metal-organic compounds
Aqua{μ-1,4-bis[(1,4,7,10-tetraazacyclododecan-1-yl)methyl]benzene}(nitrato-κO)dicopper(II) tris(nitrate) trihydrate
aFaculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan, bCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Nagoya 463-8521, Japan, and cEnvironmental Safety Center, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto, 860-8555, Japan
*Correspondence e-mail: kato-k@kinjo-u.ac.jp, h-kurosaki@kinjo-u.ac.jp
In the title dinuclear CuII complex, [Cu2(NO3)(C24H46N8)(H2O)](NO3)3·3H2O, the two CuII molecules both have a square-pyramidal geometry, but the ligands in the axial positions are different: a water molecule and a nitrate ion. All nitrate ions, water molecules, and N—H groups are involved in an intermolecular hydrogen-bond network.
Keywords: crystal structure; copper(II) complex; cyclen; p-xylene; dinuclear complex.
CCDC reference: 2265479
Structure description
Cyclen (1,4,7,10-tetraazacyclododecane) is a widely utilized macrocyclic polyamine and a water-soluble tetradentate ligand that can strongly chelate transition-metal cations such as ZnII ions (Ichimaru et al., 2021). Herein, we focused on synthesizing a ligand, p-bis(cyclen), in which two cyclen rings are bridged via p-xylen. The dizinc complex of p-bis(cyclen) has been reported as an anion acceptor for biologically active molecules such as barbital (Koike et al., 1996). Furthermore, the of the perchlorate hydrate, [p-bis(CuII–cyclen)(ClO4)4]·4H2O, which is a CuII complex of p-bis(cyclen), has been reported (Soibinet et al., 2003).
In this context, we have prepared the nitrate salt of p-bis(CuII–cyclen), [p-bis(CuII–cyclen)(OH2)(NO3)](NO3)3·3H2O, comprising a dinuclear CuII complex, three nitrate ions, and three water molecules as the solvent (Fig. 1). Each CuII atom is five-coordinate environment, with four nitrogen atoms of the cyclen ring and a nitrate ion or a water molecule as ligands. In the mer-fashion arrangement, Cu1 is coordinated by the cyclen ring (composed of N1, N2, N3, and N4) at the equatorial positions and by the nitrate ion at the axial position. Meanwhile, Cu2 is coordinated by another cyclen ring (composed of N5, N6, N7, and N8) bridged via p-xylene. Unlike Cu1, the axial position of the around Cu2 is occupied by a water molecule. The intramolecular Cu⋯Cu distance is close to the maximum possible value allowed by the ligand because Cu1 and Cu2 are located on opposite sides of the planar xylene spacer. Therefore, the apex of the square pyramid with Cu1 at the center points in the direction opposite to that having Cu2 at the center. The distances between Cu1 and N range from 2.011 (5) to 2.065 (5) Å, while those of Cu2 range from 2.000 (5) to 2.044 (5) Å, which are well within the typical ranges for C—N coordination bonds with Soibinet and co-workers reported that the chelating nature of cyclen rings to CuII in perchlorate salts were similar to nitrate salts (Soibinet et al., 2003). However, CuII is coordinated by water molecules at the axial positions in both cases.
The coordination geometry index τ was calculated to determine the deviation from ideal coordination polyhedra around the copper ions using the formula τ = (β − α)/60°, where β and α are the largest and second-largest angles in the coordination center, respectively (Addison et al., 1984). An ideal square pyramid has a τ value of 0, while an ideal trigonal bipyramid has a τ value of 1. The bond angles α and β of the N—CuII—N chelate are 148.5 (2) and 152.0 (2)°, respectively, around Cu1 and 148.7 (2) and 153.9 (2)°, respectively, around Cu2. Accordingly, the τ values for Cu1 and Cu2 were calculated as 0.058 and 0.087, respectively. Therefore, the coordination geometry around the central CuII could be characterized as a marginally distorted square pyramid. The deviations from an ideal square-pyramidal geometry in certain complexes arise from the distortion of the cyclen ring (i.e., the 12-membered macrocycle). Cyclam (1,4,8,11-tetraazacyclotetradecane), a 14-membered macrocyclic polyamine, exhibits an ideal square-pyramidal environment with the transition-metal ions located in the plane formed by the nitrogen atoms of the ring (Ichimaru et al., 2022). In the title complex, Cu1 and Cu2 are located at distances of 0.521 (3) and 0.501 (3) Å, respectively, above the basal plane formed by the four nitrogen atoms of the cyclen ring.
All of the non-coordinating nitrate ions, water molecules, and N–H groups are involved in an intermolecular hydrogen-bond network (Fig. 2). The hydrogen bonds between the N—H groups, except N7—H7, and nitrate ions produce a hydrogen-bond network wherein water molecules of solvation fill the gaps between the nitrate ions. Numerical values of the hydrogen-bonding interactions are summarized in Table 1.
Crystal Explorer 21.5 (Spackman et al., 2021) was used to perform a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and generate the associated two-dimensional fingerprint plots. The Hirshfeld surface mapped over dnorm with a standard resolution is illustrated in Fig. 3 along with fingerprint plots, which indicate the most important intermolecular contacts to be O⋯H/H⋯O (50.1%) and H⋯H (41.2%). The significant frequency of H⋯H and O⋯H/H⋯O interactions implies that van der Waals interactions and hydrogen bonding are critical in the crystal packing (Hathwar et al., 2015) of the title complex (Fig. 4). We previously reported that p-xylyl doubly-bridged ZnII–cyclen, p-bis(ZnII–cyclen), forms a characteristic helix-like supramolecular structure (Ichimaru et al., 2023). However, the packing of the title complex reported herein exhibits no specific supramolecular structures.
