metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Aqua­{μ-1,4-bis­­[(1,4,7,10-tetra­aza­cyclo­dodecan-1-yl)meth­yl]benzene}(nitrato-κO)dicopper(II) tris­­(nitrate) trihydrate

crossmark logo

aFaculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan, bCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Nagoya 463-8521, Japan, and cEnvironmental Safety Center, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto, 860-8555, Japan
*Correspondence e-mail: kato-k@kinjo-u.ac.jp, h-kurosaki@kinjo-u.ac.jp

Edited by M. Zeller, Purdue University, USA (Received 19 May 2023; accepted 25 May 2023; online 2 June 2023)

In the title dinuclear CuII complex, [Cu2(NO3)(C24H46N8)(H2O)](NO3)3·3H2O, the two CuII mol­ecules both have a square-pyramidal geometry, but the ligands in the axial positions are different: a water mol­ecule and a nitrate ion. All nitrate ions, water mol­ecules, and N—H groups are involved in an inter­molecular hydrogen-bond network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclen (1,4,7,10-tetra­aza­cyclo­dodeca­ne) is a widely utilized macrocyclic polyamine and a water-soluble tetra­dentate ligand that can strongly chelate transition-metal cations such as ZnII ions (Ichimaru et al., 2021[Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data 6, x210397.]). Herein, we focused on synthesizing a ligand, p-bis­(cyclen), in which two cyclen rings are bridged via p-xylen. The dizinc complex of p-bis­(cyclen) has been reported as an anion acceptor for biologically active mol­ecules such as barbital (Koike et al., 1996[Koike, T., Takashige, M., Kimura, E., Fujioka, H. & Shiro, M. (1996). Chem. Eur. J. 2, 617-623.]). Furthermore, the crystal structure of the perchlorate hydrate, [p-bis­(CuII–cyclen)(ClO4)4]·4H2O, which is a CuII complex of p-bis­(cyclen), has been reported (Soibinet et al., 2003[Soibinet, M., Déchamps-Olivier, I., Guillon, E., Barbier, J.-P., Aplincourt, M., Chuburu, F., LeBaccon, M. & Handel, H. (2003). Eur. J. Inorg. Chem. pp. 1984-1994.]).

In this context, we have prepared the nitrate salt of p-bis­(CuII–cyclen), [p-bis(CuII–cyclen)(OH2)(NO3)](NO3)3·3H2O, comprising a dinuclear CuII complex, three nitrate ions, and three water mol­ecules as the solvent (Fig. 1[link]). Each CuII atom is five-coord­inate environment, with four nitro­gen atoms of the cyclen ring and a nitrate ion or a water mol­ecule as ligands. In the mer-fashion arrangement, Cu1 is coordinated by the cyclen ring (composed of N1, N2, N3, and N4) at the equatorial positions and by the nitrate ion at the axial position. Meanwhile, Cu2 is coordinated by another cyclen ring (composed of N5, N6, N7, and N8) bridged via p-xylene. Unlike Cu1, the axial position of the coordination polyhedron around Cu2 is occupied by a water mol­ecule. The intra­molecular Cu⋯Cu distance is close to the maximum possible value allowed by the ligand because Cu1 and Cu2 are located on opposite sides of the planar xylene spacer. Therefore, the apex of the square pyramid with Cu1 at the center points in the direction opposite to that having Cu2 at the center. The distances between Cu1 and N range from 2.011 (5) to 2.065 (5) Å, while those of Cu2 range from 2.000 (5) to 2.044 (5) Å, which are well within the typical ranges for C—N coordination bonds with amines. Soibinet and co-workers reported that the chelating nature of cyclen rings to CuII in perchlorate salts were similar to nitrate salts (Soibinet et al., 2003[Soibinet, M., Déchamps-Olivier, I., Guillon, E., Barbier, J.-P., Aplincourt, M., Chuburu, F., LeBaccon, M. & Handel, H. (2003). Eur. J. Inorg. Chem. pp. 1984-1994.]). However, CuII is coordinated by water mol­ecules at the axial positions in both cases.

[Figure 1]
Figure 1
The molecular structure of the complex cation in the title compound with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms, counter-anions and solvate mol­ecules are omitted for clarity.

The coordination geometry index τ was calculated to determine the deviation from ideal coordination polyhedra around the copper ions using the formula τ = (β − α)/60°, where β and α are the largest and second-largest angles in the coordination center, respectively (Addison et al., 1984[Addison, W. A., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, C. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). An ideal square pyramid has a τ value of 0, while an ideal trigonal bipyramid has a τ value of 1. The bond angles α and β of the N—CuII—N chelate are 148.5 (2) and 152.0 (2)°, respectively, around Cu1 and 148.7 (2) and 153.9 (2)°, respectively, around Cu2. Accordingly, the τ values for Cu1 and Cu2 were calculated as 0.058 and 0.087, respectively. Therefore, the coordination geometry around the central CuII could be characterized as a marginally distorted square pyramid. The deviations from an ideal square-pyramidal geometry in certain complexes arise from the distortion of the cyclen ring (i.e., the 12-membered macrocycle). Cyclam (1,4,8,11-tetra­aza­cyclo­tetra­deca­ne), a 14-membered macrocyclic polyamine, exhibits an ideal square-pyramidal environment with the transition-metal ions located in the plane formed by the nitro­gen atoms of the ring (Ichimaru et al., 2022[Ichimaru, Y., Kato, K., Kurihara, M., Jin, W., Koike, T. & Kurosaki, H. (2022). IUCr Data 7, x220854.]). In the title complex, Cu1 and Cu2 are located at distances of 0.521 (3) and 0.501 (3) Å, respectively, above the basal plane formed by the four nitro­gen atoms of the cyclen ring.

