organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-Ethyl rel-(2R,3R,4S)-4-hy­dr­oxy-1,2-di­methyl-5-oxopyrrolidine-3-carboxyl­ate

crossmark logo

aOrganic Synthesis Research Laboratory, Institute of Science, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia, bFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and cEaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 4 January 2023; accepted 28 January 2023; online 9 February 2023)

The asymmetric unit of the title compound, C9H15NO4, consists of a functionalized pyrrolidine ring having an envelope conformation, synthesized as an ethyl ester. The mol­ecule has three chiral centres and crystallized as a racemic mixture. In the crystal, mol­ecules are linked by pairwise O—H⋯O bonds, generating dimers with twofold rotational symmetry.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The heterocyclic compound 2-oxopyrrolidine and its derivatives have generated a lot of inter­est because of their practical significance (Pandya & Desai, 2020[Pandya, K. M. & Desai, P. S. (2020). Rasayan J. Chem. 13, 1054-1062.]). These compounds have shown to be effective analgesics, anti-inflammatory (Salgın-Gökşen et al., 2007[Salgın-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kılıç, E., Işık, Ş., Aktay, G. & Özalp, M. (2007). Bioorg. Med. Chem. 15, 5738-5751.]), anti­viral (Tian et al., 2009[Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162-2167.]), anti­microbial (Özkay et al., 2010[Özkay, Y., Tunali, Y., Karaca, H. & Işikdağ, I. (2010). Eur. J. Med. Chem. 45, 3293-3298.]; Salgın-Gökşen et al., 2007[Salgın-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kılıç, E., Işık, Ş., Aktay, G. & Özalp, M. (2007). Bioorg. Med. Chem. 15, 5738-5751.]), anti­tumor (Abdel-Aziz et al., 2021[Abdel-Aziz, A. A.-M., El-Azab, A. S., AlSaif, N. A., Obaidullah, A. J., Al-Obaid, A. M. & Al-Suwaidan, I. A. (2021). J. Enzyme Inhib. Med. Chem. 36, 1520-1538.]), anti­convulsant (Angelova et al., 2016[Angelova, V., Karabeliov, V., Andreeva-Gateva, P. A. & Tchekalarova, J. (2016). Drug Dev. Res. 77, 379-392.]), anti­depressant (Kulandasamy et al., 2009[Kulandasamy, R., Adhikari, A. V. & Stables, J. P. (2009). Eur. J. Med. Chem. 44, 4376-4384.]), cardioprotective (Ghazouani et al., 2019[Ghazouani, L., Khdhiri, E., Elmufti, A., Feriani, A., Tir, M., Baaziz, I., Hajji, R., Ben Mansour, H., Ammar, H., Abid, S. & Mnafgui, K. (2019). Can. J. Physiol. Pharmacol. 97, 989-998.]) and anti­platelet agents (Mashayekhi et al., 2013[Mashayekhi, V., Haj Mohammad Ebrahim Tehrani, K., Amidi, S. & Kobarfard, F. (2013). Chem. Pharm. Bull. 61, 144-150.]; Ghazouani et al., 2019[Ghazouani, L., Khdhiri, E., Elmufti, A., Feriani, A., Tir, M., Baaziz, I., Hajji, R., Ben Mansour, H., Ammar, H., Abid, S. & Mnafgui, K. (2019). Can. J. Physiol. Pharmacol. 97, 989-998.]).

During the course of our study towards pyrrolidine-based imino­sugars, we have synthesized the title compound by reduction of 2,3-dioxopyrrolidine (Bacho et al., 2020[Bacho, M. Z., Mohammat, M. F., Shaameri, Z., Wibowo, A., Kamarulzaman, F. & Hamzah, A. S. (2020). Orient. J. Chem. 36, 309-319.]; Abdul Rashid et al., 2020[Abdul Rashid, F. N. A., Mohammat, M. F., Bouchamma, F. E., Shaameri, Z. & Hamzah, A. S. (2020). Russ. J. Org. Chem. 56, 1082-1088.]). The starting material, 2,3-dioxopyrrolidine, was initially prepared via a multicomponent reaction, according to a previously reported procedure (Mohammat et al., 2009[Mohammat, M. F., Shaameri, Z. & Hamzah, A. S. (2009). Molecules, 14, 250-256.], 2011[Mohammat, M. F., Najim, N., Mansor, N. S., Sarman, S., Shaameri, Z., Zain, M. M. & Hamzah, A. S. (2011). Arkivoc, pp. 429-438.]).

