

ISSN 2414-3146

Received 19 May 2023 Accepted 25 May 2023

Edited by M. Zeller, Purdue University, USA

Keywords: crystal structure; copper(II) complex; cyclen; *p*-xylene; dinuclear complex.

CCDC reference: 2265479

Structural data: full structural data are available from iucrdata.iucr.org

Aqua{μ-1,4-bis[(1,4,7,10-tetraazacyclododecan-1yl)methyl]benzene}(nitrato-κO)dicopper(II) tris(nitrate) trihydrate

Yoshimi Ichimaru,^a Koichi Kato,^a* Kirara Sugiura,^b Sarina Ogawa,^b Wanchun Jin,^b Masaaki Kurihara,^a Yoshihiro Yamaguchi,^c Masanori Imai^b and Hiromasa Kurosaki^b*

^aFaculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48, Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan, ^bCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Nagoya 463-8521, Japan, and ^cEnvironmental Safety Center, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto, 860-8555, Japan. *Correspondence e-mail: kato-k@kinjo-u.ac.jp, h-kurosaki@kinjo-u.ac.jp

In the title dinuclear Cu^{II} complex, $[Cu_2(NO_3)(C_{24}H_{46}N_8)(H_2O)](NO_3)_3\cdot 3H_2O$, the two Cu^{II} molecules both have a square-pyramidal geometry, but the ligands in the axial positions are different: a water molecule and a nitrate ion. All nitrate ions, water molecules, and N–H groups are involved in an intermolecular hydrogen-bond network.

Structure description

Cyclen (1,4,7,10-tetraazacyclododecane) is a widely utilized macrocyclic polyamine and a water-soluble tetradentate ligand that can strongly chelate transition-metal cations such as Zn^{II} ions (Ichimaru *et al.*, 2021). Herein, we focused on synthesizing a ligand, *p*-bis(cyclen), in which two cyclen rings are bridged *via p*-xylen. The dizinc complex of *p*-bis(cyclen) has been reported as an anion acceptor for biologically active molecules such as barbital (Koike *et al.*, 1996). Furthermore, the crystal structure of the perchlorate hydrate, [*p*-bis(Cu^{II}-cyclen)(ClO₄)₄]·4H₂O, which is a Cu^{II} complex of *p*-bis(cyclen), has been reported (Soibinet *et al.*, 2003).

In this context, we have prepared the nitrate salt of p-bis(Cu^{II}-cyclen), [p-bis(Cu^{II}-cyclen)(OH₂)(NO₃)](NO₃)₃·3H₂O, comprising a dinuclear Cu^{II} complex, three nitrate ions, and three water molecules as the solvent (Fig. 1). Each Cu^{II} atom is five-coordinate environment, with four nitrogen atoms of the cyclen ring and a nitrate ion or a water molecule as ligands. In the *mer*-fashion arrangement, Cu^I is coordinated by the cyclen

Figure 1

The molecular structure of the complex cation in the title compound with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms, counter-anions and solvate molecules are omitted for clarity.

ring (composed of N1, N2, N3, and N4) at the equatorial positions and by the nitrate ion at the axial position. Meanwhile, Cu2 is coordinated by another cyclen ring (composed of N5, N6, N7, and N8) bridged *via p*-xylene. Unlike Cu1, the axial position of the coordination polyhedron around Cu2 is occupied by a water molecule. The intramolecular Cu \cdots Cu distance is close to the maximum possible value allowed by the ligand because Cu1 and Cu2 are located on opposite sides of the planar xylene spacer. Therefore, the apex of the square pyramid with Cu1 at the center points in the direction opposite to that having Cu2 at the center. The distances between Cu1 and N range from 2.011 (5) to 2.065 (5) Å, while those of Cu2

Figure 2

The hydrogen-bond network of the nitrate salt of p-bis(Cu^{II}-cyclen) with displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Hydrogen-bond interactions are shown as dotted lines.

 Table 1

 Hydrogen-bond geometry (Å, °).

5 0 0	5 ())			
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2\cdots O7^{i}$	0.98 (3)	2.10 (3)	3.046 (7)	162 (6)
$N3-H3\cdots O10^{ii}$	0.99 (3)	2.17 (5)	3.032 (7)	145 (6)
$N4-H4\cdots O13^{iii}$	0.99 (3)	2.06 (5)	2.929 (8)	146 (6)
$N6-H6\cdots O13^{iv}$	0.97 (3)	1.95 (3)	2.900(7)	167 (6)
$N7 - H7 \cdot \cdot \cdot O16^{v}$	0.97 (3)	2.00 (4)	2.934 (7)	160 (6)
$N8-H8\cdots O5$	0.98 (3)	2.06 (3)	3.015 (7)	165 (6)
$O4-H4A\cdots O8$	0.85 (3)	2.07 (6)	2.794 (8)	143 (7)
$O14 - H14A \cdots O8$	0.84(2)	2.01 (3)	2.740 (7)	145 (5)
$O14 - H14B \cdots O7$	0.85 (3)	2.16 (3)	2.865 (7)	140 (5)
$O15 - H15A \cdots O14$	0.84 (3)	1.91 (3)	2.742 (7)	169 (8)
$O15-H15B\cdots O11$	0.83 (3)	2.03 (4)	2.825 (7)	159 (8)
O16−H16C···O15	0.84 (3)	2.06 (5)	2.802 (7)	147 (7)
$O16-H16D\cdots O3^{vi}$	0.85 (3)	2.05 (5)	2.830 (7)	153 (9)

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) $x - \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 2; (iii) x, y + 1, z; (iv) -x + 2, $y + \frac{1}{2}$, $-z + \frac{3}{2}$; (v) $x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1; (vi) x, y - 1, z.

range from 2.000 (5) to 2.044 (5) Å, which are well within the typical ranges for C–N coordination bonds with amines. Soibinet and co-workers reported that the chelating nature of cyclen rings to Cu^{II} in perchlorate salts were similar to nitrate salts (Soibinet *et al.*, 2003). However, Cu^{II} is coordinated by water molecules at the axial positions in both cases.

