organic compounds
N,N′-[1,4-Phenylenebis(iminocarbonyl)]bis(L-phenylalanine) tetrahydrofuran disolvate
aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany
*Correspondence e-mail: manuel.stapf@chemie.tu-freiberg.de
The title compound, C26H26N4O6·2C4H8O, representing a bis-urea with terminal phenylalanine units, crystallized with two tetrahydrofuran (THF) molecules. The main molecule is located on a crystallographic twofold axis, while the solvent molecule is disordered over two positions, with occupancies of 0.571 (15) and 0.429 (15). The host molecules are linked by N—H⋯O=C hydrogen bonds and C—H⋯O contacts with R21(6) and R21(7) ring motifs. The THF molecules enclosed in the crystal are connected to the bis-urea compound via O—H⋯O and C—H⋯O interactions.
Keywords: crystal structure; urea; amino acid; hydrogen bonding; tetrahydrofuran solvate.
CCDC reference: 2290568
Structure description
Bis-urea compounds containing a central 1,4-phenylene unit have been shown to be suitable molecules for anion recognition (Stapf et al., 2015; Casula et al., 2016; Manna et al., 2018; Manna & Das, 2019, 2020; Das et al., 2020). In this context, we introduced compounds combining this scaffold and various amino acids [such as L-valine, L-leucine, L-proline, (R)-3-piperidinecarboxylic acid, L-threonine or even L-phenylalanine], whose amino group is part of the urea moiety, among them the title compound, possessing L-phenylalanine units (Stapf et al., 2015). Furthermore, we have already reported the of a supramolecular coordination polymer of the title compound with lead(II) (Stapf et al., 2012). In the present article, we describe the of the tetrahydrofuran (THF) disolvate.
The title compound was found to crystallize in the tetragonal I41 with half a molecule of the bis-urea compound and one THF molecule (Fig. 1), which is disordered over two positions (57:43). Within a single molecule possessing a twofold rotation axis, the plane of the phenylene unit includes a dihedral angle with the peripheral arene rings of 88.4 (1)° and with the planes of the urea moieties of 19.4 (2)°. This small angle may be associated with an intramolecular C—H⋯O interaction (H⋯O = 2.35 Å) between the phenylene core and the urea moiety. Furthermore, the carboxy group is almost perpendicular to the central aromatic ring, showing a dihedral angle of 82.9 (1)°, and the phenylene units of adjacent molecules are oriented orthogonal with respect to each other.
The dominant intermolecular interactions between urea moieties of neighbouring molecules are inverse bifurcated hydrogen bonds of the N—H⋯O=C type [H⋯O = 2.08 (4) and 2.32 (3) Å; Table 1], which can be described by the graph set (6) (Etter, 1990; Fig. 2). Unlike in the previously published coordination polymer (Stapf et al., 2012), in which the urea groups form two-dimensional hydrogen-bridged ribbons (H⋯O = 2.06–2.26 Å), the structure presented here is characterized by supramolecular chains [graph set C(4)]. The angle between the planes of adjacent urea moieties is 83.7 (1)°, thus they are nearly perpendicular to one other. Such a motif is also well known in the literature (for examples, see: Albrecht et al., 2002; Berkessel et al., 2006; Saxena et al., 2014; Shugrue et al., 2019). The N atoms do not act as acceptors for hydrogen bonds. Instead, the linkage of two adjacent molecules is supported by the formation of C—H⋯O=C contacts (H⋯O = 2.55 and 2.70 Å) between the C—H groups of phenylalanine and an O atom of a carboxy group which acts as a bifurcated acceptor [graph set (7); Fig. 2].
The 3 (corresponding to about 29% of the unit-cell volume). The cavities are bounded by the nonpolar phenylene and arene units of the title compound. In addition, the carboxy groups point into the interior of these cavities and form O—H⋯O hydrogen bonds with the THF O atom [H⋯O = 1.73 (3) Å]. Further stabilization of the molecular network, each involving the THF molecules, is realized by C—H⋯O contacts with the carboxy group of an adjacent molecule (H⋯O = 2.78 Å) and weak C—H⋯π contacts (H⋯Cg = 2.61–3.00 Å) with the central benzene core or peripheral arene substituents.
exhibits cavities which are occupied by THF molecules requiring about 961 ÅSynthesis and crystallization
The synthetic and spectroscopic details for the title compound have been reported previously (Stapf et al., 2012, 2015). Single crystals suitable for X-ray analysis were obtained as colourless prisms by slow evaporation of a of the bis-urea compound in tetrahydrofuran.