All of the non-coordinating nitrate ions, water mol­ecules, and N–H groups are involved in an inter­molecular hydrogen-bond network (Fig. 2[link]). The hydrogen bonds between the N—H groups, except N7—H7, and nitrate ions produce a hydrogen-bond network wherein water mol­ecules of solvation fill the gaps between the nitrate ions. Numerical values of the hydrogen-bonding interactions are summarized in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O7i 0.98 (3) 2.10 (3) 3.046 (7) 162 (6)
N3—H3⋯O10ii 0.99 (3) 2.17 (5) 3.032 (7) 145 (6)
N4—H4⋯O13iii 0.99 (3) 2.06 (5) 2.929 (8) 146 (6)
N6—H6⋯O13iv 0.97 (3) 1.95 (3) 2.900 (7) 167 (6)
N7—H7⋯O16v 0.97 (3) 2.00 (4) 2.934 (7) 160 (6)
N8—H8⋯O5 0.98 (3) 2.06 (3) 3.015 (7) 165 (6)
O4—H4A⋯O8 0.85 (3) 2.07 (6) 2.794 (8) 143 (7)
O14—H14A⋯O8 0.84 (2) 2.01 (3) 2.740 (7) 145 (5)
O14—H14B⋯O7 0.85 (3) 2.16 (3) 2.865 (7) 140 (5)
O15—H15A⋯O14 0.84 (3) 1.91 (3) 2.742 (7) 169 (8)
O15—H15B⋯O11 0.83 (3) 2.03 (4) 2.825 (7) 159 (8)
O16—H16C⋯O15 0.84 (3) 2.06 (5) 2.802 (7) 147 (7)
O16—H16D⋯O3vi 0.85 (3) 2.05 (5) 2.830 (7) 153 (9)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (iii) x, y+1, z; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) [x, y-1, z].
[Figure 2]
Figure 2
The hydrogen-bond network of the nitrate salt of p-bis­(CuII–cyclen) with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bond inter­actions are shown as dotted lines.

Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to perform a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and generate the associated two-dimensional fingerprint plots. The Hirshfeld surface mapped over dnorm with a standard resolution is illustrated in Fig. 3[link] along with fingerprint plots, which indicate the most important inter­molecular contacts to be O⋯H/H⋯O (50.1%) and H⋯H (41.2%). The significant frequency of H⋯H and O⋯H/H⋯O inter­actions implies that van der Waals inter­actions and hydrogen bonding are critical in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]) of the title complex (Fig. 4[link]). We previously reported that p-xylyl doubly-bridged ZnII–cyclen, p-bis­(ZnII–cyclen), forms a characteristic helix-like supra­molecular structure (Ichimaru et al., 2023[Ichimaru, Y., Kato, K., Sugiura, K., Isomura, R., Fujioka, H., Koike, T., Fujii-Kishida, S., Kurihara, M., Yamaguchi, Y., Jin, W., Imai, M. & Kurosaki, H. (2023). Inorg. Chem. Commun. 153, 110782.]). However, the packing of the title complex reported herein exhibits no specific supra­molecular structures.

[Figure 3]
Figure 3
The Hirshfeld surface and two-dimensional fingerprint plots [de (vertical axis) and di (horizontal axis) represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively] of the nitrate salt of p-bis­(CuII–cyclen). (a) Hirshfeld surface and (b) all inter­actions and those delineated into (c) H⋯H, (d) N⋯H/H⋯N, and (e) O⋯H/H⋯O inter­actions.
[Figure 4]
Figure 4
Packing view of the nitrate salt of p-bis­(CuII–cyclen) represented with polyhedral structures around the CuII atoms, with displacement ellipsoids drawn at the 30% probability level. Non-coordinating nitrate ions, solvate water mol­ecules and C-bound H atoms are omitted for clarity.

Synthesis and crystallization

The ligand p-bis­(cyclen), or 1,4-bis­((1,4,7,10-tetra­aza­cyclo­dodecan-1-yl)meth­yl)benzene, was synthesized as previously reported using an in-house lab method (Koike et al., 1996[Koike, T., Takashige, M., Kimura, E., Fujioka, H. & Shiro, M. (1996). Chem. Eur. J. 2, 617-623.]). A solution of Cu(NO3)2·3H2O (484 mg, 2.0 mmol) in water (1.0 ml) was added dropwise to 20 ml of an ethano­lic solution of p-bis­(cyclen) (446 mg, 1.0 mmol). The reaction mixture was stirred for 30 min at 353 K and then filtered. The filtrate was allowed to stand 3 days at room temperature. Blue block-shaped crystals (600 mg) were obtained in 67% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. In the final cycles of refinement, 12 outliers were omitted.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(NO3)(C24H46N8)(H2O)](NO3)3·3H2O
Mr 893.87
Crystal system, space group Orthorhombic, P212121
Temperature (K) 93
a, b, c (Å) 14.9788 (2), 15.3455 (2), 16.2948 (2)
V3) 3745.48 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.14
Crystal size (mm) 0.55 × 0.45 × 0.17
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-i
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.505, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19219, 6617, 6227
Rint 0.047
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.139, 1.06
No. of reflections 6617
No. of parameters 530
No. of restraints 20
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.08, −0.53
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.36 (5)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO 1.171.42.55a (Rigaku OD, 2022); cell refinement: CrysAlis PRO 1.171.42.55a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.55a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).