The coordination geometry index τ was calculated to determine the deviation from ideal coordination polyhedra around the copper ions using the formula $\tau = (\beta - \alpha)/60^{\circ}$, where β and α are the largest and second-largest angles in the coordination center, respectively (Addison et al., 1984). An ideal square pyramid has a τ value of 0, while an ideal trigonal bipyramid has a τ value of 1. The bond angles α and β of the $N-Cu^{II}-N$ chelate are 148.5 (2) and 152.0 (2)°, respectively, around Cu1 and 148.7 (2) and 153.9 (2)°, respectively, around Cu2. Accordingly, the τ values for Cu1 and Cu2 were calculated as 0.058 and 0.087, respectively. Therefore, the coordination geometry around the central Cu^{II} could be characterized as a marginally distorted square pyramid. The deviations from an ideal square-pyramidal geometry in certain complexes arise from the distortion of the cyclen ring (i.e., the 12-membered macrocycle). Cyclam (1,4,8,11-tetraazacyclotetradecane), a 14-membered macrocyclic polyamine, exhibits an ideal square-pyramidal environment with the transitionmetal ions located in the plane formed by the nitrogen atoms of the ring (Ichimaru et al., 2022). In the title complex, Cu1 and Cu2 are located at distances of 0.521 (3) and 0.501 (3) Å, respectively, above the basal plane formed by the four nitrogen atoms of the cyclen ring.

All of the non-coordinating nitrate ions, water molecules, and N–H groups are involved in an intermolecular hydrogenbond network (Fig. 2). The hydrogen bonds between the N– H groups, except N7–H7, and nitrate ions produce a hydrogen-bond network wherein water molecules of solvation fill the gaps between the nitrate ions. Numerical values of the hydrogen-bonding interactions are summarized in Table 1.

Crystal Explorer 21.5 (Spackman *et al.*, 2021) was used to perform a Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and generate the associated two-dimensional fingerprint

Figure 3

The Hirshfeld surface and two-dimensional fingerprint plots $[d_e$ (vertical axis) and d_i (horizontal axis) represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively] of the nitrate salt of *p*-bis(Cu^{II}-cyclen). (*a*) Hirshfeld surface and (*b*) all interactions and those delineated into (*c*) H···H, (*d*) N···H/H···N, and (*e*) O···H/H···O interactions.

plots. The Hirshfeld surface mapped over d_{norm} with a standard resolution is illustrated in Fig. 3 along with fingerprint plots, which indicate the most important intermolecular contacts to be O···H/H···O (50.1%) and H···H (41.2%). The significant frequency of H···H and O···H/H···O interactions implies that van der Waals interactions and hydrogen bonding are critical in the crystal packing (Hathwar *et al.*, 2015) of the title complex (Fig. 4). We previously reported that *p*-xylyl doubly-bridged Zn^{II}–cyclen, *p*-bis(Zn^{II}–cyclen), forms a characteristic helix-like supramolecular structure (Ichimaru *et al.*, 2023). However, the packing of the title complex reported herein exhibits no specific supramolecular structures.

Figure 4

Packing view of the nitrate salt of p-bis(Cu^{II}-cyclen) represented with polyhedral structures around the Cu^{II} atoms, with displacement ellipsoids drawn at the 30% probability level. Non-coordinating nitrate ions, solvate water molecules and C-bound H atoms are omitted for clarity.

Synthesis and crystallization

The ligand *p*-bis(cyclen), or 1,4-bis((1,4,7,10-tetraazacyclododecan-1-yl)methyl)benzene, was synthesized as previously reported using an in-house lab method (Koike *et al.*, 1996). A solution of Cu(NO₃)₂·3H₂O (484 mg, 2.0 mmol) in water (1.0 ml) was added dropwise to 20 ml of an ethanolic solution of *p*-bis(cyclen) (446 mg, 1.0 mmol). The reaction mixture was stirred for 30 min at 353 K and then filtered. The filtrate was allowed to stand 3 days at room temperature. Blue blockshaped crystals (600 mg) were obtained in 67% yield.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$[Cu_2(NO_3)(C_{24}H_{46}N_8)(H_2O)]$ -
	$(NO_3)_3 \cdot 3H_2O$
M _r	893.87
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	93
a, b, c (A)	14.9788 (2), 15.3455 (2), 16.2948 (2)
$V(Å^3)$	3745.48 (8)
Z	4
Radiation type	Οι <i>Κα</i>
$\mu \text{ (mm}^{-1})$	2 14
μ (mm)	$0.55 \times 0.45 \times 0.17$
Crystal Size (min)	0.00 × 0.10 × 0.17
Data collection	
Diffractometer	Rigaku XtaLAB Synergy-i
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> ; Rigaku OD, 2022)
T_{\min}, T_{\max}	0.505, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	19219, 6617, 6227
Rint	0.047
$(\sin \theta/\lambda)$ $(Å^{-1})$	0.603
(Shi onomax (Tr))	0.005
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.046, 0.139, 1.06
No. of reflections	6617
No. of parameters	530
No. of restraints	20
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ (e \ {\rm \AA}^{-3})$	1.08, -0.53
Absolute structure	Refined as an inversion twin
Absolute structure parameter	0.36 (5)

Computer programs: CrysAlis PRO (Rigaku OD, 2022), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. In the final cycles of refinement, 12 outliers were omitted.

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP21K15244 to Kato, K.; grant No. JP21K06455 to Kurosaki, H.).

References

- Addison, W. A., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, C. G. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.

- Ichimaru, Y., Kato, K., Kurihara, M., Jin, W., Koike, T. & Kurosaki, H. (2022). *IUCr Data* **7**, x220854.
- Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). *IUCr Data* **6**, x210397.
- Ichimaru, Y., Kato, K., Sugiura, K., Isomura, R., Fujioka, H., Koike, T., Fujii-Kishida, S., Kurihara, M., Yamaguchi, Y., Jin, W., Imai, M. & Kurosaki, H. (2023). *Inorg. Chem. Commun.* **153**, 110782.
- Koike, T., Takashige, M., Kimura, E., Fujioka, H. & Shiro, M. (1996). *Chem. Eur. J.* **2**, 617–623.
- Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Soibinet, M., Déchamps-Olivier, I., Guillon, E., Barbier, J.-P., Aplincourt, M., Chuburu, F., LeBaccon, M. & Handel, H. (2003). *Eur. J. Inorg. Chem.* pp. 1984–1994.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.