Refinement
Crystal data, data collection and structure . The H atoms at N1 and N2 were located in a difference Fourier map and refined freely. The H atom at O3 was also located in the difference Fourier map but refined using a DFIX restraint at 0.84 (2) Å. Other H atoms were included using a riding model starting from calculated positions (aromatic C—H = 0.95 Å, methylene C—H = 0.99 Å, and alkyl C—H = 1.00 Å). The Uiso(H) values were fixed at 1.2 times the equivalent Ueq value of the parent C atoms. The THF solvent molecule is disordered over at least two positions [refined occupancies 0.571 (15) and 0.429 (15)]. Therefore, the solvent molecule was refined using ISOR for C16A, C16B, C17A and C17B (approximate isotropic behaviour) and SADI (same distances over pairs of bonded atoms) restraints (Sheldrick, 2015b). The of the title compound has been assigned by reference to an unchanging chiral centre in the synthetic procedure, not by effects in the diffraction experiment.
details are summarized in Table 2
|
Structural data
CCDC reference: 2290568
https://doi.org/10.1107/S2414314623007435/bh4077sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623007435/bh4077Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623007435/bh4077Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and shelXle (Hübschle et al., 2011).C26H26N4O6·2C4H8O | Dx = 1.296 Mg m−3 |
Mr = 634.71 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, I41 | Cell parameters from 1266 reflections |
a = 13.632 (4) Å | θ = 3.1–26.7° |
c = 17.507 (6) Å | µ = 0.09 mm−1 |
V = 3253 (2) Å3 | T = 153 K |
Z = 4 | Chunk, colourless |
F(000) = 1352 | 0.10 × 0.05 × 0.04 mm |
STOE IPDS 2T diffractometer | 3269 reflections with I > 2σ(I) |
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | Rint = 0.028 |
Plane graphite monochromator | θmax = 27.0°, θmin = 3.0° |
Detector resolution: 6.67 pixels mm-1 | h = −17→17 |
rotation method scans | k = −17→17 |
25670 measured reflections | l = −22→22 |
3554 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: mixed |
wR(F2) = 0.107 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0557P)2 + 2.0532P] where P = (Fo2 + 2Fc2)/3 |
3554 reflections | (Δ/σ)max = 0.002 |
266 parameters | Δρmax = 0.31 e Å−3 |
95 restraints | Δρmin = −0.20 e Å−3 |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.38152 (16) | 0.16933 (16) | 0.54757 (12) | 0.0285 (4) | |
H1N | 0.376 (2) | 0.194 (2) | 0.504 (2) | 0.030 (8)* | |
N2 | 0.27971 (16) | 0.29428 (15) | 0.58122 (12) | 0.0278 (4) | |
H2N | 0.285 (2) | 0.310 (2) | 0.533 (2) | 0.034 (8)* | |
O1 | 0.31329 (14) | 0.17368 (13) | 0.66808 (10) | 0.0302 (4) | |