Synthesis and crystallization
The ligand p-bis(cyclen), or 1,4-bis((1,4,7,10-tetraazacyclododecan-1-yl)methyl)benzene, was synthesized as previously reported using an in-house lab method (Koike et al., 1996). A solution of Cu(NO3)2·3H2O (484 mg, 2.0 mmol) in water (1.0 ml) was added dropwise to 20 ml of an ethanolic solution of p-bis(cyclen) (446 mg, 1.0 mmol). The reaction mixture was stirred for 30 min at 353 K and then filtered. The filtrate was allowed to stand 3 days at room temperature. Blue block-shaped crystals (600 mg) were obtained in 67% yield.
Refinement
Crystal data, data collection and structure . In the final cycles of 12 outliers were omitted.
details are summarized in Table 2
|
Structural data
CCDC reference: 2265479
https://doi.org/10.1107/S2414314623004625/zl4054sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623004625/zl4054Isup2.hkl
Data collection: CrysAlis PRO 1.171.42.55a (Rigaku OD, 2022); cell
CrysAlis PRO 1.171.42.55a (Rigaku OD, 2022); data reduction: CrysAlis PRO 1.171.42.55a (Rigaku OD, 2022); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 1.3 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 1.3 (Dolomanov et al., 2009).[Cu2(NO3)(C24H46N8)(H2O)](NO3)3·3H2O | Dx = 1.585 Mg m−3 |
Mr = 893.87 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, P212121 | Cell parameters from 16388 reflections |
a = 14.9788 (2) Å | θ = 2.7–68.2° |
b = 15.3455 (2) Å | µ = 2.14 mm−1 |
c = 16.2948 (2) Å | T = 93 K |
V = 3745.48 (8) Å3 | Block, blue |
Z = 4 | 0.55 × 0.45 × 0.17 mm |
F(000) = 1872 |
Rigaku XtaLAB Synergy-i diffractometer | 6617 independent reflections |
Radiation source: microfocus sealed X-ray tube, PhotonJet-i | 6227 reflections with I > 2σ(I) |
Multi-layer mirror optics monochromator | Rint = 0.047 |
Detector resolution: 10.0 pixels mm-1 | θmax = 68.4°, θmin = 4.0° |
ω scans | h = −16→18 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −18→18 |
Tmin = 0.505, Tmax = 1.000 | l = −19→19 |
19219 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0781P)2 + 6.1629P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.139 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 1.08 e Å−3 |
6617 reflections | Δρmin = −0.53 e Å−3 |
530 parameters | Absolute structure: Refined as an inversion twin |
20 restraints | Absolute structure parameter: 0.36 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. All hydrogen atoms were located by a geometrical calculation, and were not refined. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.61491 (6) | 0.91479 (5) | 1.03500 (5) | 0.0204 (2) | |
Cu2 | 0.88673 (5) | 0.58988 (5) | 0.45167 (5) | 0.0199 (2) | |
O1 | 0.5665 (3) | 1.0063 (3) | 0.9436 (4) | 0.0473 (14) | |
O2 | 0.4505 (4) | 1.0249 (4) | 1.0170 (3) | 0.0501 (14) | |
O3 | 0.4515 (4) | 1.0675 (4) | 0.8898 (3) | 0.0472 (14) | |
O4 | 0.9387 (4) | 0.4801 (3) | 0.5172 (3) | 0.0427 (13) | |
H4A | 0.904 (4) | 0.466 (6) | 0.556 (4) | 0.064* | |
H4B | 0.991 (2) | 0.472 (7) | 0.536 (5) | 0.064* | |
O5 | 0.6792 (4) | 0.3885 (3) | 0.4561 (3) | 0.0452 (13) | |
O6 | 0.7448 (3) | 0.4371 (3) | 0.5657 (4) | 0.0419 (12) | |
O7 | 0.6407 (3) | 0.3400 (3) | 0.5752 (3) | 0.0403 (12) | |
O8 | 0.9012 (3) | 0.4147 (4) | 0.6735 (4) | 0.0533 (14) | |
O9 | 1.0375 (4) | 0.4523 (4) | 0.6687 (4) | 0.0524 (14) | |
O10 | 0.9847 (4) | 0.3927 (3) | 0.7787 (3) | 0.0423 (12) | |
O11 | 0.7641 (3) | 0.0649 (3) | 0.8984 (3) | 0.0365 (11) | |