full crystallographic data

IUCrData (2023). **8**, x230462 [https://doi.org/10.1107/S2414314623004625]

Aqua{ μ -1,4-bis[(1,4,7,10-tetraazacyclododecan-1-yl)methyl]benzene}(nitrato- κ O)dicopper(II) tris(nitrate) trihydrate

Yoshimi Ichimaru, Koichi Kato, Kirara Sugiura, Sarina Ogawa, Wanchun Jin, Masaaki Kurihara, Yoshihiro Yamaguchi, Masanori Imai and Hiromasa Kurosaki

 $Aqua\{\mu-1,4-bis[(1,4,7,10-tetraazacyclododecan-1-yl)methyl] benzene\}(nitrato-\kappa O) dicopper(II) tris(nitrate) trihydrate$

Crystal data

 $[Cu_{2}(NO_{3})(C_{24}H_{46}N_{8})(H_{2}O)](NO_{3})_{3}\cdot 3H_{2}O$ $M_{r} = 893.87$ Orthorhombic, $P2_{1}2_{1}2_{1}$ a = 14.9788 (2) Å b = 15.3455 (2) Å c = 16.2948 (2) Å V = 3745.48 (8) Å³ Z = 4F(000) = 1872

Data collection

Rigaku XtaLAB Synergy-i diffractometer
Radiation source: microfocus sealed X-ray tube, PhotonJet-i
Multi-layer mirror optics monochromator
Detector resolution: 10.0 pixels mm⁻¹
ω scans
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.139$ S = 1.066617 reflections 530 parameters 20 restraints Hydrogen site location: mixed $D_x = 1.585 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 16388 reflections $\theta = 2.7-68.2^{\circ}$ $\mu = 2.14 \text{ mm}^{-1}$ T = 93 KBlock, blue $0.55 \times 0.45 \times 0.17 \text{ mm}$

 $T_{\min} = 0.505, T_{\max} = 1.000$ 19219 measured reflections 6617 independent reflections 6227 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$ $\theta_{\text{max}} = 68.4^{\circ}, \theta_{\text{min}} = 4.0^{\circ}$ $h = -16 \rightarrow 18$ $k = -18 \rightarrow 18$ $l = -19 \rightarrow 19$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0781P)^2 + 6.1629P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 1.08 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.53 \text{ e } \text{Å}^{-3}$ Absolute structure: Refined as an inversion twin Absolute structure parameter: 0.36 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin. All hydrogen atoms were located by a geometrical calculation, and were not refined.

	x	v	7.	Uico*/Ucc	
Cul	0.61491 (6)	0.91479(5)	1 03500 (5)	0 0204 (2)	
Cu2	0.88673(5)	0.58988(5)	0.45167(5)	0.0201(2) 0.0199(2)	
01	0.5665 (3)	1,0063(3)	0.13167(3) 0.9436(4)	0.0473(14)	
02	0.4505(4)	1.0249 (4)	1.0170(3)	0.0501 (14)	
03	0.4515 (4)	1.0675 (4)	0.8898(3)	0.0472 (14)	
04	0.9387(4)	0.4801(3)	0.5172 (3)	0.0427(13)	
H4A	0.904 (4)	0.466 (6)	0.556 (4)	0.064*	
H4B	0.991 (2)	0.472 (7)	0.536 (5)	0.064*	
05	0.6792 (4)	0.3885 (3)	0.4561 (3)	0.0452 (13)	
O6	0.7448 (3)	0.4371 (3)	0.5657 (4)	0.0419 (12)	
07	0.6407 (3)	0.3400 (3)	0.5752 (3)	0.0403 (12)	
08	0.9012 (3)	0.4147 (4)	0.6735 (4)	0.0533 (14)	
09	1.0375 (4)	0.4523 (4)	0.6687 (4)	0.0524 (14)	
O10	0.9847 (4)	0.3927 (3)	0.7787 (3)	0.0423 (12)	
011	0.7641 (3)	0.0649 (3)	0.8984 (3)	0.0365 (11)	
012	0.8714 (4)	0.1596 (3)	0.8897 (3)	0.0414 (12)	
013	0.8682 (4)	0.0673 (4)	0.9896 (3)	0.0584 (17)	
O14	0.7733 (4)	0.2886 (3)	0.6922 (3)	0.0397 (11)	
H14A	0.819 (3)	0.317 (4)	0.705 (4)	0.060*	
H14B	0.733 (4)	0.324 (4)	0.676 (3)	0.060*	
015	0.6749 (3)	0.1819 (3)	0.7925 (3)	0.0331 (10)	
H15A	0.709 (4)	0.217 (4)	0.768 (5)	0.050*	
H15B	0.705 (4)	0.141 (4)	0.812 (5)	0.050*	
016	0.5260 (3)	0.0921 (4)	0.7318 (3)	0.0389 (11)	
H16C	0.570 (4)	0.125 (5)	0.730 (5)	0.058*	
H16D	0.520 (5)	0.076 (6)	0.781 (2)	0.058*	
N1	0.6821 (3)	0.8349 (3)	0.9539 (3)	0.0208 (10)	
N2	0.5198 (3)	0.8225 (3)	1.0385 (3)	0.0233 (10)	
H2	0.462 (3)	0.833 (4)	1.012 (4)	0.028*	
N3	0.5738 (4)	0.9472 (3)	1.1495 (3)	0.0260 (11)	
H3	0.547 (4)	1.006 (2)	1.148 (5)	0.031*	
N4	0.7366 (3)	0.9556 (3)	1.0708 (3)	0.0230 (10)	
H4	0.758 (4)	1.007 (3)	1.040 (4)	0.028*	
N5	0.8166 (3)	0.6661 (3)	0.5318 (3)	0.0190 (10)	
N6	0.9851 (3)	0.6791 (3)	0.4614 (3)	0.0242 (11)	
H6	1.038 (3)	0.649 (4)	0.482 (4)	0.029*	
N7	0.9393 (4)	0.5610 (3)	0.3409 (3)	0.0268 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Н7	0.957 (5)	0.503 (2)	0.324(5)	0.032*
N8	0.7683(4)	0.5560(3)	0.4049(3)	0.022
H8	0 740 (4)	0.506(3)	0.432(4)	0.030*
N9	0.4899(4)	1,0309(4)	0.132(1) 0.9475(4)	0.0314(12)
N10	0.6877(3)	0.3903(3)	0.5175(1) 0.5318(4)	0.0310(12)
N11	0.0077(3) 0.9758(4)	0.3703(3) 0.4207(4)	0.3310(1) 0.7080(3)	0.0310(12) 0.0295(12)
N12	0.9738(4) 0.8339(4)	0.4207(4)	0.7000(3)	0.0293(12) 0.0322(12)
C1	0.6337(4)	0.0000(4) 0.7470(4)	0.9202(3) 0.9795(4)	0.0322(12)
	0.676124	0.7470 (4)	1 033150	0.0220 (13)
	0.668615	0.731200	0.038650	0.027
C^{2}	0.008013 0.5475(4)	0.702879 0.7478(4)	0.938030	0.027
	0.5475 (4)	0.7478 (4)	0.9801(4)	0.0203(13)
	0.526778	0.733303	1.010611	0.032*
H2B	0.520427	0.092444	1.010011	0.032^{*}
	0.5102 (4)	0.8018 (5)	1.12/1 (4)	0.0287 (14)
H3A H2D	0.563534	0.770084	1.14/014	0.034*
НЗВ	0.45/054	0.764620	1.1361/2	0.034*
C4	0.5000 (4)	0.88/9 (5)	1.1730 (4)	0.0326 (15)
H4C	0.441937	0.914948	1.159122	0.039*
H4D	0.501488	0.877340	1.232907	0.039*
C5	0.6569 (4)	0.9380 (4)	1.1996 (4)	0.0300 (14)
H5A	0.672719	0.875709	1.205537	0.036*
H5B	0.647460	0.962771	1.255041	0.036*
C6	0.7307 (5)	0.9859 (4)	1.1568 (4)	0.0305 (14)
H6A	0.718734	1.049316	1.158026	0.037*
H6B	0.788020	0.974994	1.185217	0.037*
C7	0.7924 (4)	0.8762 (4)	1.0597 (4)	0.0248 (12)
H7A	0.773451	0.830039	1.098373	0.030*
H7B	0.856026	0.889860	1.070183	0.030*
C8	0.7799 (4)	0.8462 (4)	0.9722 (4)	0.0229 (12)
H8A	0.805916	0.889639	0.934198	0.027*
H8B	0.811424	0.790146	0.963839	0.027*
C9	0.6623 (4)	0.8556 (4)	0.8665 (3)	0.0233 (12)
H9A	0.680441	0.916610	0.855953	0.028*
H9B	0.596932	0.852083	0.858382	0.028*
C10	0.7071 (4)	0.7977 (4)	0.8033 (3)	0.0199 (12)
C11	0.6632 (4)	0.7253 (4)	0.7716 (3)	0.0230 (12)
H11	0.605083	0.711175	0.790669	0.028*
C12	0.7033 (4)	0.6736 (4)	0.7124 (3)	0.0218 (12)
H12	0.672317	0.624829	0.690649	0.026*
C13	0.7893 (4)	0.6932 (4)	0.6846 (3)	0.0189 (11)
C14	0.8336 (4)	0.7642 (4)	0.7162 (3)	0.0225 (12)
H14	0.892253	0.777662	0.697892	0.027*
C15	0.7926 (4)	0.8162 (4)	0.7747 (3)	0.0226 (12)
H15	0.823535	0.865472	0.795792	0.027*
C16	0.8321 (4)	0.6374 (4)	0.6192 (3)	0.0218 (12)
H16A	0.897222	0.635855	0.629262	0.026*
H16B	0.809426	0.577091	0.625190	0.026*
C17	0.8537 (4)	0.7544 (4)	0.5142 (3)	0.0200 (12)
	. /	× /	× /	• \ /