O2 | 0.11068 (16) | 0.19008 (15) | 0.57508 (14) | 0.0445 (5) | |
O3 | 0.02642 (16) | 0.30373 (19) | 0.63921 (15) | 0.0529 (6) | |
H3O | −0.023 (4) | 0.263 (4) | 0.627 (5) | 0.14 (3)* | |
C1 | 0.3225 (2) | 0.5393 (2) | 0.54681 (18) | 0.0389 (6) | |
H1 | 0.302627 | 0.524528 | 0.496096 | 0.047* | |
C2 | 0.4061 (2) | 0.5960 (2) | 0.55894 (19) | 0.0460 (7) | |
H2A | 0.442763 | 0.619510 | 0.516591 | 0.055* | |
C3 | 0.4360 (2) | 0.6185 (2) | 0.6331 (2) | 0.0497 (8) | |
H3 | 0.493013 | 0.657049 | 0.641531 | 0.060* | |
C4 | 0.3818 (3) | 0.5840 (2) | 0.69431 (19) | 0.0466 (7) | |
H4 | 0.401726 | 0.599088 | 0.744967 | 0.056* | |
C5 | 0.2986 (2) | 0.5276 (2) | 0.68217 (16) | 0.0380 (6) | |
H5 | 0.262005 | 0.504595 | 0.724742 | 0.046* | |
C6 | 0.26774 (19) | 0.50397 (18) | 0.60822 (16) | 0.0313 (5) | |
C7 | 0.17887 (19) | 0.44008 (19) | 0.59624 (15) | 0.0327 (6) | |
H7A | 0.161232 | 0.440197 | 0.541378 | 0.039* | |
H7B | 0.122863 | 0.467660 | 0.625126 | 0.039* | |
C8 | 0.19711 (18) | 0.33349 (18) | 0.62249 (14) | 0.0283 (5) | |
H8 | 0.213017 | 0.333795 | 0.678256 | 0.034* | |
C9 | 0.32327 (17) | 0.20934 (17) | 0.60329 (13) | 0.0252 (5) | |
C10 | 0.43982 (17) | 0.08384 (17) | 0.55283 (14) | 0.0250 (5) | |
C11 | 0.47052 (18) | 0.04159 (18) | 0.62133 (14) | 0.0275 (5) | |
H11 | 0.450935 | 0.069967 | 0.668486 | 0.033* | |
C12 | 0.4700 (2) | 0.0413 (2) | 0.48385 (14) | 0.0341 (6) | |
H12 | 0.449394 | 0.068988 | 0.436734 | 0.041* | |
C13 | 0.1072 (2) | 0.2663 (2) | 0.60914 (15) | 0.0370 (6) | |
O4A | 0.6924 (5) | 0.1252 (4) | 0.3577 (7) | 0.048 (2) | 0.571 (15) |
C14A | 0.5578 (8) | 0.2254 (9) | 0.3317 (12) | 0.062 (5) | 0.571 (15) |
H14A | 0.519420 | 0.224367 | 0.379670 | 0.074* | 0.571 (15) |
H14B | 0.515206 | 0.247603 | 0.289262 | 0.074* | 0.571 (15) |
C15A | 0.6031 (10) | 0.1256 (10) | 0.3148 (10) | 0.046 (4) | 0.571 (15) |
H15A | 0.559079 | 0.071968 | 0.331644 | 0.055* | 0.571 (15) |
H15B | 0.616352 | 0.118003 | 0.259558 | 0.055* | 0.571 (15) |
C16A | 0.7185 (6) | 0.2206 (5) | 0.3801 (6) | 0.057 (2) | 0.571 (15) |
H16A | 0.787187 | 0.234862 | 0.365513 | 0.068* | 0.571 (15) |
H16B | 0.711966 | 0.228135 | 0.436102 | 0.068* | 0.571 (15) |
C17A | 0.6488 (4) | 0.2893 (4) | 0.3391 (4) | 0.0483 (19) | 0.571 (15) |
H17A | 0.674677 | 0.308654 | 0.288402 | 0.058* | 0.571 (15) |
H17B | 0.635496 | 0.348937 | 0.369627 | 0.058* | 0.571 (15) |
O4B | 0.6865 (10) | 0.1184 (7) | 0.3439 (12) | 0.081 (5) | 0.429 (15) |
C14B | 0.5595 (10) | 0.2278 (11) | 0.3178 (12) | 0.043 (4) | 0.429 (15) |
H14C | 0.491571 | 0.225648 | 0.337787 | 0.052* | 0.429 (15) |
H14D | 0.560401 | 0.268410 | 0.270882 | 0.052* | 0.429 (15) |
C15B | 0.5969 (15) | 0.1248 (10) | 0.3012 (13) | 0.046 (4) | 0.429 (15) |
