B—H17D112.0
O2—C13—C8123.9 (3)H17C—C17B—H17D109.7
C6—C1—C2—C30.1 (5)C9—N1—C10—C12161.9 (2)
C1—C2—C3—C40.1 (5)C12—C10—C11—C11i0.4 (4)
C2—C3—C4—C50.1 (5)N1—C10—C11—C11i178.7 (3)
C3—C4—C5—C60.2 (5)C11—C10—C12—C12i0.4 (5)
C2—C1—C6—C50.4 (4)N1—C10—C12—C12i178.1 (3)
C2—C1—C6—C7178.2 (3)N2—C8—C13—O25.8 (4)
C4—C5—C6—C10.5 (4)C7—C8—C13—O2126.8 (3)
C4—C5—C6—C7178.2 (3)N2—C8—C13—O3173.6 (2)
C1—C6—C7—C8110.2 (3)C7—C8—C13—O352.6 (3)
C5—C6—C7—C868.4 (3)C16A—O4A—C15A—C14A16.5 (18)
C9—N2—C8—C7167.2 (2)C17A—C14A—C15A—O4A34.2 (17)
C9—N2—C8—C1369.6 (3)C15A—O4A—C16A—C17A8.6 (15)
C6—C7—C8—N257.9 (3)O4A—C16A—C17A—C14A29.8 (13)
C6—C7—C8—C13178.9 (2)C15A—C14A—C17A—C16A38.3 (15)
C8—N2—C9—O118.6 (4)C16B—O4B—C15B—C14B28 (2)
C8—N2—C9—N1163.4 (2)C17B—C14B—C15B—O4B6 (2)
C10—N1—C9—O10.6 (4)C15B—O4B—C16B—C17B48.8 (18)
C10—N1—C9—N2177.4 (2)C15B—C14B—C17B—C16B34 (2)
C9—N1—C10—C1119.7 (4)O4B—C16B—C17B—C14B48.8 (16)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg is defined as the centre of gravity of the rings: Cg1 is C1···C6; Cg2 is C10/C11/C12/C10'/C11'/C12' with primed atoms generated by symmetry -x+1, -y, z.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1ii0.84 (4)2.32 (3)3.091 (3)153 (3)
N2—H2N···O1ii0.88 (3)2.08 (4)2.937 (3)163 (3)
O3—H3O···O4Aiii0.90 (3)1.73 (3)2.623 (7)175 (7)
C5—H5···O2iv0.952.553.464 (4)161
C8—H8···O2iv1.002.703.629 (4)155
C11—H11···O10.952.352.916 (3)118
C14A—H14B···O3v0.992.783.581 (18)139
C16A—H16A···Cg1vi0.992.613.497 (8)149
C16B—H16D···Cg1vi0.992.823.449 (10)122
C17A—H17B···Cg2vii0.993.003.574 (8)118
Symmetry codes: (ii) y+1/2, x, z1/4; (iii) y, x1/2, z+1/4; (iv) y, x+1/2, z+1/4; (v) x+1/2, y+1/2, z1/2; (vi) x, y+1, z; (vii) y+1/2, x+1, z1/4.
 

Acknowledgements

The authors would like to thank Professor Dr Edwin Weber and Professor Dr Monika Mazik (Technische Universität Bergakademie Freiberg) for their support.

Funding information

Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.

References

First citationAlbrecht, M., Witt, K., Fröhlich, R. & Kataeva, O. (2002). Tetrahedron, 58, 561–567.  Web of Science CSD CrossRef CAS Google Scholar
First citationBerkessel, A., Mukherjee, S., Müller, T. N., Cleemann, F., Roland, K., Brandenburg, M., Neudörfl, J.-M. & Lex, J. (2006). Org. Biomol. Chem. 4, 4319–4330.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasula, A., Bazzicalupi, C., Bettoschi, A., Cadoni, E., Coles, S. J., Horton, P. N., Isaia, F., Lippolis, V., Mapp, L. K., Marini, G. M., Montis, R., Scorciapino, M. A. & Caltagirone, C. (2016). Dalton Trans. 45, 3078–3085.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDas, A., Nayak, B. & Das, G. (2020). CrystEngComm, 22, 2197–2207.  Web of Science CSD CrossRef CAS Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationManna, U., Das, A. & Das, G. (2018). Cryst. Growth Des. 18, 6801–6815.  Web of Science CSD CrossRef CAS Google Scholar
First citationManna, U. & Das, G. (2019). CrystEngComm, 21, 65–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationManna, U. & Das, G. (2020). J. Mol. Struct. 1202, 127289.  Web of Science CSD CrossRef Google Scholar
First citationSaxena, P., Thirupathi, N. & Nethaji, M. (2014). Organometallics, 33, 5554–5565.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShugrue, C. R., Sculimbrene, B. R., Jarvo, E. R., Mercado, B. Q. & Miller, S. J. (2019). J. Org. Chem. 84, 1664–1672.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationStapf, M., Böhle, T., Seichter, W., Mertens, F. O. R. L. & Weber, E. (2012). Z. Naturforsch. Teil B, 67, 1166–1172.  Web of Science CrossRef CAS Google Scholar
First citationStapf, M., Seichter, W. & Weber, E. (2015). Z. Naturforsch. Teil B, 70, 409–419.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146