The title compound crystallizes in the monoclinic crystal system, space group C2/c, with one mol­ecule in the asymmetric unit (Fig. 1[link]). The pyrrolidine ring (C1–C4/N1) adopts an envelope conformation, with atom C4 deviating by 0.180 (1) Å from the mean plane. There are three chiral centres within the ring, at C4, with a C1—C4—C5—O4 torsion angle of −94.04 (11)°. The methyl and hydroxyl groups, attached to C1 and C3, respectively, are orientated awayfrom the mean plane with C2—N1—C1—C8 and N1—C2—C3—O2 torsion angles of 142.07 (10) and −135.48 (10)°, respectively. Meanwhile, the ethyl ester group (O3/C5/O4/C6/C7) occupies the equatorial position on the pyrrolidine ring at C1, C3, and C4, . All bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1-19.]) and angles in the mol­ecule show normal values.

[Figure 1]
Figure 1
Crystal structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

In the crystal, the mol­ecules are linked by pairwise O—H⋯O hydrogen bonds, involving the carbonyl and hy­droxy groups, forming centrosymmetric R22(10) ring motifs (Table 1[link], entry 1; Fig. 2[link]). The packing also features C—H⋯O hydrogen bonds (Table 1[link]), forming zigzag motifs propagating along the c-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.97 (1) 1.78 (1) 2.7405 (12) 170 (2)
C1—H1⋯O1ii 1.00 2.62 3.3953 (14) 134
C9—H9A⋯O1ii 0.98 2.51 3.3355 (16) 142
C9—H9C⋯O3iii 0.98 2.54 3.5086 (15) 169
C7—H7C⋯O1iv 0.98 2.58 3.5134 (17) 160
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The O—H⋯O hydrogen bonds, indicated by green dashed bonds, forming R22(10) motifs in the crystal.
[Figure 3]
Figure 3
The mol­ecular packing of title compound, viewed down the a axis. Inter­molecular hydrogen bonds are indicated by green dashed lines.

Synthesis and crystallization

A solution of 2,3-dioxopyrrolidine (2.00 g, 10.04 mmol) together with Pd—C (10% wt; 1.39 g, 1.31 mmol) and acetic acid (4.59 ml, 80.32 mmol) was stirred in ethanol. The reaction was stirred vigorously under a hydrogen atmosphere to completion (24 h) and then filtered through Celite. After removal of the solvent, the crude product was purified by flash column chromatography on silica gel using ethyl acetate/petroleum ether (9/1), to afford two compounds; trans-hy­droxy­ester 1 as a white solid and cis-hy­droxy­ester 2 as a colourless oil. The white solid of trans-hydroxyester 1 was recrystallized from methanol solution to give single crystals of the title compound 1 (0.24 g, 12%).

trans-hy­droxy­ester 1: 1H NMR (400 MHz, CDCl3): δ 4.57 (d, J = 8.5 Hz, 1H), 4.22 (q, J = 6.9 Hz, 2H), 3.63 (s, 1H), 2.82 (s, 3H), 2.67 (t, J = 8.4 Hz, 1H), 1.37 (d, J = 3.7 Hz, 3H), 1.29 (t, J = 6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 173.00 (C=O), 171.54 (C=O), 72.26 (CHOH), 61.71 (OCH2), 54.35 (CH), 31.23 (CHCH3), 27.33 (CH3N), 19.31 (CH3), 14.27 (CH3); GCMS m/z (EI, +ve): found: 201.10 ([M]+), calculated for C9H15NO4: 201.10.