H15C | 0.549184 | 0.074772 | 0.318503 | 0.056* | 0.429 (15) |
H15D | 0.609168 | 0.115831 | 0.245904 | 0.056* | 0.429 (15) |
C16B | 0.7256 (7) | 0.2178 (7) | 0.3503 (8) | 0.053 (3) | 0.429 (15) |
H16C | 0.748952 | 0.243547 | 0.300663 | 0.064* | 0.429 (15) |
H16D | 0.778608 | 0.222487 | 0.388781 | 0.064* | 0.429 (15) |
C17B | 0.6294 (8) | 0.2691 (10) | 0.3774 (10) | 0.088 (4) | 0.429 (15) |
H17C | 0.610777 | 0.249281 | 0.429818 | 0.105* | 0.429 (15) |
H17D | 0.634210 | 0.341453 | 0.374449 | 0.105* | 0.429 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0345 (11) | 0.0309 (10) | 0.0202 (9) | 0.0040 (9) | 0.0040 (8) | 0.0030 (8) |
N2 | 0.0338 (11) | 0.0261 (10) | 0.0235 (10) | 0.0025 (8) | 0.0050 (8) | 0.0009 (8) |
O1 | 0.0355 (10) | 0.0342 (9) | 0.0209 (8) | 0.0044 (7) | 0.0033 (7) | 0.0026 (7) |
O2 | 0.0431 (11) | 0.0363 (11) | 0.0540 (13) | −0.0057 (8) | −0.0076 (10) | −0.0039 (9) |
O3 | 0.0357 (11) | 0.0657 (15) | 0.0574 (14) | −0.0110 (10) | 0.0096 (10) | −0.0175 (12) |
C1 | 0.0424 (15) | 0.0388 (14) | 0.0355 (13) | 0.0037 (12) | 0.0062 (12) | −0.0026 (12) |
C2 | 0.0465 (17) | 0.0469 (17) | 0.0445 (17) | −0.0021 (13) | 0.0145 (14) | −0.0026 (13) |
C3 | 0.0425 (16) | 0.0437 (17) | 0.063 (2) | −0.0089 (13) | 0.0042 (15) | −0.0104 (15) |
C4 | 0.0492 (18) | 0.0451 (17) | 0.0454 (16) | −0.0092 (14) | −0.0022 (13) | −0.0104 (13) |
C5 | 0.0451 (16) | 0.0353 (14) | 0.0337 (14) | −0.0013 (12) | 0.0016 (12) | −0.0016 (11) |
C6 | 0.0337 (13) | 0.0249 (11) | 0.0353 (13) | 0.0066 (10) | 0.0010 (10) | −0.0003 (10) |
C7 | 0.0294 (12) | 0.0328 (13) | 0.0360 (14) | 0.0061 (10) | −0.0019 (10) | 0.0012 (11) |
C8 | 0.0277 (11) | 0.0333 (12) | 0.0240 (11) | 0.0004 (10) | 0.0008 (9) | 0.0005 (9) |
C9 | 0.0268 (11) | 0.0263 (11) | 0.0224 (11) | −0.0041 (9) | 0.0001 (9) | −0.0019 (9) |
C10 | 0.0250 (11) | 0.0284 (11) | 0.0218 (10) | −0.0018 (9) | 0.0011 (9) | 0.0006 (9) |
C11 | 0.0309 (11) | 0.0306 (12) | 0.0210 (11) | 0.0013 (10) | 0.0007 (9) | −0.0018 (9) |
C12 | 0.0396 (14) | 0.0427 (15) | 0.0199 (11) | 0.0115 (12) | 0.0000 (10) | 0.0012 (10) |
C13 | 0.0344 (13) | 0.0479 (16) | 0.0289 (13) | −0.0011 (12) | 0.0001 (11) | 0.0060 (11) |
O4A | 0.038 (3) | 0.034 (3) | 0.072 (5) | −0.003 (2) | −0.021 (3) | −0.001 (2) |
C14A | 0.048 (6) | 0.054 (7) | 0.083 (9) | 0.003 (5) | −0.003 (5) | −0.012 (5) |
C15A | 0.037 (5) | 0.059 (7) | 0.043 (5) | −0.006 (4) | −0.002 (3) | −0.015 (4) |
C16A | 0.057 (3) | 0.055 (3) | 0.059 (3) | 0.003 (2) | −0.009 (2) | −0.002 (2) |
C17A | 0.049 (3) | 0.038 (2) | 0.058 (3) | 0.0014 (19) | 0.006 (2) | 0.000 (2) |
O4B | 0.113 (10) | 0.064 (6) | 0.065 (6) | 0.058 (6) | −0.020 (5) | −0.008 (5) |