H17A	0.832624	0.796033	0.556322	0.024*
H17B	0.831839	0.774598	0.460073	0.024*
C18	0.9549 (4)	0.7524 (4)	0.5138 (4)	0.0246 (13)
H18A	0.978530	0.808125	0.492194	0.030*
H18B	0.977529	0.744618	0.570468	0.030*
C19	1.0034 (4)	0.7033 (5)	0.3757 (4)	0.0303 (15)
H19A	1.057911	0.739556	0.372507	0.036*
H19B	0.952808	0.737113	0.352941	0.036*
C20	1.0160 (5)	0.6202 (5)	0.3276 (4)	0.0347 (16)
H20A	1.021283	0.633910	0.268444	0.042*
H20B	1.071770	0.591116	0.345272	0.042*
C21	0.8636 (4)	0.5745 (4)	0.2841 (3)	0.0277 (13)
H21A	0.878321	0.550350	0.229443	0.033*
H21B	0.851715	0.637622	0.277868	0.033*
C22	0.7817 (5)	0.5294 (4)	0.3182 (4)	0.0293 (14)
H22A	0.728652	0.545398	0.285284	0.035*
H22B	0.789563	0.465434	0.315060	0.035*
C23	0.7142 (4)	0.6365 (4)	0.4163 (3)	0.0245 (13)
H23A	0.651252	0.625843	0.400546	0.029*
H23B	0.737992	0.684399	0.382023	0.029*
C24	0.7204 (4)	0.6599 (4)	0.5068 (3)	0.0230 (13)
H24A	0.690306	0.716319	0.516781	0.028*
H24B	0.690063	0.614774	0.540082	0.028*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0235 (4)	0.0245 (4)	0.0131 (4)	0.0044 (4)	0.0004 (3)	-0.0001 (3)
Cu2	0.0227 (4)	0.0239 (4)	0.0131 (4)	0.0004 (4)	0.0014 (3)	-0.0011 (3)
01	0.033 (3)	0.054 (3)	0.055 (4)	0.014 (2)	0.004 (2)	0.025 (3)
O2	0.049 (3)	0.066 (3)	0.035 (3)	0.014 (3)	0.012 (2)	0.011 (3)
O3	0.044 (3)	0.064 (4)	0.034 (3)	0.028 (3)	-0.002 (2)	0.016 (3)
O4	0.065 (3)	0.038 (3)	0.025 (3)	0.019 (3)	-0.002 (2)	0.004 (2)
O5	0.048 (3)	0.044 (3)	0.043 (3)	-0.010 (2)	-0.016 (3)	0.013 (2)
O6	0.033 (2)	0.037 (2)	0.056 (3)	-0.004(2)	-0.011 (2)	-0.006(2)
O7	0.036 (3)	0.045 (3)	0.039 (3)	-0.016 (2)	-0.006 (2)	0.005 (2)
08	0.035 (3)	0.068 (3)	0.056 (3)	-0.012 (3)	-0.013 (3)	0.015 (3)
09	0.038 (3)	0.059 (3)	0.061 (4)	-0.012 (3)	0.004 (3)	0.011 (3)
O10	0.055 (3)	0.043 (3)	0.029 (3)	0.000 (2)	-0.013 (2)	0.006 (2)
O11	0.032 (2)	0.044 (3)	0.033 (3)	-0.014 (2)	-0.009(2)	0.007 (2)
O12	0.052 (3)	0.043 (3)	0.030(2)	-0.019 (2)	-0.001 (2)	0.005 (2)
O13	0.057 (3)	0.084 (4)	0.035 (3)	-0.033 (3)	-0.021 (3)	0.023 (3)
O14	0.045 (3)	0.038 (2)	0.036 (3)	-0.002(2)	0.010 (2)	0.002 (2)
O15	0.030(2)	0.035 (2)	0.034 (3)	-0.001(2)	-0.002 (2)	0.004 (2)
O16	0.036 (3)	0.047 (3)	0.033 (2)	-0.012 (2)	0.000 (2)	-0.004(2)
N1	0.023 (2)	0.027 (2)	0.013 (2)	0.005 (2)	0.0003 (19)	0.0019 (19)
N2	0.023 (2)	0.035 (3)	0.013 (2)	0.007 (2)	-0.005 (2)	-0.002(2)
N3	0.028 (3)	0.033 (3)	0.017 (2)	0.007 (2)	0.002 (2)	0.000(2)