Aqua{µ-1,4-bis[(1,4,7,10-tetraazacyclododecan-1-yl)methyl]benzene}(nitrato-κO)dicopper(II) tris(nitrate) trihydrate top
Crystal data top
[Cu2(NO3)(C24H46N8)(H2O)](NO3)3·3H2ODx = 1.585 Mg m3
Mr = 893.87Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 16388 reflections
a = 14.9788 (2) Åθ = 2.7–68.2°
b = 15.3455 (2) ŵ = 2.14 mm1
c = 16.2948 (2) ÅT = 93 K
V = 3745.48 (8) Å3Block, blue
Z = 40.55 × 0.45 × 0.17 mm
F(000) = 1872
Data collection top
Rigaku XtaLAB Synergy-i
diffractometer
6617 independent reflections
Radiation source: microfocus sealed X-ray tube, PhotonJet-i6227 reflections with I > 2σ(I)
Multi-layer mirror optics monochromatorRint = 0.047
Detector resolution: 10.0 pixels mm-1θmax = 68.4°, θmin = 4.0°
ω scansh = 1618
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1818
Tmin = 0.505, Tmax = 1.000l = 1919
19219 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0781P)2 + 6.1629P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.139(Δ/σ)max < 0.001
S = 1.06Δρmax = 1.08 e Å3
6617 reflectionsΔρmin = 0.53 e Å3
530 parametersAbsolute structure: Refined as an inversion twin
20 restraintsAbsolute structure parameter: 0.36 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. All hydrogen atoms were located by a geometrical calculation, and were not refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.61491 (6)0.91479 (5)1.03500 (5)0.0204 (2)
Cu20.88673 (5)0.58988 (5)0.45167 (5)0.0199 (2)
O10.5665 (3)1.0063 (3)0.9436 (4)0.0473 (14)
O20.4505 (4)1.0249 (4)1.0170 (3)0.0501 (14)
O30.4515 (4)1.0675 (4)0.8898 (3)0.0472 (14)
O40.9387 (4)0.4801 (3)0.5172 (3)0.0427 (13)
H4A0.904 (4)0.466 (6)0.556 (4)0.064*
H4B0.991 (2)0.472 (7)0.536 (5)0.064*
O50.6792 (4)0.3885 (3)0.4561 (3)0.0452 (13)
O60.7448 (3)0.4371 (3)0.5657 (4)0.0419 (12)
O70.6407 (3)0.3400 (3)0.5752 (3)0.0403 (12)
O80.9012 (3)0.4147 (4)0.6735 (4)0.0533 (14)
O91.0375 (4)0.4523 (4)0.6687 (4)0.0524 (14)
O100.9847 (4)0.3927 (3)0.7787 (3)0.0423 (12)
O110.7641 (3)0.0649 (3)0.8984 (3)0.0365 (11)
O120.8714 (4)0.1596 (3)0.8897 (3)0.0414 (12)
O130.8682 (4)0.0673 (4)0.9896 (3)0.0584 (17)
O140.7733 (4)0.2886 (3)0.6922 (3)0.0397 (11)
H14A0.819 (3)0.317 (4)0.705 (4)0.060*
H14B0.733 (4)0.324 (4)0.676 (3)0.060*
O150.6749 (3)0.1819 (3)0.7925 (3)0.0331 (10)
H15A0.709 (4)0.217 (4)0.768 (5)0.050*
H15B0.705 (4)0.141 (4)0.812 (5)0.050*
O160.5260 (3)0.0921 (4)0.7318 (3)0.0389 (11)
H16C0.570 (4)0.125 (5)0.730 (5)0.058*
H16D0.520 (5)0.076 (6)0.781 (2)0.058*
N10.6821 (3)0.8349 (3)0.9539 (3)0.0208 (10)
N20.5198 (3)0.8225 (3)1.0385 (3)0.0233 (10)
H20.462 (3)0.833 (4)1.012 (4)0.028*
N30.5738 (4)0.9472 (3)1.1495 (3)0.0260 (11)
H30.547 (4)1.006 (2)1.148 (5)0.031*
N40.7366 (3)0.9556 (3)1.0708 (3)0.0230 (10)
H40.758 (4)1.007 (3)1.040 (4)0.028*
N50.8166 (3)0.6661 (3)0.5318 (3)0.0190 (10)
N60.9851 (3)0.6791 (3)0.4614 (3)0.0242 (11)
H61.038 (3)0.649 (4)0.482 (4)0.029*
N70.9393 (4)0.5610 (3)0.3409 (3)0.0268 (11)
H70.957 (5)0.503 (2)0.324 (5)0.032*