C14B | 0.040 (7) | 0.047 (7) | 0.042 (5) | 0.024 (5) | −0.003 (4) | −0.003 (4) |
C15B | 0.056 (8) | 0.025 (6) | 0.058 (9) | 0.009 (5) | 0.011 (5) | 0.010 (5) |
C16B | 0.052 (3) | 0.053 (3) | 0.055 (4) | 0.001 (2) | −0.007 (3) | −0.003 (3) |
C17B | 0.088 (5) | 0.087 (5) | 0.089 (5) | 0.009 (3) | −0.004 (3) | −0.004 (3) |
N1—C9 | 1.371 (3) | C11—H11 | 0.9500 |
N1—C10 | 1.413 (3) | C12—C12i | 1.390 (5) |
N1—H1N | 0.84 (4) | C12—H12 | 0.9500 |
N2—C9 | 1.357 (3) | O4A—C16A | 1.405 (8) |
N2—C8 | 1.441 (3) | O4A—C15A | 1.430 (8) |
N2—H2N | 0.88 (3) | C14A—C15A | 1.522 (9) |
O1—C9 | 1.241 (3) | C14A—C17A | 1.522 (10) |
O2—C13 | 1.199 (4) | C14A—H14A | 0.9900 |
O3—C13 | 1.324 (4) | C14A—H14B | 0.9900 |
O3—H3O | 0.90 (3) | C15A—H15A | 0.9900 |
C1—C2 | 1.393 (5) | C15A—H15B | 0.9900 |
C1—C6 | 1.395 (4) | C16A—C17A | 1.515 (8) |
C1—H1 | 0.9500 | C16A—H16A | 0.9900 |
C2—C3 | 1.395 (5) | C16A—H16B | 0.9900 |
C2—H2A | 0.9500 | C17A—H17A | 0.9900 |
C3—C4 | 1.383 (5) | C17A—H17B | 0.9900 |
C3—H3 | 0.9500 | O4B—C15B | 1.435 (10) |
C4—C5 | 1.387 (4) | O4B—C16B | 1.460 (10) |
C4—H4 | 0.9500 | C14B—C15B | 1.521 (9) |
C5—C6 | 1.399 (4) | C14B—C17B | 1.521 (11) |
C5—H5 | 0.9500 | C14B—H14C | 0.9900 |
C6—C7 | 1.507 (4) | C14B—H14D | 0.9900 |
C7—C8 | 1.544 (3) | C15B—H15C | 0.9900 |
C7—H7A | 0.9900 | C15B—H15D | 0.9900 |
C7—H7B | 0.9900 | C16B—C17B | 1.560 (10) |
C8—C13 | 1.547 (4) | C16B—H16C | 0.9900 |
C8—H8 | 1.0000 | C16B—H16D | 0.9900 |
C10—C11 | 1.395 (3) | C17B—H17C | 0.9900 |
C10—C12 | 1.402 (3) | C17B—H17D | 0.9900 |
C11—C11i | 1.390 (5) | ||
C9—N1—C10 | 127.4 (2) | O3—C13—C8 | 111.8 (3) |
C9—N1—H1N | 116 (2) | C16A—O4A—C15A | 111.0 (7) |
C10—N1—H1N | 116 (2) | C15A—C14A—C17A | 101.4 (8) |
C9—N2—C8 | 121.0 (2) | C15A—C14A—H14A | 111.5 |
C9—N2—H2N | 117 (2) | C17A—C14A—H14A | 111.5 |
C8—N2—H2N | 117 (2) | C15A—C14A—H14B | 111.5 |
C13—O3—H3O | 107 (5) | C17A—C14A—H14B | 111.5 |
C2—C1—C6 | 120.8 (3) | H14A—C14A—H14B | 109.3 |
C2—C1—H1 | 119.6 | O4A—C15A—C14A | 104.3 (7) |
C6—C1—H1 | 119.6 | O4A—C15A—H15A | 110.9 |
C1—C2—C3 | 120.2 (3) | C14A—C15A—H15A | 110.9 |
C1—C2—H2A | 119.9 | O4A—C15A—H15B | 110.9 |
C3—C2—H2A | 119.9 | C14A—C15A—H15B | 110.9 |
C4—C3—C2 | 119.4 (3) | H15A—C15A—H15B | 108.9 |
C4—C3—H3 | 120.3 | O4A—C16A—C17A | 106.4 (6) |
C2—C3—H3 | 120.3 | O4A—C16A—H16A | 110.5 |
C3—C4—C5 | 120.4 (3) | C17A—C16A—H16A | 110.5 |
C3—C4—H4 | 119.8 | O4A—C16A—H16B | 110.5 |
C5—C4—H4 | 119.8 | C17A—C16A—H16B | 110.5 |
C4—C5—C6 | 121.0 (3) | H16A—C16A—H16B | 108.6 |
C4—C5—H5 | 119.5 | C16A—C17A—C14A | 101.4 (6) |
C6—C5—H5 | 119.5 | C16A—C17A—H17A | 111.5 |
C1—C6—C5 | 118.2 (3) | C14A—C17A—H17A | 111.5 |
C1—C6—C7 | 121.5 (3) | C16A—C17A—H17B | 111.5 |