N4	0.029 (3)	0.026 (2)	0.014 (2)	0.001 (2)	-0.001 (2)	-0.001 (2)
N5	0.019 (2)	0.028 (2)	0.010 (2)	-0.0010 (19)	0.0015 (18)	-0.0020 (19)
N6	0.024 (2)	0.031 (3)	0.017 (2)	0.004 (2)	0.003 (2)	0.002 (2)
N7	0.033 (3)	0.030 (3)	0.017 (2)	0.005 (2)	0.005 (2)	-0.001 (2)
N8	0.032 (3)	0.027 (2)	0.016 (2)	-0.005 (2)	0.000 (2)	0.003 (2)
N9	0.033 (3)	0.028 (3)	0.034 (3)	-0.001 (2)	-0.006 (2)	0.006 (2)
N10	0.022 (2)	0.025 (3)	0.046 (3)	-0.002 (2)	-0.002 (2)	-0.002 (2)
N11	0.027 (3)	0.033 (3)	0.029 (3)	0.002 (2)	-0.006 (2)	-0.004 (2)
N12	0.035 (3)	0.038 (3)	0.023 (3)	-0.007 (3)	0.000(2)	0.000 (2)
C1	0.025 (3)	0.024 (3)	0.019 (3)	0.007 (2)	0.002 (2)	0.001 (2)
C2	0.026 (3)	0.032 (3)	0.021 (3)	0.001 (3)	-0.005 (2)	-0.003 (3)
C3	0.028 (3)	0.037 (4)	0.021 (3)	-0.001 (3)	0.004 (3)	0.003 (3)
C4	0.035 (4)	0.049 (4)	0.014 (3)	0.003 (3)	0.006 (3)	0.002 (3)
C5	0.033 (3)	0.039 (3)	0.018 (3)	0.001 (3)	0.002 (3)	0.000 (2)
C6	0.040 (4)	0.035 (3)	0.017 (3)	-0.001 (3)	0.001 (3)	-0.006 (3)
C7	0.027 (3)	0.033 (3)	0.015 (3)	0.004 (2)	-0.003 (2)	0.000 (2)
C8	0.019 (3)	0.031 (3)	0.019 (3)	0.010 (2)	-0.002 (2)	0.000 (2)
C9	0.032 (3)	0.028 (3)	0.010 (3)	0.008 (3)	-0.001 (2)	0.003 (2)
C10	0.028 (3)	0.023 (3)	0.009 (2)	0.006 (2)	-0.006 (2)	0.003 (2)
C11	0.021 (3)	0.034 (3)	0.015 (3)	-0.001 (2)	-0.001 (2)	0.005 (2)
C12	0.024 (3)	0.027 (3)	0.015 (3)	-0.002(2)	-0.001 (2)	-0.002 (2)
C13	0.024 (3)	0.023 (3)	0.010 (2)	0.000 (2)	-0.003 (2)	0.003 (2)
C14	0.027 (3)	0.023 (3)	0.018 (3)	0.001 (2)	-0.001 (2)	0.000 (2)
C15	0.028 (3)	0.030 (3)	0.010 (2)	-0.003 (2)	0.000(2)	0.000 (2)
C16	0.027 (3)	0.025 (3)	0.013 (3)	0.005 (2)	-0.003 (2)	-0.002 (2)
C17	0.027 (3)	0.021 (3)	0.012 (3)	-0.001 (2)	-0.001 (2)	0.002 (2)
C18	0.028 (3)	0.026 (3)	0.020 (3)	-0.003 (2)	0.003 (2)	-0.004 (2)
C19	0.029 (3)	0.041 (4)	0.021 (3)	-0.007 (3)	0.006 (3)	0.002 (3)
C20	0.033 (3)	0.048 (4)	0.023 (3)	0.008 (3)	0.011 (3)	0.001 (3)
C21	0.038 (4)	0.036 (3)	0.010 (2)	0.005 (3)	0.001 (2)	0.001 (2)
C22	0.045 (4)	0.033 (3)	0.010 (3)	0.000 (3)	-0.004 (3)	-0.006 (2)
C23	0.028 (3)	0.036 (3)	0.009 (3)	0.001 (3)	0.000 (2)	-0.001 (2)
C24	0.016 (3)	0.036 (3)	0.016 (3)	0.000(2)	0.001 (2)	-0.002 (2)

Geometric parameters (Å, °)