N80.7683 (4)0.5560 (3)0.4049 (3)0.0249 (11)
H80.740 (4)0.506 (3)0.432 (4)0.030*
N90.4899 (4)1.0309 (4)0.9475 (4)0.0314 (12)
N100.6877 (3)0.3903 (3)0.5318 (4)0.0310 (12)
N110.9758 (4)0.4207 (4)0.7080 (3)0.0295 (12)
N120.8339 (4)0.0990 (4)0.9262 (3)0.0322 (12)
C10.6497 (4)0.7470 (4)0.9795 (4)0.0226 (13)
H1A0.6761240.7312001.0331500.027*
H1B0.6686150.7028790.9386500.027*
C20.5475 (4)0.7478 (4)0.9861 (4)0.0263 (13)
H2A0.5207780.7535050.9308190.032*
H2B0.5264270.6924441.0106110.032*
C30.5102 (4)0.8018 (5)1.1271 (4)0.0287 (14)
H3A0.5635340.7700841.1470140.034*
H3B0.4570540.7646201.1361720.034*
C40.5000 (4)0.8879 (5)1.1730 (4)0.0326 (15)
H4C0.4419370.9149481.1591220.039*
H4D0.5014880.8773401.2329070.039*
C50.6569 (4)0.9380 (4)1.1996 (4)0.0300 (14)
H5A0.6727190.8757091.2055370.036*
H5B0.6474600.9627711.2550410.036*
C60.7307 (5)0.9859 (4)1.1568 (4)0.0305 (14)
H6A0.7187341.0493161.1580260.037*
H6B0.7880200.9749941.1852170.037*
C70.7924 (4)0.8762 (4)1.0597 (4)0.0248 (12)
H7A0.7734510.8300391.0983730.030*
H7B0.8560260.8898601.0701830.030*
C80.7799 (4)0.8462 (4)0.9722 (4)0.0229 (12)
H8A0.8059160.8896390.9341980.027*
H8B0.8114240.7901460.9638390.027*
C90.6623 (4)0.8556 (4)0.8665 (3)0.0233 (12)
H9A0.6804410.9166100.8559530.028*
H9B0.5969320.8520830.8583820.028*
C100.7071 (4)0.7977 (4)0.8033 (3)0.0199 (12)
C110.6632 (4)0.7253 (4)0.7716 (3)0.0230 (12)
H110.6050830.7111750.7906690.028*
C120.7033 (4)0.6736 (4)0.7124 (3)0.0218 (12)
H120.6723170.6248290.6906490.026*
C130.7893 (4)0.6932 (4)0.6846 (3)0.0189 (11)
C140.8336 (4)0.7642 (4)0.7162 (3)0.0225 (12)
H140.8922530.7776620.6978920.027*
C150.7926 (4)0.8162 (4)0.7747 (3)0.0226 (12)
H150.8235350.8654720.7957920.027*
C160.8321 (4)0.6374 (4)0.6192 (3)0.0218 (12)
H16A0.8972220.6358550.6292620.026*
H16B0.8094260.5770910.6251900.026*
C170.8537 (4)0.7544 (4)0.5142 (3)0.0200 (12)
H17A0.8326240.7960330.5563220.024*
H17B0.8318390.7745980.4600730.024*
C180.9549 (4)0.7524 (4)0.5138 (4)0.0246 (13)
H18A0.9785300.8081250.4921940.030*
H18B0.9775290.7446180.5704680.030*
C191.0034 (4)0.7033 (5)0.3757 (4)0.0303 (15)
H19A1.0579110.7395560.3725070.036*
H19B0.9528080.7371130.3529410.036*
C201.0160 (5)0.6202 (5)0.3276 (4)0.0347 (16)
H20A1.0212830.6339100.2684440.042*
H20B1.0717700.5911160.3452720.042*
C210.8636 (4)0.5745 (4)0.2841 (3)0.0277 (13)
H21A0.8783210.5503500.2294430.033*
H21B0.8517150.6376220.2778680.033*
C220.7817 (5)0.5294 (4)0.3182 (4)0.0293 (14)
H22A0.7286520.5453980.2852840.035*
H22B0.7895630.4654340.3150600.035*
C230.7142 (4)0.6365 (4)0.4163 (3)0.0245 (13)
H23A0.6512520.6258430.4005460.029*
H23B0.7379920.6843990.3820230.029*
C240.7204 (4)0.6599 (4)0.5068 (3)0.0230 (13)
H24A0.6903060.7163190.5167810.028*
H24B0.6900630.6147740.5400820.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0235 (4)0.0245 (4)0.0131 (4)0.0044 (4)0.0004 (3)0.0001 (3)
Cu20.0227 (4)0.0239 (4)0.0131 (4)0.0004 (4)0.0014 (3)0.0011 (3)
O10.033 (3)0.054 (3)0.055 (4)0.014 (2)0.004 (2)0.025 (3)