O12 | 0.8714 (4) | 0.1596 (3) | 0.8897 (3) | 0.0414 (12) | |
O13 | 0.8682 (4) | 0.0673 (4) | 0.9896 (3) | 0.0584 (17) | |
O14 | 0.7733 (4) | 0.2886 (3) | 0.6922 (3) | 0.0397 (11) | |
H14A | 0.819 (3) | 0.317 (4) | 0.705 (4) | 0.060* | |
H14B | 0.733 (4) | 0.324 (4) | 0.676 (3) | 0.060* | |
O15 | 0.6749 (3) | 0.1819 (3) | 0.7925 (3) | 0.0331 (10) | |
H15A | 0.709 (4) | 0.217 (4) | 0.768 (5) | 0.050* | |
H15B | 0.705 (4) | 0.141 (4) | 0.812 (5) | 0.050* | |
O16 | 0.5260 (3) | 0.0921 (4) | 0.7318 (3) | 0.0389 (11) | |
H16C | 0.570 (4) | 0.125 (5) | 0.730 (5) | 0.058* | |
H16D | 0.520 (5) | 0.076 (6) | 0.781 (2) | 0.058* | |
N1 | 0.6821 (3) | 0.8349 (3) | 0.9539 (3) | 0.0208 (10) | |
N2 | 0.5198 (3) | 0.8225 (3) | 1.0385 (3) | 0.0233 (10) | |
H2 | 0.462 (3) | 0.833 (4) | 1.012 (4) | 0.028* | |
N3 | 0.5738 (4) | 0.9472 (3) | 1.1495 (3) | 0.0260 (11) | |
H3 | 0.547 (4) | 1.006 (2) | 1.148 (5) | 0.031* | |
N4 | 0.7366 (3) | 0.9556 (3) | 1.0708 (3) | 0.0230 (10) | |
H4 | 0.758 (4) | 1.007 (3) | 1.040 (4) | 0.028* | |
N5 | 0.8166 (3) | 0.6661 (3) | 0.5318 (3) | 0.0190 (10) | |
N6 | 0.9851 (3) | 0.6791 (3) | 0.4614 (3) | 0.0242 (11) | |
H6 | 1.038 (3) | 0.649 (4) | 0.482 (4) | 0.029* | |
N7 | 0.9393 (4) | 0.5610 (3) | 0.3409 (3) | 0.0268 (11) | |
H7 | 0.957 (5) | 0.503 (2) | 0.324 (5) | 0.032* | |
N8 | 0.7683 (4) | 0.5560 (3) | 0.4049 (3) | 0.0249 (11) | |
H8 | 0.740 (4) | 0.506 (3) | 0.432 (4) | 0.030* | |
N9 | 0.4899 (4) | 1.0309 (4) | 0.9475 (4) | 0.0314 (12) | |
N10 | 0.6877 (3) | 0.3903 (3) | 0.5318 (4) | 0.0310 (12) | |
N11 | 0.9758 (4) | 0.4207 (4) | 0.7080 (3) | 0.0295 (12) | |
N12 | 0.8339 (4) | 0.0990 (4) | 0.9262 (3) | 0.0322 (12) | |
C1 | 0.6497 (4) | 0.7470 (4) | 0.9795 (4) | 0.0226 (13) | |
H1A | 0.676124 | 0.731200 | 1.033150 | 0.027* | |
H1B | 0.668615 | 0.702879 | 0.938650 | 0.027* | |
C2 | 0.5475 (4) | 0.7478 (4) | 0.9861 (4) | 0.0263 (13) | |
H2A | 0.520778 | 0.753505 | 0.930819 | 0.032* | |
H2B | 0.526427 | 0.692444 | 1.010611 | 0.032* | |
C3 | 0.5102 (4) | 0.8018 (5) | 1.1271 (4) | 0.0287 (14) | |
H3A | 0.563534 | 0.770084 | 1.147014 | 0.034* | |
H3B | 0.457054 | 0.764620 | 1.136172 | 0.034* | |
C4 | 0.5000 (4) | 0.8879 (5) | 1.1730 (4) | 0.0326 (15) | |
H4C | 0.441937 | 0.914948 | 1.159122 | 0.039* | |
H4D | 0.501488 | 0.877340 | 1.232907 | 0.039* | |
C5 | 0.6569 (4) | 0.9380 (4) | 1.1996 (4) | 0.0300 (14) | |
H5A | 0.672719 | 0.875709 | 1.205537 | 0.036* | |
H5B | 0.647460 | 0.962771 | 1.255041 | 0.036* | |
C6 | 0.7307 (5) | 0.9859 (4) | 1.1568 (4) | 0.0305 (14) | |
H6A | 0.718734 | 1.049316 | 1.158026 | 0.037* | |
H6B | 0.788020 | 0.974994 | 1.185217 | 0.037* | |
C7 | 0.7924 (4) | 0.8762 (4) | 1.0597 (4) | 0.0248 (12) | |
H7A | 0.773451 | 0.830039 | 1.098373 | 0.030* | |
H7B | 0.856026 | 0.889860 | 1.070183 | 0.030* | |
C8 | 0.7799 (4) | 0.8462 (4) | 0.9722 (4) | 0.0229 (12) | |
H8A | 0.805916 | 0.889639 | 0.934198 | 0.027* | |
H8B | 0.811424 | 0.790146 | 0.963839 | 0.027* | |
C9 | 0.6623 (4) | 0.8556 (4) | 0.8665 (3) | 0.0233 (12) | |
H9A | 0.680441 | 0.916610 | 0.855953 | 0.028* | |
H9B | 0.596932 | 0.852083 | 0.858382 | 0.028* | |
C10 | 0.7071 (4) | 0.7977 (4) | 0.8033 (3) | 0.0199 (12) | |
C11 | 0.6632 (4) | 0.7253 (4) | 0.7716 (3) | 0.0230 (12) | |
H11 | 0.605083 | 0.711175 | 0.790669 | 0.028* | |
C12 | 0.7033 (4) | 0.6736 (4) | 0.7124 (3) | 0.0218 (12) | |
H12 | 0.672317 | 0.624829 | 0.690649 | 0.026* | |
C13 | 0.7893 (4) | 0.6932 (4) | 0.6846 (3) | 0.0189 (11) | |