Cu1—O1	2.170 (5)	C1—H1B	0.9900	
Cu1—N1	2.065 (5)	C1—C2	1.535 (9)	
Cu1—N2	2.011 (5)	C2—H2A	0.9900	
Cu1—N3	2.026 (5)	C2—H2B	0.9900	
Cu1—N4	2.013 (5)	C3—H3A	0.9900	
Cu2—O4	2.141 (5)	C3—H3B	0.9900	
Cu2—N5	2.044 (5)	C3—C4	1.526 (9)	
Cu2—N6	2.017 (5)	C4—H4C	0.9900	
Cu2—N7	2.019 (5)	C4—H4D	0.9900	
Cu2—N8	2.000 (5)	C5—H5A	0.9900	
01—N9	1.211 (7)	C5—H5B	0.9900	
O2—N9	1.281 (8)	C5—C6	1.499 (9)	

O3—N9	1.237 (7)	С6—Н6А	0.9900
O4—H4A	0.85 (3)	С6—Н6В	0.9900
O4—H4B	0.85 (3)	С7—Н7А	0.9900
O5—N10	1.241 (8)	С7—Н7В	0.9900
06—N10	1.246 (7)	C7—C8	1.510 (8)
07—N10	1 261 (7)	C8—H8A	0.9900
08—N11	1.261(7) 1 254(7)	C8—H8B	0.9900
09—N11	1.225 (8)	C9—H9A	0.9900
010—N11	1.225(0) 1 236(7)	C9—H9B	0.9900
011—N12	1.255(7)	C9-C10	1 518 (8)
012 - N12	1.233(7)	C10-C11	1 390 (8)
012 - N12	1.250(7) 1.252(7)	C10-C15	1 392 (9)
014 H144	1.232(7)	C11 H11	1.352(5)
014—H14B	0.85(3)	C11-C12	1 386 (8)
015 H15A	0.85(3)	C12 $H12$	0.9500
015 H15R	0.04(3)	C_{12} C_{12} C_{13}	1 307 (8)
016 1160	0.83(3)	C_{12} C_{13} C_{14}	1.377(8)
	0.64(3)	C12 - C14	1.377(0)
	0.83(3)	C13— $C10$	1.311(6)
NI-CI	1.492(7)	C14 $C15$	0.9300
NI-C8	1.505 (7)		1.387 (8)
NIC9	1.489 (7)		0.9500
N2—H2	0.98 (3)		0.9900
N2—C2	1.488 (8)	CI6—HI6B	0.9900
N2—C3	1.486 (7)		0.9900
N3—H3	0.99 (3)	C17—H17B	0.9900
N3—C4	1.482 (8)	C17—C18	1.517 (9)
N3—C5	1.496 (8)	C18—H18A	0.9900
N4—H4	0.99 (3)	C18—H18B	0.9900
N4—C6	1.478 (8)	C19—H19A	0.9900
N4—C7	1.490 (7)	C19—H19B	0.9900
N5—C16	1.508 (7)	C19—C20	1.508 (10)
N5—C17	1.491 (7)	C20—H20A	0.9900
N5—C24	1.501 (7)	C20—H20B	0.9900
N6—H6	0.97 (3)	C21—H21A	0.9900
N6—C18	1.484 (8)	C21—H21B	0.9900
N6—C19	1.471 (7)	C21—C22	1.514 (9)
N7—H7	0.97 (3)	C22—H22A	0.9900
N7—C20	1.480 (9)	C22—H22B	0.9900
N7—C21	1.479 (8)	С23—Н23А	0.9900
N8—H8	0.98 (3)	С23—Н23В	0.9900
N8—C22	1.484 (7)	C23—C24	1.521 (8)
N8—C23	1.489 (8)	C24—H24A	0.9900
C1—H1A	0.9900	C24—H24B	0.9900
N1—Cu1—O1	96.2 (2)	N3—C4—H4D	109.8
N2—Cu1—O1	103.8 (2)	C3—C4—H4C	109.8
N2—Cu1—N1	86.85 (19)	C3—C4—H4D	109.8
N2—Cu1—N3	86.1 (2)	H4C—C4—H4D	108.3
	× /		