O20.049 (3)0.066 (3)0.035 (3)0.014 (3)0.012 (2)0.011 (3)
O30.044 (3)0.064 (4)0.034 (3)0.028 (3)0.002 (2)0.016 (3)
O40.065 (3)0.038 (3)0.025 (3)0.019 (3)0.002 (2)0.004 (2)
O50.048 (3)0.044 (3)0.043 (3)0.010 (2)0.016 (3)0.013 (2)
O60.033 (2)0.037 (2)0.056 (3)0.004 (2)0.011 (2)0.006 (2)
O70.036 (3)0.045 (3)0.039 (3)0.016 (2)0.006 (2)0.005 (2)
O80.035 (3)0.068 (3)0.056 (3)0.012 (3)0.013 (3)0.015 (3)
O90.038 (3)0.059 (3)0.061 (4)0.012 (3)0.004 (3)0.011 (3)
O100.055 (3)0.043 (3)0.029 (3)0.000 (2)0.013 (2)0.006 (2)
O110.032 (2)0.044 (3)0.033 (3)0.014 (2)0.009 (2)0.007 (2)
O120.052 (3)0.043 (3)0.030 (2)0.019 (2)0.001 (2)0.005 (2)
O130.057 (3)0.084 (4)0.035 (3)0.033 (3)0.021 (3)0.023 (3)
O140.045 (3)0.038 (2)0.036 (3)0.002 (2)0.010 (2)0.002 (2)
O150.030 (2)0.035 (2)0.034 (3)0.001 (2)0.002 (2)0.004 (2)
O160.036 (3)0.047 (3)0.033 (2)0.012 (2)0.000 (2)0.004 (2)
N10.023 (2)0.027 (2)0.013 (2)0.005 (2)0.0003 (19)0.0019 (19)
N20.023 (2)0.035 (3)0.013 (2)0.007 (2)0.005 (2)0.002 (2)
N30.028 (3)0.033 (3)0.017 (2)0.007 (2)0.002 (2)0.000 (2)
N40.029 (3)0.026 (2)0.014 (2)0.001 (2)0.001 (2)0.001 (2)
N50.019 (2)0.028 (2)0.010 (2)0.0010 (19)0.0015 (18)0.0020 (19)
N60.024 (2)0.031 (3)0.017 (2)0.004 (2)0.003 (2)0.002 (2)
N70.033 (3)0.030 (3)0.017 (2)0.005 (2)0.005 (2)0.001 (2)
N80.032 (3)0.027 (2)0.016 (2)0.005 (2)0.000 (2)0.003 (2)
N90.033 (3)0.028 (3)0.034 (3)0.001 (2)0.006 (2)0.006 (2)
N100.022 (2)0.025 (3)0.046 (3)0.002 (2)0.002 (2)0.002 (2)
N110.027 (3)0.033 (3)0.029 (3)0.002 (2)0.006 (2)0.004 (2)
N120.035 (3)0.038 (3)0.023 (3)0.007 (3)0.000 (2)0.000 (2)
C10.025 (3)0.024 (3)0.019 (3)0.007 (2)0.002 (2)0.001 (2)
C20.026 (3)0.032 (3)0.021 (3)0.001 (3)0.005 (2)0.003 (3)
C30.028 (3)0.037 (4)0.021 (3)0.001 (3)0.004 (3)0.003 (3)
C40.035 (4)0.049 (4)0.014 (3)0.003 (3)0.006 (3)0.002 (3)
C50.033 (3)0.039 (3)0.018 (3)0.001 (3)0.002 (3)0.000 (2)
C60.040 (4)0.035 (3)0.017 (3)0.001 (3)0.001 (3)0.006 (3)
C70.027 (3)0.033 (3)0.015 (3)0.004 (2)0.003 (2)0.000 (2)
C80.019 (3)0.031 (3)0.019 (3)0.010 (2)0.002 (2)0.000 (2)
C90.032 (3)0.028 (3)0.010 (3)0.008 (3)0.001 (2)0.003 (2)
C100.028 (3)0.023 (3)0.009 (2)0.006 (2)0.006 (2)0.003 (2)
C110.021 (3)0.034 (3)0.015 (3)0.001 (2)0.001 (2)0.005 (2)
C120.024 (3)0.027 (3)0.015 (3)0.002 (2)0.001 (2)0.002 (2)
C130.024 (3)0.023 (3)0.010 (2)0.000 (2)0.003 (2)0.003 (2)
C140.027 (3)0.023 (3)0.018 (3)0.001 (2)0.001 (2)0.000 (2)
C150.028 (3)0.030 (3)0.010 (2)0.003 (2)0.000 (2)0.000 (2)
C160.027 (3)0.025 (3)0.013 (3)0.005 (2)0.003 (2)0.002 (2)
C170.027 (3)0.021 (3)0.012 (3)0.001 (2)0.001 (2)0.002 (2)
C180.028 (3)0.026 (3)0.020 (3)0.003 (2)0.003 (2)0.004 (2)
C190.029 (3)0.041 (4)0.021 (3)0.007 (3)0.006 (3)0.002 (3)
C200.033 (3)0.048 (4)0.023 (3)0.008 (3)0.011 (3)0.001 (3)
C210.038 (4)0.036 (3)0.010 (2)0.005 (3)0.001 (2)0.001 (2)
C220.045 (4)0.033 (3)0.010 (3)0.000 (3)0.004 (3)0.006 (2)
C230.028 (3)0.036 (3)0.009 (3)0.001 (3)0.000 (2)0.001 (2)