C14 | 0.8336 (4) | 0.7642 (4) | 0.7162 (3) | 0.0225 (12) | |
H14 | 0.892253 | 0.777662 | 0.697892 | 0.027* | |
C15 | 0.7926 (4) | 0.8162 (4) | 0.7747 (3) | 0.0226 (12) | |
H15 | 0.823535 | 0.865472 | 0.795792 | 0.027* | |
C16 | 0.8321 (4) | 0.6374 (4) | 0.6192 (3) | 0.0218 (12) | |
H16A | 0.897222 | 0.635855 | 0.629262 | 0.026* | |
H16B | 0.809426 | 0.577091 | 0.625190 | 0.026* | |
C17 | 0.8537 (4) | 0.7544 (4) | 0.5142 (3) | 0.0200 (12) | |
H17A | 0.832624 | 0.796033 | 0.556322 | 0.024* | |
H17B | 0.831839 | 0.774598 | 0.460073 | 0.024* | |
C18 | 0.9549 (4) | 0.7524 (4) | 0.5138 (4) | 0.0246 (13) | |
H18A | 0.978530 | 0.808125 | 0.492194 | 0.030* | |
H18B | 0.977529 | 0.744618 | 0.570468 | 0.030* | |
C19 | 1.0034 (4) | 0.7033 (5) | 0.3757 (4) | 0.0303 (15) | |
H19A | 1.057911 | 0.739556 | 0.372507 | 0.036* | |
H19B | 0.952808 | 0.737113 | 0.352941 | 0.036* | |
C20 | 1.0160 (5) | 0.6202 (5) | 0.3276 (4) | 0.0347 (16) | |
H20A | 1.021283 | 0.633910 | 0.268444 | 0.042* | |
H20B | 1.071770 | 0.591116 | 0.345272 | 0.042* | |
C21 | 0.8636 (4) | 0.5745 (4) | 0.2841 (3) | 0.0277 (13) | |
H21A | 0.878321 | 0.550350 | 0.229443 | 0.033* | |
H21B | 0.851715 | 0.637622 | 0.277868 | 0.033* | |
C22 | 0.7817 (5) | 0.5294 (4) | 0.3182 (4) | 0.0293 (14) | |
H22A | 0.728652 | 0.545398 | 0.285284 | 0.035* | |
H22B | 0.789563 | 0.465434 | 0.315060 | 0.035* | |
C23 | 0.7142 (4) | 0.6365 (4) | 0.4163 (3) | 0.0245 (13) | |
H23A | 0.651252 | 0.625843 | 0.400546 | 0.029* | |
H23B | 0.737992 | 0.684399 | 0.382023 | 0.029* | |
C24 | 0.7204 (4) | 0.6599 (4) | 0.5068 (3) | 0.0230 (13) | |
H24A | 0.690306 | 0.716319 | 0.516781 | 0.028* | |
H24B | 0.690063 | 0.614774 | 0.540082 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0235 (4) | 0.0245 (4) | 0.0131 (4) | 0.0044 (4) | 0.0004 (3) | −0.0001 (3) |
Cu2 | 0.0227 (4) | 0.0239 (4) | 0.0131 (4) | 0.0004 (4) | 0.0014 (3) | −0.0011 (3) |
O1 | 0.033 (3) | 0.054 (3) | 0.055 (4) | 0.014 (2) | 0.004 (2) | 0.025 (3) |
O2 | 0.049 (3) | 0.066 (3) | 0.035 (3) | 0.014 (3) | 0.012 (2) | 0.011 (3) |
O3 | 0.044 (3) | 0.064 (4) | 0.034 (3) | 0.028 (3) | −0.002 (2) | 0.016 (3) |
O4 | 0.065 (3) | 0.038 (3) | 0.025 (3) | 0.019 (3) | −0.002 (2) | 0.004 (2) |
O5 | 0.048 (3) | 0.044 (3) | 0.043 (3) | −0.010 (2) | −0.016 (3) | 0.013 (2) |
O6 | 0.033 (2) | 0.037 (2) | 0.056 (3) | −0.004 (2) | −0.011 (2) | −0.006 (2) |
O7 | 0.036 (3) | 0.045 (3) | 0.039 (3) | −0.016 (2) | −0.006 (2) | 0.005 (2) |
O8 | 0.035 (3) | 0.068 (3) | 0.056 (3) | −0.012 (3) | −0.013 (3) | 0.015 (3) |
O9 | 0.038 (3) | 0.059 (3) | 0.061 (4) | −0.012 (3) | 0.004 (3) | 0.011 (3) |
O10 | 0.055 (3) | 0.043 (3) | 0.029 (3) | 0.000 (2) | −0.013 (2) | 0.006 (2) |
O11 | 0.032 (2) | 0.044 (3) | 0.033 (3) | −0.014 (2) | −0.009 (2) | 0.007 (2) |
O12 | 0.052 (3) | 0.043 (3) | 0.030 (2) | −0.019 (2) | −0.001 (2) | 0.005 (2) |
O13 | 0.057 (3) | 0.084 (4) | 0.035 (3) | −0.033 (3) | −0.021 (3) | 0.023 (3) |
O14 | 0.045 (3) | 0.038 (2) | 0.036 (3) | −0.002 (2) | 0.010 (2) | 0.002 (2) |
O15 | 0.030 (2) | 0.035 (2) | 0.034 (3) | −0.001 (2) | −0.002 (2) | 0.004 (2) |
O16 | 0.036 (3) | 0.047 (3) | 0.033 (2) | −0.012 (2) | 0.000 (2) | −0.004 (2) |
N1 | 0.023 (2) | 0.027 (2) | 0.013 (2) | 0.005 (2) | 0.0003 (19) | 0.0019 (19) |
N2 | 0.023 (2) | 0.035 (3) | 0.013 (2) | 0.007 (2) | −0.005 (2) | −0.002 (2) |
N3 | 0.028 (3) | 0.033 (3) | 0.017 (2) | 0.007 (2) | 0.002 (2) | 0.000 (2) |