N2—Cu1—N4	148.5 (2)	N3—C5—H5A	110.0
N3—Cu1—O1	111.8 (2)	N3—C5—H5B	110.0
N3—Cu1—N1	152.0 (2)	N3—C5—C6	108.3 (5)
N4—Cu1—O1	107.4 (2)	H5A—C5—H5B	108.4
N4—Cu1—N1	85.93 (19)	С6—С5—Н5А	110.0
N4—Cu1—N3	86.1 (2)	С6—С5—Н5В	110.0
N5—Cu2—O4	108.55 (19)	N4—C6—C5	109.3 (5)
N6—Cu2—O4	103.2 (2)	N4—C6—H6A	109.8
N6—Cu2—N5	86.4 (2)	N4—C6—H6B	109.8
N6—Cu2—N7	86.2 (2)	С5—С6—Н6А	109.8
N7—Cu2—O4	97.5 (2)	С5—С6—Н6В	109.8
N7—Cu2—N5	153.9 (2)	H6A—C6—H6B	108.3
$N8-Cu^2-O4$	108.0(2)	N4—C7—H7A	110.3
N8—Cu2—N5	86.4 (2)	N4—C7—H7B	110.3
N8—Cu2—N6	148.7(2)	N4—C7—C8	107.2(5)
N8—Cu2—N7	87.0(2)	H7A - C7 - H7B	108.5
N9-01-Cu1	1189(4)	C8 - C7 - H7A	110.3
$Cu^2 - O4 - H4A$	110.9 (1)	C8 - C7 - H7B	110.3
Cu2 = 04 = H4R	129(7)	N1 - C8 - C7	110.5
H4A - O4 - H4B	125(7) 106(4)	N1 - C8 - H8A	109.7
H14A = O14 = H14B	100(4) 109(4)	N1—C8—H8B	109.7
H15A = O15 = H15B	109(4) 110(4)	C7 - C8 - H8A	109.7
H16C_016_H16D	107(4)	C7 - C8 - H8B	109.7
C1 = N1 = C11	107(4) 1015(3)		109.7
C1 N1 C8	101.3(5)	N1 C0 H0A	108.2
C_{1} C_{1} C_{2} C_{3} C_{1} C_{2} C_{3} C_{3	111.4(4) 106.2(3)	$N1 = C_2 = H_2 R_1$	108.3
$C_0 = N_1 = C_{u1}$	100.2(3)	N1 = C9 = C10	100.5 115 9 (4)
C_{9} N1 C_{1}	112.8(5)	H_{0} C_{0} H_{0} H_{0}	107.4
C_{0} N1 C_{0}	113.3(5)	$C_{10} C_{9} H_{90}$	107.4
C_{μ} N_{μ} N_{μ} N_{μ} N_{μ} N_{μ}	111.0(3) 120(4)	C10 - C9 - H9R	108.3
$C_2 = N_2 = C_{112}$	120(4) 100 2 (4)	$C_{10} = C_{10} = C_{10}$	100.5 120.7(5)
$C_2 = N_2 = C_{u1}$	109.2 (4)	$C_{11} = C_{10} = C_{15}$	120.7(3)
$C_2 = N_2 = 112$	$\frac{97}{(4)}$	C15 C10 C0	110.3(3)
$C_3 = N_2 = C_{u1}$	104.3(4)	C10 - C11 + 11	120.9 (3)
$C_3 = N_2 = C_2$	112(4) 1148(5)	C12 C11 C10	119.0 120.7(5)
$C_3 - N_2 - C_2$	114.8(5) 100(4)	C12 - C11 - C10	120.7 (3)
C4 N3 $Cu1$	109(4) 108 3 (4)	C12— $C11$ — $C12$ — $H12$	119.0
C4 N3 H3	108.5(4)	$C_{11} = C_{12} = C_{13}$	119.9 120.1(5)
$C_{4} = N_{3} = 113$	105(4)	C13 C12 H12	120.1(3)
$C_{1} = N_{2} = C_{2}$	113.0(5) 103.1(4)	C13 - C12 - C13	119.9
$C_5 N_2 H_2$	103.1(4)	C12 - C13 - C10	119.9(3)
C_{11} NA HA	110(4) 113(4)	C14 - C13 - C12	119.0(3)
C6 N4 Cu1	113(4)	C14 - C13 - C10	120.3(3)
C6 N4 H4	108.0(4)	C13 - C14 - C15	120.0
C6 NA C7	113 0 (5)	$C_{13} - C_{14} - C_{13}$	120.0
$C_{0} = 1 + C_{1}$	1026(A)	C10-C15-H15	120.0
C7 N4 H4	102.0(+)	C14 $C15$ $C10$	1213 (6)
$C_{1} = 114$	110 0 (3)	C14 C15 H15	121.5 (0)
U10-1NJ-U42	110.7 (3)	UI 1 -UIJ-IIIJ	117.4

C17—N5—Cu2	101.8 (3)	N5-C16-C13	1158(4)
C17 - N5 - C16	1130(4)	N5-C16-H16A	108.3
C17 - N5 - C24	111.3 (5)	N5-C16-H16B	108.3
$C_{24} N_{5} C_{21}$	1064(3)	C_{13} C_{16} H_{16A}	108.3
$C_{24} = N_{5} = C_{16}$	1126(4)	C13_C16_H16B	108.3
C_{12} N6 H6	107(4)	HIGA CIG HIGB	107.4
C_{12} N6 C_{12}	107(4) 1007(4)	N5 C17 H17A	107.4
C_{10} N6 H6	109.7(4)	N5 C17 H17P	109.5
$C_{10} = N_0 = H_0$	114(4) 102 5 (4)	N5 - C17 - C18	109.3
C19 = N6 = U2	105.5 (4)		110.8 (3)
C19 - N6 - H6	107 (4)	HI/A - CI/-HI/B	108.1
C19 - N6 - C18	114.3 (5)	C18 - C17 - H17A	109.5
Cu2—N/—H/	124 (5)	С18—С17—Н17В	109.5
C20—N7—Cu2	107.4 (4)	N6—C18—C17	108.7 (5)
C20—N7—H7	108 (4)	N6—C18—H18A	109.9
C21—N7—Cu2	103.2 (4)	N6—C18—H18B	109.9
C21—N7—H7	100 (4)	C17—C18—H18A	109.9
C21—N7—C20	114.7 (5)	C17—C18—H18B	109.9
Cu2—N8—H8	114 (4)	H18A—C18—H18B	108.3
C22—N8—Cu2	108.3 (4)	N6—C19—H19A	110.2
C22—N8—H8	105 (4)	N6—C19—H19B	110.2
C22—N8—C23	114.9 (5)	N6-C19-C20	107.6 (6)
C23—N8—Cu2	102.7 (4)	H19A—C19—H19B	108.5
C23—N8—H8	111 (4)	С20—С19—Н19А	110.2
O1—N9—O2	117.4 (6)	C20—C19—H19B	110.2
O1—N9—O3	122.9 (6)	N7—C20—C19	110.2 (5)
O3—N9—O2	119.4 (5)	N7—C20—H20A	109.6
O5—N10—O6	121.6 (6)	N7—C20—H20B	109.6
O5—N10—O7	119.1 (5)	С19—С20—Н20А	109.6
O6—N10—O7	119.2 (6)	С19—С20—Н20В	109.6
09—N11—08	117.8 (6)	H20A—C20—H20B	108.1
09—N11—010	123.0 (6)	N7—C21—H21A	109.9
010—N11—08	119.2 (6)	N7—C21—H21B	109.9
012 - N12 - 011	121.1(5)	N7-C21-C22	109.1(5)
012 - N12 - 013	120.2(6)	$H_{21}A = C_{21} = H_{21}B$	108.3
012 - 112 - 013	120.2(0) 118.6(5)	C^{22} C^{21} $H^{21}A$	109.9
N1H1A	109.7	$C_{22} = C_{21} = H_{21R}$	109.9
N1 C1 H1B	109.7	N8 C22 C21	109.5 109.5(5)
N1 = C1 = C2	109.7 100.7(5)	N8 C22 H22A	109.5 (5)
$H_{1} = C_{1} = C_{2}$	109.7 (3)	N8 C22 H22R	109.8
HIA - CI - HIB	100.2	$N_0 = C_{22} = H_{22} B$	109.8
	109.7	C_{21} C_{22} H_{22R}	109.8
C2—CI—HIB	109.7	C21—C22—H22B	109.8
N2-C2-C1	109.0 (5)	H22A—C22—H22B	108.2
N2—C2—H2A	109.9	N8-C23-H23A	110.4
N2—C2—H2B	109.9	N8—C23—H23B	110.4
CI-C2-H2A	109.9	N8—C23—C24	106.5 (5)
C1—C2—H2B	109.9	H23A—C23—H23B	108.6
H2A—C2—H2B	108.3	C24—C23—H23A	110.4
N2—C3—H3A	110.2	C24—C23—H23B	110.4