C240.016 (3)0.036 (3)0.016 (3)0.000 (2)0.001 (2)0.002 (2)
Geometric parameters (Å, º) top
Cu1—O12.170 (5)C1—H1B0.9900
Cu1—N12.065 (5)C1—C21.535 (9)
Cu1—N22.011 (5)C2—H2A0.9900
Cu1—N32.026 (5)C2—H2B0.9900
Cu1—N42.013 (5)C3—H3A0.9900
Cu2—O42.141 (5)C3—H3B0.9900
Cu2—N52.044 (5)C3—C41.526 (9)
Cu2—N62.017 (5)C4—H4C0.9900
Cu2—N72.019 (5)C4—H4D0.9900
Cu2—N82.000 (5)C5—H5A0.9900
O1—N91.211 (7)C5—H5B0.9900
O2—N91.281 (8)C5—C61.499 (9)
O3—N91.237 (7)C6—H6A0.9900
O4—H4A0.85 (3)C6—H6B0.9900
O4—H4B0.85 (3)C7—H7A0.9900
O5—N101.241 (8)C7—H7B0.9900
O6—N101.246 (7)C7—C81.510 (8)
O7—N101.261 (7)C8—H8A0.9900
O8—N111.254 (7)C8—H8B0.9900
O9—N111.225 (8)C9—H9A0.9900
O10—N111.236 (7)C9—H9B0.9900
O11—N121.255 (7)C9—C101.518 (8)
O12—N121.238 (7)C10—C111.390 (8)
O13—N121.252 (7)C10—C151.392 (9)
O14—H14A0.84 (2)C11—H110.9500
O14—H14B0.85 (3)C11—C121.386 (8)
O15—H15A0.84 (3)C12—H120.9500
O15—H15B0.83 (3)C12—C131.397 (8)
O16—H16C0.84 (3)C13—C141.377 (8)
O16—H16D0.85 (3)C13—C161.511 (8)
N1—C11.492 (7)C14—H140.9500
N1—C81.505 (7)C14—C151.387 (8)
N1—C91.489 (7)C15—H150.9500
N2—H20.98 (3)C16—H16A0.9900
N2—C21.488 (8)C16—H16B0.9900
N2—C31.486 (7)C17—H17A0.9900
N3—H30.99 (3)C17—H17B0.9900
N3—C41.482 (8)C17—C181.517 (9)
N3—C51.496 (8)C18—H18A0.9900
N4—H40.99 (3)C18—H18B0.9900
N4—C61.478 (8)C19—H19A0.9900
N4—C71.490 (7)C19—H19B0.9900
N5—C161.508 (7)C19—C201.508 (10)
N5—C171.491 (7)C20—H20A0.9900
N5—C241.501 (7)C20—H20B0.9900
N6—H60.97 (3)C21—H21A0.9900
N6—C181.484 (8)C21—H21B0.9900
N6—C191.471 (7)C21—C221.514 (9)
N7—H70.97 (3)C22—H22A0.9900
N7—C201.480 (9)C22—H22B0.9900
N7—C211.479 (8)C23—H23A0.9900
N8—H80.98 (3)C23—H23B0.9900
N8—C221.484 (7)C23—C241.521 (8)
N8—C231.489 (8)C24—H24A0.9900
C1—H1A0.9900C24—H24B0.9900
N1—Cu1—O196.2 (2)N3—C4—H4D109.8
N2—Cu1—O1103.8 (2)C3—C4—H4C109.8
N2—Cu1—N186.85 (19)C3—C4—H4D109.8
N2—Cu1—N386.1 (2)H4C—C4—H4D108.3
N2—Cu1—N4148.5 (2)N3—C5—H5A110.0
N3—Cu1—O1111.8 (2)N3—C5—H5B110.0
N3—Cu1—N1152.0 (2)N3—C5—C6108.3 (5)
N4—Cu1—O1107.4 (2)H5A—C5—H5B108.4
N4—Cu1—N185.93 (19)C6—C5—H5A110.0
N4—Cu1—N386.1 (2)C6—C5—H5B110.0
N5—Cu2—O4108.55 (19)N4—C6—C5109.3 (5)
N6—Cu2—O4103.2 (2)N4—C6—H6A109.8
N6—Cu2—N586.4 (2)N4—C6—H6B109.8
N6—Cu2—N786.2 (2)C5—C6—H6A109.8
N7—Cu2—O497.5 (2)C5—C6—H6B109.8
N7—Cu2—N5153.9 (2)H6A—C6—H6B108.3
N8—Cu2—O4108.0 (2)N4—C7—H7A110.3
N8—Cu2—N586.4 (2)N4—C7—H7B110.3
N8—Cu2—N6148.7 (2)N4—C7—C8107.2 (5)
N8—Cu2—N787.0 (2)H7A—C7—H7B108.5
N9—O1—Cu1118.9 (4)C8—C7—H7A110.3
Cu2—O4—H4A110 (6)C8—C7—H7B110.3
Cu2—O4—H4B129 (7)N1—C8—C7110.1 (5)
H4A—O4—H4B106 (4)N1—C8—H8A109.7
H14A—O14—H14B109 (4)N1—C8—H8B109.7
H15A—O15—H15B110 (4)C7—C8—H8A109.7
H16C—O16—H16D107 (4)C7—C8—H8B109.7
C1—N1—Cu1101.5 (3)H8A—C8—H8B108.2
C1—N1—C8111.4 (4)N1—C9—H9A108.3
C8—N1—Cu1106.2 (3)N1—C9—H9B108.3
C9—N1—Cu1112.8 (3)N1—C9—C10115.9 (4)
C9—N1—C1113.3 (5)H9A—C9—H9B107.4
C9—N1—C8111.0 (5)C10—C9—H9A108.3
Cu1—N2—H2120 (4)C10—C9—H9B108.3
C2—N2—Cu1109.2 (4)C11—C10—C9120.7 (5)
C2—N2—H297 (4)C11—C10—C15118.3 (5)