cis-hy­droxy­ester 2: (0.50 g, 25%). 1H NMR (400 MHz, CDCl3): δ 4.44 (d, J = 7.3 Hz, 1H), 4.19 (td, J = 7.2, 4.9 Hz, 2H), 3.74 (t, J = 6.6 Hz, 1H), 3.38 (t, J = 6.6 Hz, 1H), 2.82 (s, 3H), 1.32–1.23 (m, 6H); 13C NMR (100 MHz, CDCl3): δ 172.82 (C=O), 169.59 (C=O), 70.88 (CHOH), 61.11 (OCH2), 53.06 (CH), 49.21 (CHCH3), 27.13 (CH3N), 15.28 (CH3), 14.37 (CH3); GCMS m/z (EI, +ve): found: 201.10 ([M]+), calculated for C9H15NO4: 201.10.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H15NO4
Mr 201.22
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c (Å) 12.1599 (15), 8.6065 (8), 20.217 (2)
β (°) 101.960 (3)
V3) 2069.9 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Rigaku XtaLAB P200
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.879, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 11140, 1874, 1769
Rint 0.019
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.04
No. of reflections 1874
No. of parameters 134
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.18
Computer programs: CrystalClear-SM Expert (Rigaku, 2015[Rigaku (2015). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2015); cell refinement: CrystalClear-SM Expert (Rigaku, 2015); data reduction: CrystalClear-SM Expert (Rigaku, 2015); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

rac-Ethyl rel-(2R,3R,4S)-4-hydroxy-1,2-dimethyl-5-oxopyrrolidine-3-carboxylate top
Crystal data top
C9H15NO4F(000) = 864
Mr = 201.22Dx = 1.291 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 12.1599 (15) ÅCell parameters from 3484 reflections
b = 8.6065 (8) Åθ = 2.1–27.5°
c = 20.217 (2) ŵ = 0.10 mm1
β = 101.960 (3)°T = 173 K
V = 2069.9 (4) Å3Prism, colorless
Z = 80.2 × 0.2 × 0.1 mm
Data collection top
Rigaku XtaLAB P200
diffractometer
1769 reflections with I > 2σ(I)
Detector resolution: 5.814 pixels mm-1Rint = 0.019
ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1414
Tmin = 0.879, Tmax = 0.990k = 1010
11140 measured reflectionsl = 2424
1874 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0452P)2 + 1.1669P]
where P = (Fo2 + 2Fc2)/3
1874 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.18 e Å3
Special details top