C5—C6—C7 | 120.2 (2) | C14A—C17A—H17B | 111.5 |
C6—C7—C8 | 111.9 (2) | H17A—C17A—H17B | 109.3 |
C6—C7—H7A | 109.2 | C15B—O4B—C16B | 107.1 (10) |
C8—C7—H7A | 109.2 | C15B—C14B—C17B | 105.2 (7) |
C6—C7—H7B | 109.2 | C15B—C14B—H14C | 110.7 |
C8—C7—H7B | 109.2 | C17B—C14B—H14C | 110.7 |
H7A—C7—H7B | 107.9 | C15B—C14B—H14D | 110.7 |
N2—C8—C7 | 109.0 (2) | C17B—C14B—H14D | 110.7 |
N2—C8—C13 | 108.9 (2) | H14C—C14B—H14D | 108.8 |
C7—C8—C13 | 112.6 (2) | O4B—C15B—C14B | 104.0 (8) |
N2—C8—H8 | 108.8 | O4B—C15B—H15C | 111.0 |
C7—C8—H8 | 108.8 | C14B—C15B—H15C | 111.0 |
C13—C8—H8 | 108.8 | O4B—C15B—H15D | 111.0 |
O1—C9—N2 | 123.1 (2) | C14B—C15B—H15D | 111.0 |
O1—C9—N1 | 123.9 (2) | H15C—C15B—H15D | 109.0 |
N2—C9—N1 | 113.0 (2) | O4B—C16B—C17B | 97.6 (8) |
C11—C10—C12 | 118.8 (2) | O4B—C16B—H16C | 112.2 |
C11—C10—N1 | 124.4 (2) | C17B—C16B—H16C | 112.2 |
C12—C10—N1 | 116.8 (2) | O4B—C16B—H16D | 112.2 |
C11i—C11—C10 | 120.70 (14) | C17B—C16B—H16D | 112.2 |
C11i—C11—H11 | 119.7 | H16C—C16B—H16D | 109.8 |
C10—C11—H11 | 119.7 | C14B—C17B—C16B | 98.8 (10) |
C12i—C12—C10 | 120.52 (15) | C14B—C17B—H17C | 112.0 |
C12i—C12—H12 | 119.7 | C16B—C17B—H17C | 112.0 |
C10—C12—H12 | 119.7 | C14B—C17B—H17D | 112.0 |
O2—C13—O3 | 124.4 (3) | C16B—C17B—H17D | 112.0 |
O2—C13—C8 | 123.9 (3) | H17C—C17B—H17D | 109.7 |
C6—C1—C2—C3 | −0.1 (5) | C9—N1—C10—C12 | 161.9 (2) |
C1—C2—C3—C4 | −0.1 (5) | C12—C10—C11—C11i | −0.4 (4) |
C2—C3—C4—C5 | 0.1 (5) | N1—C10—C11—C11i | −178.7 (3) |
C3—C4—C5—C6 | 0.2 (5) | C11—C10—C12—C12i | −0.4 (5) |
C2—C1—C6—C5 | 0.4 (4) | N1—C10—C12—C12i | 178.1 (3) |
C2—C1—C6—C7 | −178.2 (3) | N2—C8—C13—O2 | 5.8 (4) |
C4—C5—C6—C1 | −0.5 (4) | C7—C8—C13—O2 | 126.8 (3) |
C4—C5—C6—C7 | 178.2 (3) | N2—C8—C13—O3 | −173.6 (2) |
C1—C6—C7—C8 | 110.2 (3) | C7—C8—C13—O3 | −52.6 (3) |
C5—C6—C7—C8 | −68.4 (3) | C16A—O4A—C15A—C14A | −16.5 (18) |
C9—N2—C8—C7 | 167.2 (2) | C17A—C14A—C15A—O4A | 34.2 (17) |
C9—N2—C8—C13 | −69.6 (3) | C15A—O4A—C16A—C17A | −8.6 (15) |
C6—C7—C8—N2 | −57.9 (3) | O4A—C16A—C17A—C14A | 29.8 (13) |
C6—C7—C8—C13 | −178.9 (2) | C15A—C14A—C17A—C16A | −38.3 (15) |
C8—N2—C9—O1 | −18.6 (4) | C16B—O4B—C15B—C14B | −28 (2) |
C8—N2—C9—N1 | 163.4 (2) | C17B—C14B—C15B—O4B | −6 (2) |
C10—N1—C9—O1 | −0.6 (4) | C15B—O4B—C16B—C17B | 48.8 (18) |
C10—N1—C9—N2 | 177.4 (2) | C15B—C14B—C17B—C16B | 34 (2) |
C9—N1—C10—C11 | −19.7 (4) | O4B—C16B—C17B—C14B | −48.8 (16) |
Symmetry code: (i) −x+1, −y, z. |
Cg is defined as the centre of gravity of the rings: Cg1 is C1···C6; Cg2 is C10/C11/C12/C10'/C11'/C12' with primed atoms generated by symmetry -x+1, -y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1ii | 0.84 (4) | 2.32 (3) | 3.091 (3) | 153 (3) |