N2—C3—H3B	110.2	N5—C24—C23	109.8 (5)
N2—C3—C4	107.5 (5)	N5-C24-H24A	109.7
НЗА—СЗ—НЗВ	108.5	N5—C24—H24B	109.7
С4—С3—НЗА	110.2	C23—C24—H24A	109.7
C4—C3—H3B	110.2	C23—C24—H24B	109.7
N3—C4—C3	109.3 (5)	H24A—C24—H24B	108.2
N3—C4—H4C	109.8		
Cu1—O1—N9—O2	21.7 (8)	C3—N2—C2—C1	-91.8 (6)
Cu1—O1—N9—O3	-164.3 (5)	C4—N3—C5—C6	166.9 (5)
Cu1—N1—C1—C2	49.1 (5)	C5—N3—C4—C3	-87.5 (6)
Cu1—N1—C8—C7	24.5 (5)	C6—N4—C7—C8	171.4 (5)
Cu1—N1—C9—C10	-178.2 (4)	C7—N4—C6—C5	-85.7 (6)
Cu1—N2—C2—C1	24.8 (6)	C8—N1—C1—C2	161.9 (5)
Cu1—N2—C3—C4	49.5 (5)	C8—N1—C9—C10	62.7 (6)
Cu1—N3—C4—C3	27.1 (6)	C9—N1—C1—C2	-72.1 (6)
Cu1—N3—C5—C6	49.3 (5)	C9—N1—C8—C7	147.5 (5)
Cu1—N4—C6—C5	27.9 (6)	C9-C10-C11-C12	178.5 (5)
Cu1—N4—C7—C8	54.2 (5)	C9-C10-C15-C14	-179.2 (5)
Cu2—N5—C16—C13	175.5 (4)	C10-C11-C12-C13	0.9 (8)
Cu2—N5—C17—C18	-49.1 (5)	C11—C10—C15—C14	0.0 (8)
Cu2—N5—C24—C23	-24.9 (6)	C11—C12—C13—C14	-0.3 (8)
Cu2—N6—C18—C17	-22.2 (6)	C11—C12—C13—C16	-179.1 (5)
Cu2—N6—C19—C20	-50.2 (5)	C12—C13—C14—C15	-0.5 (8)
Cu2—N7—C20—C19	-26.4 (6)	C12-C13-C16-N5	90.8 (7)
Cu2—N7—C21—C22	-47.7 (5)	C13—C14—C15—C10	0.6 (8)
Cu2—N8—C22—C21	-26.3 (6)	C14—C13—C16—N5	-88.0 (6)
Cu2—N8—C23—C24	-54.1 (5)	C15—C10—C11—C12	-0.7 (8)
N1-C1-C2-N2	-51.4 (6)	C16—N5—C17—C18	70.0 (6)
N1-C9-C10-C11	94.2 (6)	C16—N5—C24—C23	-146.6 (5)
N1—C9—C10—C15	-86.7 (7)	C16—C13—C14—C15	178.3 (5)
N2-C3-C4-N3	-52.0(7)	C17—N5—C16—C13	61.9 (7)
N3-C5-C6-N4	-52.8 (7)	C17—N5—C24—C23	85.3 (6)
N4—C7—C8—N1	-53.8 (6)	C18—N6—C19—C20	-169.5 (5)
N5-C17-C18-N6	49.2 (6)	C19—N6—C18—C17	93.5 (6)
N6-C19-C20-N7	52.6 (7)	C20—N7—C21—C22	-164.2 (5)
N7—C21—C22—N8	50.9 (7)	C21—N7—C20—C19	87.7 (6)
N8—C23—C24—N5	53.9 (6)	C22—N8—C23—C24	-171.5 (5)
C1—N1—C8—C7	-85.3 (6)	C23—N8—C22—C21	87.8 (6)
C1—N1—C9—C10	-63.5 (7)	C24—N5—C16—C13	-65.3 (6)
C2—N2—C3—C4	168.9 (5)	C24—N5—C17—C18	-162.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
N2—H2…O7 ⁱ	0.98 (3)	2.10 (3)	3.046 (7)	162 (6)
N3—H3…O10 ⁱⁱ	0.99 (3)	2.17 (5)	3.032 (7)	145 (6)
N4—H4…O13 ⁱⁱⁱ	0.99 (3)	2.06 (5)	2.929 (8)	146 (6)

N6—H6…O13 ^{iv}	0.97 (3)	1.95 (3)	2.900(7)	167 (6)	
N7—H7…O16 ^v	0.97 (3)	2.00 (4)	2.934 (7)	160 (6)	
N8—H8…O5	0.98 (3)	2.06 (3)	3.015 (7)	165 (6)	
O4—H4 <i>A</i> …O8	0.85 (3)	2.07 (6)	2.794 (8)	143 (7)	
O14—H14A…O8	0.84 (2)	2.01 (3)	2.740 (7)	145 (5)	
O14—H14 <i>B</i> …O7	0.85 (3)	2.16 (3)	2.865 (7)	140 (5)	
O15—H15A…O14	0.84 (3)	1.91 (3)	2.742 (7)	169 (8)	
O15—H15 <i>B</i> …O11	0.83 (3)	2.03 (4)	2.825 (7)	159 (8)	
O16—H16C…O15	0.84 (3)	2.06 (5)	2.802 (7)	147 (7)	
O16—H16D····O3 ^{vi}	0.85 (3)	2.05 (5)	2.830 (7)	153 (9)	

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+3/2; (ii) *x*-1/2, -*y*+3/2, -*z*+2; (iii) *x*, *y*+1, *z*; (iv) -*x*+2, *y*+1/2, -*z*+3/2; (v) *x*+1/2, -*y*+1/2, -*z*+1; (vi) *x*, *y*-1, *z*.