Refinement. The hydroxyl H atom (H2) was refined with free coordinates and isotropic displacement parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65691 (7)0.16087 (10)0.24315 (4)0.0360 (2)
O20.53577 (7)0.18679 (11)0.35435 (4)0.0388 (2)
O30.58426 (9)0.59491 (13)0.40623 (5)0.0556 (3)
O40.68278 (7)0.49308 (10)0.50163 (4)0.0348 (2)
N10.78865 (8)0.29976 (11)0.31723 (5)0.0282 (2)
C20.68560 (9)0.24451 (13)0.29333 (5)0.0275 (3)
C30.60731 (9)0.30292 (13)0.33799 (5)0.0278 (3)
H30.5615570.3919820.3154200.033*
C40.68834 (9)0.35965 (13)0.40091 (5)0.0259 (3)
H40.7060960.2719380.4338370.031*
C10.79582 (9)0.40440 (13)0.37550 (5)0.0275 (3)
H10.7895760.5145210.3593800.033*
C90.88156 (10)0.28015 (15)0.28261 (6)0.0359 (3)
H9A0.9028260.3815240.2670700.043*
H9B0.8583570.2111190.2436700.043*
H9C0.9460000.2346340.3138070.043*
C50.64421 (9)0.49526 (13)0.43501 (6)0.0294 (3)
C60.64892 (11)0.62159 (15)0.54030 (6)0.0364 (3)
H6A0.5665730.6198700.5370830.044*
H6B0.6695240.7222250.5224800.044*
C70.70872 (15)0.60126 (19)0.61170 (7)0.0567 (4)
H7A0.7900350.6008630.6140590.068*
H7B0.6862200.5024950.6290650.068*
H7C0.6893490.6870110.6390730.068*
C80.90310 (10)0.38489 (16)0.42851 (6)0.0374 (3)
H8A0.9673210.4196430.4100050.045*
H8B0.9128390.2751940.4413830.045*
H8C0.8984620.4472410.4684020.045*
H20.4729 (10)0.174 (2)0.3162 (6)0.063 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0353 (5)0.0407 (5)0.0292 (4)0.0041 (4)0.0005 (3)0.0061 (4)
O20.0307 (4)0.0512 (5)0.0333 (5)0.0129 (4)0.0038 (4)0.0043 (4)
O30.0666 (7)0.0579 (7)0.0377 (5)0.0363 (5)0.0007 (5)0.0005 (4)
O40.0418 (5)0.0345 (5)0.0271 (4)0.0084 (4)0.0048 (3)0.0033 (3)
N10.0256 (5)0.0321 (5)0.0274 (5)0.0024 (4)0.0067 (4)0.0004 (4)
C20.0280 (5)0.0283 (6)0.0247 (5)0.0033 (4)0.0022 (4)0.0041 (4)
C30.0239 (5)0.0324 (6)0.0262 (6)0.0001 (4)0.0031 (4)0.0030 (4)
C40.0238 (5)0.0286 (6)0.0247 (5)0.0024 (4)0.0034 (4)0.0025 (4)
C10.0257 (5)0.0273 (5)0.0296 (6)0.0003 (4)0.0061 (4)0.0003 (4)
C90.0297 (6)0.0449 (7)0.0353 (6)0.0061 (5)0.0118 (5)0.0014 (5)
C50.0248 (5)0.0342 (6)0.0291 (6)0.0029 (5)0.0054 (4)0.0014 (5)
C60.0399 (7)0.0341 (6)0.0370 (7)0.0036 (5)0.0126 (5)0.0060 (5)
C70.0757 (10)0.0528 (9)0.0374 (7)0.0168 (8)0.0023 (7)0.0136 (6)
C80.0252 (6)0.0478 (7)0.0372 (6)0.0010 (5)0.0021 (5)0.0065 (5)
Geometric parameters (Å, º) top
O1—C21.2340 (14)C1—H11.0000
O2—C31.4087 (14)C1—C81.5162 (16)
O2—H20.973 (5)C9—H9A0.9800
O3—C51.1957 (14)C9—H9B0.9800
O4—C51.3313 (14)C9—H9C0.9800
O4—C61.4620 (14)C6—H6A0.9900
N1—C21.3337 (15)C6—H6B0.9900
N1—C11.4709 (14)C6—C71.4860 (19)
N1—C91.4569 (14)C7—H7A0.9800
C2—C31.5266 (15)C7—H7B0.9800
C3—H31.0000C7—H7C0.9800
C3—C41.5192 (15)C8—H8A0.9800
C4—H41.0000C8—H8B0.9800
C4—C11.5488 (14)C8—H8C0.9800
C4—C51.5095 (15)
C3—O2—H2108.5 (10)N1—C9—H9B109.5
C5—O4—C6116.81 (9)N1—C9—H9C109.5
C2—N1—C1113.81 (9)H9A—C9—H9B109.5
C2—N1—C9123.27 (10)H9A—C9—H9C109.5
C9—N1—C1122.17 (9)H9B—C9—H9C109.5
O1—C2—N1126.17 (10)O3—C5—O4123.63 (11)
O1—C2—C3125.01 (10)O3—C5—C4124.81 (10)
N1—C2—C3108.82 (9)O4—C5—C4111.53 (9)
O2—C3—C2113.35 (10)O4—C6—H6A110.3
O2—C3—H3109.8O4—C6—H6B110.3
O2—C3—C4110.88 (9)O4—C6—C7107.16 (10)
C2—C3—H3109.8H6A—C6—H6B108.5
C4—C3—C2103.02 (8)C7—C6—H6A110.3
C4—C3—H3109.8C7—C6—H6B110.3
C3—C4—H4109.1C6—C7—H7A109.5
C3—C4—C1104.33 (8)C6—C7—H7B109.5
C1—C4—H4109.1C6—C7—H7C109.5
C5—C4—C3113.62 (9)H7A—C7—H7B109.5
C5—C4—H4109.1H7A—C7—H7C109.5
C5—C4—C1111.32 (9)H7B—C7—H7C109.5
N1—C1—C4101.50 (8)C1—C8—H8A109.5
N1—C1—H1109.4C1—C8—H8B109.5
N1—C1—C8113.44 (9)C1—C8—H8C109.5
C4—C1—H1109.4H8A—C8—H8B109.5
C8—C1—C4113.55 (9)H8A—C8—H8C109.5
C8—C1—H1109.4H8B—C8—H8C109.5
N1—C9—H9A109.5
O1—C2—C3—O245.04 (15)C1—N1—C2—O1176.42 (11)
O1—C2—C3—C4164.92 (11)C1—N1—C2—C33.06 (12)
O2—C3—C4—C1148.36 (9)C1—C4—C5—O384.29 (14)
O2—C3—C4—C590.22 (11)C1—C4—C5—O494.04 (11)
N1—C2—C3—O2135.48 (10)C9—N1—C2—O16.15 (18)
N1—C2—C3—C415.60 (12)C9—N1—C2—C3173.33 (10)
C2—N1—C1—C419.89 (12)C9—N1—C1—C4169.72 (9)
C2—N1—C1—C8142.07 (10)C9—N1—C1—C847.54 (14)
C2—C3—C4—C126.79 (11)C5—O4—C6—C7175.57 (11)
C2—C3—C4—C5148.21 (9)C5—C4—C1—N1151.06 (9)
C3—C4—C1—N128.13 (10)C5—C4—C1—C886.83 (11)
C3—C4—C1—C8150.24 (10)C6—O4—C5—O30.29 (17)
C3—C4—C5—O333.14 (16)C6—O4—C5—C4178.06 (9)
C3—C4—C5—O4148.53 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.97 (1)1.78 (1)2.7405 (12)170 (2)
C1—H1···O1ii1.002.623.3953 (14)134
C9—H9A···O1ii0.982.513.3355 (16)142
C9—H9C···O3iii0.982.543.5086 (15)169
C7—H7C···O1iv0.982.583.5134 (17)160
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z; (iv) x, y+1, z+1/2.
 