N4 | 0.029 (3) | 0.026 (2) | 0.014 (2) | 0.001 (2) | −0.001 (2) | −0.001 (2) |
N5 | 0.019 (2) | 0.028 (2) | 0.010 (2) | −0.0010 (19) | 0.0015 (18) | −0.0020 (19) |
N6 | 0.024 (2) | 0.031 (3) | 0.017 (2) | 0.004 (2) | 0.003 (2) | 0.002 (2) |
N7 | 0.033 (3) | 0.030 (3) | 0.017 (2) | 0.005 (2) | 0.005 (2) | −0.001 (2) |
N8 | 0.032 (3) | 0.027 (2) | 0.016 (2) | −0.005 (2) | 0.000 (2) | 0.003 (2) |
N9 | 0.033 (3) | 0.028 (3) | 0.034 (3) | −0.001 (2) | −0.006 (2) | 0.006 (2) |
N10 | 0.022 (2) | 0.025 (3) | 0.046 (3) | −0.002 (2) | −0.002 (2) | −0.002 (2) |
N11 | 0.027 (3) | 0.033 (3) | 0.029 (3) | 0.002 (2) | −0.006 (2) | −0.004 (2) |
N12 | 0.035 (3) | 0.038 (3) | 0.023 (3) | −0.007 (3) | 0.000 (2) | 0.000 (2) |
C1 | 0.025 (3) | 0.024 (3) | 0.019 (3) | 0.007 (2) | 0.002 (2) | 0.001 (2) |
C2 | 0.026 (3) | 0.032 (3) | 0.021 (3) | 0.001 (3) | −0.005 (2) | −0.003 (3) |
C3 | 0.028 (3) | 0.037 (4) | 0.021 (3) | −0.001 (3) | 0.004 (3) | 0.003 (3) |
C4 | 0.035 (4) | 0.049 (4) | 0.014 (3) | 0.003 (3) | 0.006 (3) | 0.002 (3) |
C5 | 0.033 (3) | 0.039 (3) | 0.018 (3) | 0.001 (3) | 0.002 (3) | 0.000 (2) |
C6 | 0.040 (4) | 0.035 (3) | 0.017 (3) | −0.001 (3) | 0.001 (3) | −0.006 (3) |
C7 | 0.027 (3) | 0.033 (3) | 0.015 (3) | 0.004 (2) | −0.003 (2) | 0.000 (2) |
C8 | 0.019 (3) | 0.031 (3) | 0.019 (3) | 0.010 (2) | −0.002 (2) | 0.000 (2) |
C9 | 0.032 (3) | 0.028 (3) | 0.010 (3) | 0.008 (3) | −0.001 (2) | 0.003 (2) |
C10 | 0.028 (3) | 0.023 (3) | 0.009 (2) | 0.006 (2) | −0.006 (2) | 0.003 (2) |
C11 | 0.021 (3) | 0.034 (3) | 0.015 (3) | −0.001 (2) | −0.001 (2) | 0.005 (2) |
C12 | 0.024 (3) | 0.027 (3) | 0.015 (3) | −0.002 (2) | −0.001 (2) | −0.002 (2) |
C13 | 0.024 (3) | 0.023 (3) | 0.010 (2) | 0.000 (2) | −0.003 (2) | 0.003 (2) |
C14 | 0.027 (3) | 0.023 (3) | 0.018 (3) | 0.001 (2) | −0.001 (2) | 0.000 (2) |
C15 | 0.028 (3) | 0.030 (3) | 0.010 (2) | −0.003 (2) | 0.000 (2) | 0.000 (2) |
C16 | 0.027 (3) | 0.025 (3) | 0.013 (3) | 0.005 (2) | −0.003 (2) | −0.002 (2) |
C17 | 0.027 (3) | 0.021 (3) | 0.012 (3) | −0.001 (2) | −0.001 (2) | 0.002 (2) |
C18 | 0.028 (3) | 0.026 (3) | 0.020 (3) | −0.003 (2) | 0.003 (2) | −0.004 (2) |
C19 | 0.029 (3) | 0.041 (4) | 0.021 (3) | −0.007 (3) | 0.006 (3) | 0.002 (3) |
C20 | 0.033 (3) | 0.048 (4) | 0.023 (3) | 0.008 (3) | 0.011 (3) | 0.001 (3) |
C21 | 0.038 (4) | 0.036 (3) | 0.010 (2) | 0.005 (3) | 0.001 (2) | 0.001 (2) |
C22 | 0.045 (4) | 0.033 (3) | 0.010 (3) | 0.000 (3) | −0.004 (3) | −0.006 (2) |
C23 | 0.028 (3) | 0.036 (3) | 0.009 (3) | 0.001 (3) | 0.000 (2) | −0.001 (2) |
C24 | 0.016 (3) | 0.036 (3) | 0.016 (3) | 0.000 (2) | 0.001 (2) | −0.002 (2) |
Cu1—O1 | 2.170 (5) | C1—H1B | 0.9900 |
Cu1—N1 | 2.065 (5) | C1—C2 | 1.535 (9) |
Cu1—N2 | 2.011 (5) | C2—H2A | 0.9900 |
Cu1—N3 | 2.026 (5) | C2—H2B | 0.9900 |
Cu1—N4 | 2.013 (5) | C3—H3A | 0.9900 |
Cu2—O4 | 2.141 (5) | C3—H3B | 0.9900 |
Cu2—N5 | 2.044 (5) | C3—C4 | 1.526 (9) |
Cu2—N6 | 2.017 (5) | C4—H4C | 0.9900 |
Cu2—N7 | 2.019 (5) | C4—H4D | 0.9900 |
Cu2—N8 | 2.000 (5) | C5—H5A | 0.9900 |
O1—N9 | 1.211 (7) | C5—H5B | 0.9900 |
O2—N9 | 1.281 (8) | C5—C6 | 1.499 (9) |
O3—N9 | 1.237 (7) | C6—H6A | 0.9900 |
O4—H4A | 0.85 (3) | C6—H6B | 0.9900 |
O4—H4B | 0.85 (3) | C7—H7A | 0.9900 |
O5—N10 | 1.241 (8) | C7—H7B | 0.9900 |
O6—N10 | 1.246 (7) | C7—C8 | 1.510 (8) |
O7—N10 | 1.261 (7) | C8—H8A | 0.9900 |
O8—N11 | 1.254 (7) | C8—H8B | 0.9900 |
O9—N11 | 1.225 (8) | C9—H9A | 0.9900 |