C3—N2—Cu1104.3 (4)C15—C10—C9120.9 (5)
C3—N2—H2112 (4)C10—C11—H11119.6
C3—N2—C2114.8 (5)C12—C11—C10120.7 (5)
Cu1—N3—H3109 (4)C12—C11—H11119.6
C4—N3—Cu1108.3 (4)C11—C12—H12119.9
C4—N3—H3105 (4)C11—C12—C13120.1 (5)
C4—N3—C5115.0 (5)C13—C12—H12119.9
C5—N3—Cu1103.1 (4)C12—C13—C16119.9 (5)
C5—N3—H3116 (4)C14—C13—C12119.6 (5)
Cu1—N4—H4113 (4)C14—C13—C16120.5 (5)
C6—N4—Cu1108.6 (4)C13—C14—H14120.0
C6—N4—H4105 (4)C13—C14—C15119.9 (6)
C6—N4—C7113.9 (5)C15—C14—H14120.0
C7—N4—Cu1102.6 (4)C10—C15—H15119.4
C7—N4—H4114 (4)C14—C15—C10121.3 (6)
C16—N5—Cu2110.9 (3)C14—C15—H15119.4
C17—N5—Cu2101.8 (3)N5—C16—C13115.8 (4)
C17—N5—C16113.0 (4)N5—C16—H16A108.3
C17—N5—C24111.3 (5)N5—C16—H16B108.3
C24—N5—Cu2106.4 (3)C13—C16—H16A108.3
C24—N5—C16112.6 (4)C13—C16—H16B108.3
Cu2—N6—H6107 (4)H16A—C16—H16B107.4
C18—N6—Cu2109.7 (4)N5—C17—H17A109.5
C18—N6—H6114 (4)N5—C17—H17B109.5
C19—N6—Cu2103.5 (4)N5—C17—C18110.8 (5)
C19—N6—H6107 (4)H17A—C17—H17B108.1
C19—N6—C18114.3 (5)C18—C17—H17A109.5
Cu2—N7—H7124 (5)C18—C17—H17B109.5
C20—N7—Cu2107.4 (4)N6—C18—C17108.7 (5)
C20—N7—H7108 (4)N6—C18—H18A109.9
C21—N7—Cu2103.2 (4)N6—C18—H18B109.9
C21—N7—H7100 (4)C17—C18—H18A109.9
C21—N7—C20114.7 (5)C17—C18—H18B109.9
Cu2—N8—H8114 (4)H18A—C18—H18B108.3
C22—N8—Cu2108.3 (4)N6—C19—H19A110.2
C22—N8—H8105 (4)N6—C19—H19B110.2
C22—N8—C23114.9 (5)N6—C19—C20107.6 (6)
C23—N8—Cu2102.7 (4)H19A—C19—H19B108.5
C23—N8—H8111 (4)C20—C19—H19A110.2
O1—N9—O2117.4 (6)C20—C19—H19B110.2
O1—N9—O3122.9 (6)N7—C20—C19110.2 (5)
O3—N9—O2119.4 (5)N7—C20—H20A109.6
O5—N10—O6121.6 (6)N7—C20—H20B109.6
O5—N10—O7119.1 (5)C19—C20—H20A109.6
O6—N10—O7119.2 (6)C19—C20—H20B109.6
O9—N11—O8117.8 (6)H20A—C20—H20B108.1
O9—N11—O10123.0 (6)N7—C21—H21A109.9
O10—N11—O8119.2 (6)N7—C21—H21B109.9
O12—N12—O11121.1 (5)N7—C21—C22109.1 (5)
O12—N12—O13120.2 (6)H21A—C21—H21B108.3
O13—N12—O11118.6 (5)C22—C21—H21A109.9
N1—C1—H1A109.7C22—C21—H21B109.9
N1—C1—H1B109.7N8—C22—C21109.5 (5)
N1—C1—C2109.7 (5)N8—C22—H22A109.8
H1A—C1—H1B108.2N8—C22—H22B109.8
C2—C1—H1A109.7C21—C22—H22A109.8
C2—C1—H1B109.7C21—C22—H22B109.8
N2—C2—C1109.0 (5)H22A—C22—H22B108.2
N2—C2—H2A109.9N8—C23—H23A110.4
N2—C2—H2B109.9N8—C23—H23B110.4
C1—C2—H2A109.9N8—C23—C24106.5 (5)
C1—C2—H2B109.9H23A—C23—H23B108.6
H2A—C2—H2B108.3C24—C23—H23A110.4
N2—C3—H3A110.2C24—C23—H23B110.4
N2—C3—H3B110.2N5—C24—C23109.8 (5)
N2—C3—C4107.5 (5)N5—C24—H24A109.7
H3A—C3—H3B108.5N5—C24—H24B109.7
C4—C3—H3A110.2C23—C24—H24A109.7
C4—C3—H3B110.2C23—C24—H24B109.7
N3—C4—C3109.3 (5)H24A—C24—H24B108.2
N3—C4—H4C109.8
Cu1—O1—N9—O221.7 (8)C3—N2—C2—C191.8 (6)
Cu1—O1—N9—O3164.3 (5)C4—N3—C5—C6166.9 (5)
Cu1—N1—C1—C249.1 (5)C5—N3—C4—C387.5 (6)
Cu1—N1—C8—C724.5 (5)C6—N4—C7—C8171.4 (5)
Cu1—N1—C9—C10178.2 (4)C7—N4—C6—C585.7 (6)
Cu1—N2—C2—C124.8 (6)C8—N1—C1—C2161.9 (5)
Cu1—N2—C3—C449.5 (5)C8—N1—C9—C1062.7 (6)
Cu1—N3—C4—C327.1 (6)C9—N1—C1—C272.1 (6)
Cu1—N3—C5—C649.3 (5)C9—N1—C8—C7147.5 (5)
Cu1—N4—C6—C527.9 (6)C9—C10—C11—C12178.5 (5)
Cu1—N4—C7—C854.2 (5)C9—C10—C15—C14179.2 (5)