Funding information

The authors thank Universiti Teknologi MARA and the Malaysian Government (MOHE) for financial support [grant No. 600-RMC/SRC/5/3 (043/2020)].

References

First citationAbdel-Aziz, A. A.-M., El-Azab, A. S., AlSaif, N. A., Obaidullah, A. J., Al-Obaid, A. M. & Al-Suwaidan, I. A. (2021). J. Enzyme Inhib. Med. Chem. 36, 1520–1538.  CAS Google Scholar
First citationAbdul Rashid, F. N. A., Mohammat, M. F., Bouchamma, F. E., Shaameri, Z. & Hamzah, A. S. (2020). Russ. J. Org. Chem. 56, 1082–1088.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19.  CrossRef Web of Science Google Scholar
First citationAngelova, V., Karabeliov, V., Andreeva-Gateva, P. A. & Tchekalarova, J. (2016). Drug Dev. Res. 77, 379–392.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBacho, M. Z., Mohammat, M. F., Shaameri, Z., Wibowo, A., Kamarulzaman, F. & Hamzah, A. S. (2020). Orient. J. Chem. 36, 309–319.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhazouani, L., Khdhiri, E., Elmufti, A., Feriani, A., Tir, M., Baaziz, I., Hajji, R., Ben Mansour, H., Ammar, H., Abid, S. & Mnafgui, K. (2019). Can. J. Physiol. Pharmacol. 97, 989–998.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKulandasamy, R., Adhikari, A. V. & Stables, J. P. (2009). Eur. J. Med. Chem. 44, 4376–4384.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMashayekhi, V., Haj Mohammad Ebrahim Tehrani, K., Amidi, S. & Kobarfard, F. (2013). Chem. Pharm. Bull. 61, 144–150.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMohammat, M. F., Najim, N., Mansor, N. S., Sarman, S., Shaameri, Z., Zain, M. M. & Hamzah, A. S. (2011). Arkivoc, pp. 429–438.  Web of Science CrossRef Google Scholar
First citationMohammat, M. F., Shaameri, Z. & Hamzah, A. S. (2009). Molecules, 14, 250–256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationÖzkay, Y., Tunali, Y., Karaca, H. & Işikdağ, I. (2010). Eur. J. Med. Chem. 45, 3293–3298.  Web of Science PubMed Google Scholar
First citationPandya, K. M. & Desai, P. S. (2020). Rasayan J. Chem. 13, 1054–1062.  CrossRef Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSalgın-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kılıç, E., Işık, Ş., Aktay, G. & Özalp, M. (2007). Bioorg. Med. Chem. 15, 5738–5751.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162–2167.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146