N2—H2N···O1ii | 0.88 (3) | 2.08 (4) | 2.937 (3) | 163 (3) |
O3—H3O···O4Aiii | 0.90 (3) | 1.73 (3) | 2.623 (7) | 175 (7) |
C5—H5···O2iv | 0.95 | 2.55 | 3.464 (4) | 161 |
C8—H8···O2iv | 1.00 | 2.70 | 3.629 (4) | 155 |
C11—H11···O1 | 0.95 | 2.35 | 2.916 (3) | 118 |
C14A—H14B···O3v | 0.99 | 2.78 | 3.581 (18) | 139 |
C16A—H16A···Cg1vi | 0.99 | 2.61 | 3.497 (8) | 149 |
C16B—H16D···Cg1vi | 0.99 | 2.82 | 3.449 (10) | 122 |
C17A—H17B···Cg2vii | 0.99 | 3.00 | 3.574 (8) | 118 |
Symmetry codes: (ii) −y+1/2, x, z−1/4; (iii) −y, x−1/2, z+1/4; (iv) y, −x+1/2, z+1/4; (v) −x+1/2, −y+1/2, z−1/2; (vi) x, y+1, z; (vii) y+1/2, −x+1, z−1/4. |
Acknowledgements
The authors would like to thank Professor Dr Edwin Weber and Professor Dr Monika Mazik (Technische Universität Bergakademie Freiberg) for their support.
Funding information
Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.
References
Albrecht, M., Witt, K., Fröhlich, R. & Kataeva, O. (2002). Tetrahedron, 58, 561–567. Web of Science CSD CrossRef CAS Google Scholar
Berkessel, A., Mukherjee, S., Müller, T. N., Cleemann, F., Roland, K., Brandenburg, M., Neudörfl, J.-M. & Lex, J. (2006). Org. Biomol. Chem. 4, 4319–4330. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casula, A., Bazzicalupi, C., Bettoschi, A., Cadoni, E., Coles, S. J., Horton, P. N., Isaia, F., Lippolis, V., Mapp, L. K., Marini, G. M., Montis, R., Scorciapino, M. A. & Caltagirone, C. (2016). Dalton Trans. 45, 3078–3085. Web of Science CSD CrossRef CAS PubMed Google Scholar
Das, A., Nayak, B. & Das, G. (2020). CrystEngComm, 22, 2197–2207. Web of Science CSD CrossRef CAS Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Manna, U., Das, A. & Das, G. (2018). Cryst. Growth Des. 18, 6801–6815. Web of Science CSD CrossRef CAS Google Scholar
Manna, U. & Das, G. (2019). CrystEngComm, 21, 65–76. Web of Science CSD CrossRef CAS Google Scholar
Manna, U. & Das, G. (2020). J. Mol. Struct. 1202, 127289. Web of Science CSD CrossRef Google Scholar
Saxena, P., Thirupathi, N. & Nethaji, M. (2014). Organometallics, 33, 5554–5565. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shugrue, C. R., Sculimbrene, B. R., Jarvo, E. R., Mercado, B. Q. & Miller, S. J. (2019). J. Org. Chem. 84, 1664–1672. Web of Science CSD CrossRef CAS PubMed Google Scholar
Stapf, M., Böhle, T., Seichter, W., Mertens, F. O. R. L. & Weber, E. (2012). Z. Naturforsch. Teil B, 67, 1166–1172. Web of Science CrossRef CAS Google Scholar
Stapf, M., Seichter, W. & Weber, E. (2015). Z. Naturforsch. Teil B, 70, 409–419. Web of Science CSD CrossRef CAS Google Scholar
Stoe & Cie (2009). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.