O10—N11 | 1.236 (7) | C9—H9B | 0.9900 |
O11—N12 | 1.255 (7) | C9—C10 | 1.518 (8) |
O12—N12 | 1.238 (7) | C10—C11 | 1.390 (8) |
O13—N12 | 1.252 (7) | C10—C15 | 1.392 (9) |
O14—H14A | 0.84 (2) | C11—H11 | 0.9500 |
O14—H14B | 0.85 (3) | C11—C12 | 1.386 (8) |
O15—H15A | 0.84 (3) | C12—H12 | 0.9500 |
O15—H15B | 0.83 (3) | C12—C13 | 1.397 (8) |
O16—H16C | 0.84 (3) | C13—C14 | 1.377 (8) |
O16—H16D | 0.85 (3) | C13—C16 | 1.511 (8) |
N1—C1 | 1.492 (7) | C14—H14 | 0.9500 |
N1—C8 | 1.505 (7) | C14—C15 | 1.387 (8) |
N1—C9 | 1.489 (7) | C15—H15 | 0.9500 |
N2—H2 | 0.98 (3) | C16—H16A | 0.9900 |
N2—C2 | 1.488 (8) | C16—H16B | 0.9900 |
N2—C3 | 1.486 (7) | C17—H17A | 0.9900 |
N3—H3 | 0.99 (3) | C17—H17B | 0.9900 |
N3—C4 | 1.482 (8) | C17—C18 | 1.517 (9) |
N3—C5 | 1.496 (8) | C18—H18A | 0.9900 |
N4—H4 | 0.99 (3) | C18—H18B | 0.9900 |
N4—C6 | 1.478 (8) | C19—H19A | 0.9900 |
N4—C7 | 1.490 (7) | C19—H19B | 0.9900 |
N5—C16 | 1.508 (7) | C19—C20 | 1.508 (10) |
N5—C17 | 1.491 (7) | C20—H20A | 0.9900 |
N5—C24 | 1.501 (7) | C20—H20B | 0.9900 |
N6—H6 | 0.97 (3) | C21—H21A | 0.9900 |
N6—C18 | 1.484 (8) | C21—H21B | 0.9900 |
N6—C19 | 1.471 (7) | C21—C22 | 1.514 (9) |
N7—H7 | 0.97 (3) | C22—H22A | 0.9900 |
N7—C20 | 1.480 (9) | C22—H22B | 0.9900 |
N7—C21 | 1.479 (8) | C23—H23A | 0.9900 |
N8—H8 | 0.98 (3) | C23—H23B | 0.9900 |
N8—C22 | 1.484 (7) | C23—C24 | 1.521 (8) |
N8—C23 | 1.489 (8) | C24—H24A | 0.9900 |
C1—H1A | 0.9900 | C24—H24B | 0.9900 |
N1—Cu1—O1 | 96.2 (2) | N3—C4—H4D | 109.8 |
N2—Cu1—O1 | 103.8 (2) | C3—C4—H4C | 109.8 |
N2—Cu1—N1 | 86.85 (19) | C3—C4—H4D | 109.8 |
N2—Cu1—N3 | 86.1 (2) | H4C—C4—H4D | 108.3 |
N2—Cu1—N4 | 148.5 (2) | N3—C5—H5A | 110.0 |
N3—Cu1—O1 | 111.8 (2) | N3—C5—H5B | 110.0 |
N3—Cu1—N1 | 152.0 (2) | N3—C5—C6 | 108.3 (5) |
N4—Cu1—O1 | 107.4 (2) | H5A—C5—H5B | 108.4 |
N4—Cu1—N1 | 85.93 (19) | C6—C5—H5A | 110.0 |
N4—Cu1—N3 | 86.1 (2) | C6—C5—H5B | 110.0 |
N5—Cu2—O4 | 108.55 (19) | N4—C6—C5 | 109.3 (5) |
N6—Cu2—O4 | 103.2 (2) | N4—C6—H6A | 109.8 |
N6—Cu2—N5 | 86.4 (2) | N4—C6—H6B | 109.8 |
N6—Cu2—N7 | 86.2 (2) | C5—C6—H6A | 109.8 |
N7—Cu2—O4 | 97.5 (2) | C5—C6—H6B | 109.8 |
N7—Cu2—N5 | 153.9 (2) | H6A—C6—H6B | 108.3 |
N8—Cu2—O4 | 108.0 (2) | N4—C7—H7A | 110.3 |
N8—Cu2—N5 | 86.4 (2) | N4—C7—H7B | 110.3 |
N8—Cu2—N6 | 148.7 (2) | N4—C7—C8 | 107.2 (5) |
N8—Cu2—N7 | 87.0 (2) | H7A—C7—H7B | 108.5 |
N9—O1—Cu1 | 118.9 (4) | C8—C7—H7A | 110.3 |
Cu2—O4—H4A | 110 (6) | C8—C7—H7B | 110.3 |
Cu2—O4—H4B | 129 (7) | N1—C8—C7 | 110.1 (5) |
H4A—O4—H4B | 106 (4) | N1—C8—H8A | 109.7 |
H14A—O14—H14B | 109 (4) | N1—C8—H8B | 109.7 |
H15A—O15—H15B | 110 (4) | C7—C8—H8A | 109.7 |
H16C—O16—H16D | 107 (4) | C7—C8—H8B | 109.7 |
C1—N1—Cu1 | 101.5 (3) | H8A—C8—H8B | 108.2 |
C1—N1—C8 | 111.4 (4) | N1—C9—H9A | 108.3 |
C8—N1—Cu1 | 106.2 (3) | N1—C9—H9B | 108.3 |
C9—N1—Cu1 | 112.8 (3) | N1—C9—C10 | 115.9 (4) |
C9—N1—C1 | 113.3 (5) | H9A—C9—H9B | 107.4 |
C9—N1—C8 | 111.0 (5) | C10—C9—H9A | 108.3 |
Cu1—N2—H2 | 120 (4) | C10—C9—H9B | 108.3 |
C2—N2—Cu1 | 109.2 (4) | C11—C10—C9 | 120.7 (5) |
C2—N2—H2 | 97 (4) | C11—C10—C15 | 118.3 (5) |
C3—N2—Cu1 | 104.3 (4) | C15—C10—C9 | 120.9 (5) |
C3—N2—H2 | 112 (4) | C10—C11—H11 | 119.6 |
C3—N2—C2 | 114.8 (5) | C12—C11—C10 | 120.7 (5) |
Cu1—N3—H3 | 109 (4) | C12—C11—H11 | 119.6 |
C4—N3—Cu1 | 108.3 (4) | C11—C12—H12 | 119.9 |
C4—N3—H3 | 105 (4) | C11—C12—C13 | 120.1 (5) |
C4—N3—C5 | 115.0 (5) | C13—C12—H12 | 119.9 |
C5—N3—Cu1 | 103.1 (4) | C12—C13—C16 | 119.9 (5) |