Cu2—N5—C16—C13175.5 (4)C10—C11—C12—C130.9 (8)
Cu2—N5—C17—C1849.1 (5)C11—C10—C15—C140.0 (8)
Cu2—N5—C24—C2324.9 (6)C11—C12—C13—C140.3 (8)
Cu2—N6—C18—C1722.2 (6)C11—C12—C13—C16179.1 (5)
Cu2—N6—C19—C2050.2 (5)C12—C13—C14—C150.5 (8)
Cu2—N7—C20—C1926.4 (6)C12—C13—C16—N590.8 (7)
Cu2—N7—C21—C2247.7 (5)C13—C14—C15—C100.6 (8)
Cu2—N8—C22—C2126.3 (6)C14—C13—C16—N588.0 (6)
Cu2—N8—C23—C2454.1 (5)C15—C10—C11—C120.7 (8)
N1—C1—C2—N251.4 (6)C16—N5—C17—C1870.0 (6)
N1—C9—C10—C1194.2 (6)C16—N5—C24—C23146.6 (5)
N1—C9—C10—C1586.7 (7)C16—C13—C14—C15178.3 (5)
N2—C3—C4—N352.0 (7)C17—N5—C16—C1361.9 (7)
N3—C5—C6—N452.8 (7)C17—N5—C24—C2385.3 (6)
N4—C7—C8—N153.8 (6)C18—N6—C19—C20169.5 (5)
N5—C17—C18—N649.2 (6)C19—N6—C18—C1793.5 (6)
N6—C19—C20—N752.6 (7)C20—N7—C21—C22164.2 (5)
N7—C21—C22—N850.9 (7)C21—N7—C20—C1987.7 (6)
N8—C23—C24—N553.9 (6)C22—N8—C23—C24171.5 (5)
C1—N1—C8—C785.3 (6)C23—N8—C22—C2187.8 (6)
C1—N1—C9—C1063.5 (7)C24—N5—C16—C1365.3 (6)
C2—N2—C3—C4168.9 (5)C24—N5—C17—C18162.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O7i0.98 (3)2.10 (3)3.046 (7)162 (6)
N3—H3···O10ii0.99 (3)2.17 (5)3.032 (7)145 (6)
N4—H4···O13iii0.99 (3)2.06 (5)2.929 (8)146 (6)
N6—H6···O13iv0.97 (3)1.95 (3)2.900 (7)167 (6)
N7—H7···O16v0.97 (3)2.00 (4)2.934 (7)160 (6)
N8—H8···O50.98 (3)2.06 (3)3.015 (7)165 (6)
O4—H4A···O80.85 (3)2.07 (6)2.794 (8)143 (7)
O14—H14A···O80.84 (2)2.01 (3)2.740 (7)145 (5)
O14—H14B···O70.85 (3)2.16 (3)2.865 (7)140 (5)
O15—H15A···O140.84 (3)1.91 (3)2.742 (7)169 (8)
O15—H15B···O110.83 (3)2.03 (4)2.825 (7)159 (8)
O16—H16C···O150.84 (3)2.06 (5)2.802 (7)147 (7)
O16—H16D···O3vi0.85 (3)2.05 (5)2.830 (7)153 (9)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1/2, y+3/2, z+2; (iii) x, y+1, z; (iv) x+2, y+1/2, z+3/2; (v) x+1/2, y+1/2, z+1; (vi) x, y1, z.
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP21K15244 to Kato, K.; grant No. JP21K06455 to Kurosaki, H.).

References

First citationAddison, W. A., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, C. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationIchimaru, Y., Kato, K., Kurihara, M., Jin, W., Koike, T. & Kurosaki, H. (2022). IUCr Data 7, x220854.  Google Scholar
First citationIchimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data 6, x210397.  Google Scholar
First citationIchimaru, Y., Kato, K., Sugiura, K., Isomura, R., Fujioka, H., Koike, T., Fujii-Kishida, S., Kurihara, M., Yamaguchi, Y., Jin, W., Imai, M. & Kurosaki, H. (2023). Inorg. Chem. Commun. 153, 110782.  Web of Science CSD CrossRef Google Scholar
First citationKoike, T., Takashige, M., Kimura, E., Fujioka, H. & Shiro, M. (1996). Chem. Eur. J. 2, 617–623.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoibinet, M., Déchamps-Olivier, I., Guillon, E., Barbier, J.-P., Aplincourt, M., Chuburu, F., LeBaccon, M. & Handel, H. (2003). Eur. J. Inorg. Chem. pp. 1984–1994.  Web of Science CSD CrossRef Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146