C5—N3—H3 | 116 (4) | C14—C13—C12 | 119.6 (5) |
Cu1—N4—H4 | 113 (4) | C14—C13—C16 | 120.5 (5) |
C6—N4—Cu1 | 108.6 (4) | C13—C14—H14 | 120.0 |
C6—N4—H4 | 105 (4) | C13—C14—C15 | 119.9 (6) |
C6—N4—C7 | 113.9 (5) | C15—C14—H14 | 120.0 |
C7—N4—Cu1 | 102.6 (4) | C10—C15—H15 | 119.4 |
C7—N4—H4 | 114 (4) | C14—C15—C10 | 121.3 (6) |
C16—N5—Cu2 | 110.9 (3) | C14—C15—H15 | 119.4 |
C17—N5—Cu2 | 101.8 (3) | N5—C16—C13 | 115.8 (4) |
C17—N5—C16 | 113.0 (4) | N5—C16—H16A | 108.3 |
C17—N5—C24 | 111.3 (5) | N5—C16—H16B | 108.3 |
C24—N5—Cu2 | 106.4 (3) | C13—C16—H16A | 108.3 |
C24—N5—C16 | 112.6 (4) | C13—C16—H16B | 108.3 |
Cu2—N6—H6 | 107 (4) | H16A—C16—H16B | 107.4 |
C18—N6—Cu2 | 109.7 (4) | N5—C17—H17A | 109.5 |
C18—N6—H6 | 114 (4) | N5—C17—H17B | 109.5 |
C19—N6—Cu2 | 103.5 (4) | N5—C17—C18 | 110.8 (5) |
C19—N6—H6 | 107 (4) | H17A—C17—H17B | 108.1 |
C19—N6—C18 | 114.3 (5) | C18—C17—H17A | 109.5 |
Cu2—N7—H7 | 124 (5) | C18—C17—H17B | 109.5 |
C20—N7—Cu2 | 107.4 (4) | N6—C18—C17 | 108.7 (5) |
C20—N7—H7 | 108 (4) | N6—C18—H18A | 109.9 |
C21—N7—Cu2 | 103.2 (4) | N6—C18—H18B | 109.9 |
C21—N7—H7 | 100 (4) | C17—C18—H18A | 109.9 |
C21—N7—C20 | 114.7 (5) | C17—C18—H18B | 109.9 |
Cu2—N8—H8 | 114 (4) | H18A—C18—H18B | 108.3 |
C22—N8—Cu2 | 108.3 (4) | N6—C19—H19A | 110.2 |
C22—N8—H8 | 105 (4) | N6—C19—H19B | 110.2 |
C22—N8—C23 | 114.9 (5) | N6—C19—C20 | 107.6 (6) |
C23—N8—Cu2 | 102.7 (4) | H19A—C19—H19B | 108.5 |
C23—N8—H8 | 111 (4) | C20—C19—H19A | 110.2 |
O1—N9—O2 | 117.4 (6) | C20—C19—H19B | 110.2 |
O1—N9—O3 | 122.9 (6) | N7—C20—C19 | 110.2 (5) |
O3—N9—O2 | 119.4 (5) | N7—C20—H20A | 109.6 |
O5—N10—O6 | 121.6 (6) | N7—C20—H20B | 109.6 |
O5—N10—O7 | 119.1 (5) | C19—C20—H20A | 109.6 |
O6—N10—O7 | 119.2 (6) | C19—C20—H20B | 109.6 |
O9—N11—O8 | 117.8 (6) | H20A—C20—H20B | 108.1 |
O9—N11—O10 | 123.0 (6) | N7—C21—H21A | 109.9 |
O10—N11—O8 | 119.2 (6) | N7—C21—H21B | 109.9 |
O12—N12—O11 | 121.1 (5) | N7—C21—C22 | 109.1 (5) |
O12—N12—O13 | 120.2 (6) | H21A—C21—H21B | 108.3 |
O13—N12—O11 | 118.6 (5) | C22—C21—H21A | 109.9 |
N1—C1—H1A | 109.7 | C22—C21—H21B | 109.9 |
N1—C1—H1B | 109.7 | N8—C22—C21 | 109.5 (5) |
N1—C1—C2 | 109.7 (5) | N8—C22—H22A | 109.8 |
H1A—C1—H1B | 108.2 | N8—C22—H22B | 109.8 |
C2—C1—H1A | 109.7 | C21—C22—H22A | 109.8 |
C2—C1—H1B | 109.7 | C21—C22—H22B | 109.8 |
N2—C2—C1 | 109.0 (5) | H22A—C22—H22B | 108.2 |
N2—C2—H2A | 109.9 | N8—C23—H23A | 110.4 |
N2—C2—H2B | 109.9 | N8—C23—H23B | 110.4 |
C1—C2—H2A | 109.9 | N8—C23—C24 | 106.5 (5) |
C1—C2—H2B | 109.9 | H23A—C23—H23B | 108.6 |
H2A—C2—H2B | 108.3 | C24—C23—H23A | 110.4 |
N2—C3—H3A | 110.2 | C24—C23—H23B | 110.4 |
N2—C3—H3B | 110.2 | N5—C24—C23 | 109.8 (5) |
N2—C3—C4 | 107.5 (5) | N5—C24—H24A | 109.7 |
H3A—C3—H3B | 108.5 | N5—C24—H24B | 109.7 |
C4—C3—H3A | 110.2 | C23—C24—H24A | 109.7 |
C4—C3—H3B | 110.2 | C23—C24—H24B | 109.7 |
N3—C4—C3 | 109.3 (5) | H24A—C24—H24B | 108.2 |
N3—C4—H4C | 109.8 | ||
Cu1—O1—N9—O2 | 21.7 (8) | C3—N2—C2—C1 | −91.8 (6) |
Cu1—O1—N9—O3 | −164.3 (5) | C4—N3—C5—C6 | 166.9 (5) |
Cu1—N1—C1—C2 | 49.1 (5) | C5—N3—C4—C3 | −87.5 (6) |
Cu1—N1—C8—C7 | 24.5 (5) | C6—N4—C7—C8 | 171.4 (5) |
Cu1—N1—C9—C10 | −178.2 (4) | C7—N4—C6—C5 | −85.7 (6) |
Cu1—N2—C2—C1 | 24.8 (6) | C8—N1—C1—C2 | 161.9 (5) |
Cu1—N2—C3—C4 | 49.5 (5) | C8—N1—C9—C10 | 62.7 (6) |
Cu1—N3—C4—C3 | 27.1 (6) | C9—N1—C1—C2 | −72.1 (6) |
Cu1—N3—C5—C6 | 49.3 (5) | C9—N1—C8—C7 | 147.5 (5) |
Cu1—N4—C6—C5 | 27.9 (6) | C9—C10—C11—C12 | 178.5 (5) |
Cu1—N4—C7—C8 | 54.2 (5) | C9—C10—C15—C14 | −179.2 (5) |
Cu2—N5—C16—C13 | 175.5 (4) | C10—C11—C12—C13 | 0.9 (8) |
Cu2—N5—C17—C18 | −49.1 (5) | C11—C10—C15—C14 | 0.0 (8) |
Cu2—N5—C24—C23 | −24.9 (6) | C11—C12—C13—C14 | −0.3 (8) |
Cu2—N6—C18—C17 | −22.2 (6) | C11—C12—C13—C16 | −179.1 (5) |
Cu2—N6—C19—C20 | −50.2 (5) | C12—C13—C14—C15 | −0.5 (8) |
Cu2—N7—C20—C19 | −26.4 (6) | C12—C13—C16—N5 | 90.8 (7) |
Cu2—N7—C21—C22 | −47.7 (5) | C13—C14—C15—C10 | 0.6 (8) |
Cu2—N8—C22—C21 | −26.3 (6) | C14—C13—C16—N5 | −88.0 (6) |
Cu2—N8—C23—C24 | −54.1 (5) | C15—C10—C11—C12 | −0.7 (8) |
N1—C1—C2—N2 | −51.4 (6) | C16—N5—C17—C18 | 70.0 (6) |
N1—C9—C10—C11 | 94.2 (6) | C16—N5—C24—C23 | −146.6 (5) |
N1—C9—C10—C15 | −86.7 (7) | C16—C13—C14—C15 | 178.3 (5) |
N2—C3—C4—N3 | −52.0 (7) | C17—N5—C16—C13 | 61.9 (7) |
N3—C5—C6—N4 | −52.8 (7) | C17—N5—C24—C23 | 85.3 (6) |
N4—C7—C8—N1 | −53.8 (6) | C18—N6—C19—C20 | −169.5 (5) |
N5—C17—C18—N6 | 49.2 (6) | C19—N6—C18—C17 | 93.5 (6) |
N6—C19—C20—N7 | 52.6 (7) | C20—N7—C21—C22 | −164.2 (5) |
N7—C21—C22—N8 | 50.9 (7) | C21—N7—C20—C19 | 87.7 (6) |
N8—C23—C24—N5 | 53.9 (6) | C22—N8—C23—C24 | −171.5 (5) |
C1—N1—C8—C7 | −85.3 (6) | C23—N8—C22—C21 | 87.8 (6) |
C1—N1—C9—C10 | −63.5 (7) | C24—N5—C16—C13 | −65.3 (6) |
C2—N2—C3—C4 | 168.9 (5) | C24—N5—C17—C18 | −162.1 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O7i | 0.98 (3) | 2.10 (3) | 3.046 (7) | 162 (6) |
N3—H3···O10ii | 0.99 (3) | 2.17 (5) | 3.032 (7) | 145 (6) |
N4—H4···O13iii | 0.99 (3) | 2.06 (5) | 2.929 (8) | 146 (6) |
N6—H6···O13iv | 0.97 (3) | 1.95 (3) | 2.900 (7) | 167 (6) |
N7—H7···O16v | 0.97 (3) | 2.00 (4) | 2.934 (7) | 160 (6) |
N8—H8···O5 | 0.98 (3) | 2.06 (3) | 3.015 (7) | 165 (6) |
O4—H4A···O8 | 0.85 (3) | 2.07 (6) | 2.794 (8) | 143 (7) |
O14—H14A···O8 | 0.84 (2) | 2.01 (3) | 2.740 (7) | 145 (5) |
O14—H14B···O7 | 0.85 (3) | 2.16 (3) | 2.865 (7) | 140 (5) |
O15—H15A···O14 | 0.84 (3) | 1.91 (3) | 2.742 (7) | 169 (8) |
O15—H15B···O11 | 0.83 (3) | 2.03 (4) | 2.825 (7) | 159 (8) |
O16—H16C···O15 | 0.84 (3) | 2.06 (5) | 2.802 (7) | 147 (7) |
O16—H16D···O3vi | 0.85 (3) | 2.05 (5) | 2.830 (7) | 153 (9) |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x−1/2, −y+3/2, −z+2; (iii) x, y+1, z; (iv) −x+2, y+1/2, −z+3/2; (v) x+1/2, −y+1/2, −z+1; (vi) x, y−1, z. |
Funding information
Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP21K15244 to Kato, K.; grant No. JP21K06455 to Kurosaki, H.).
References
Addison, W. A., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, C. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Ichimaru, Y., Kato, K., Kurihara, M., Jin, W., Koike, T. & Kurosaki, H. (2022). IUCr Data 7, x220854. Google Scholar
Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data 6, x210397. Google Scholar
Ichimaru, Y., Kato, K., Sugiura, K., Isomura, R., Fujioka, H., Koike, T., Fujii-Kishida, S., Kurihara, M., Yamaguchi, Y., Jin, W., Imai, M. & Kurosaki, H. (2023). Inorg. Chem. Commun. 153, 110782. Web of Science CSD CrossRef Google Scholar
Koike, T., Takashige, M., Kimura, E., Fujioka, H. & Shiro, M. (1996). Chem. Eur. J. 2, 617–623. CSD CrossRef CAS Web of Science Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Soibinet, M., Déchamps-Olivier, I., Guillon, E., Barbier, J.-P., Aplincourt, M., Chuburu, F., LeBaccon, M. & Handel, H. (2003). Eur. J. Inorg. Chem. pp. 1984–1994. Web of Science CSD CrossRef Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.