organic compounds
rac-Ethyl rel-(2R,3R,4S)-4-hydroxy-1,2-dimethyl-5-oxopyrrolidine-3-carboxylate
aOrganic Synthesis Research Laboratory, Institute of Science, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia, bFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and cEaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my
The 9H15NO4, consists of a functionalized pyrrolidine ring having an synthesized as an ethyl ester. The molecule has three chiral centres and crystallized as a In the crystal, molecules are linked by pairwise O—H⋯O bonds, generating dimers with twofold rotational symmetry.
of the title compound, CKeywords: crystal structure; oxopyrrolidine; ring conformation; hydrogen bonds.
CCDC reference: 2238498
Structure description
The heterocyclic compound 2-oxopyrrolidine and its derivatives have generated a lot of interest because of their practical significance (Pandya & Desai, 2020). These compounds have shown to be effective analgesics, anti-inflammatory (Salgın-Gökşen et al., 2007), antiviral (Tian et al., 2009), antimicrobial (Özkay et al., 2010; Salgın-Gökşen et al., 2007), antitumor (Abdel-Aziz et al., 2021), anticonvulsant (Angelova et al., 2016), antidepressant (Kulandasamy et al., 2009), cardioprotective (Ghazouani et al., 2019) and antiplatelet agents (Mashayekhi et al., 2013; Ghazouani et al., 2019).
During the course of our study towards pyrrolidine-based iminosugars, we have synthesized the title compound by reduction of 2,3-dioxopyrrolidine (Bacho et al., 2020; Abdul Rashid et al., 2020). The starting material, 2,3-dioxopyrrolidine, was initially prepared via a multicomponent reaction, according to a previously reported procedure (Mohammat et al., 2009, 2011).
The title compound crystallizes in the monoclinic C2/c, with one molecule in the (Fig. 1). The pyrrolidine ring (C1–C4/N1) adopts an with atom C4 deviating by 0.180 (1) Å from the mean plane. There are three chiral centres within the ring, at C4, with a C1—C4—C5—O4 torsion angle of −94.04 (11)°. The methyl and hydroxyl groups, attached to C1 and C3, respectively, are orientated awayfrom the mean plane with C2—N1—C1—C8 and N1—C2—C3—O2 torsion angles of 142.07 (10) and −135.48 (10)°, respectively. Meanwhile, the ethyl ester group (O3/C5/O4/C6/C7) occupies the equatorial position on the pyrrolidine ring at C1, C3, and C4, . All bond lengths (Allen et al., 1987) and angles in the molecule show normal values.
In the crystal, the molecules are linked by pairwise O—H⋯O hydrogen bonds, involving the carbonyl and hydroxy groups, forming centrosymmetric R22(10) ring motifs (Table 1, entry 1; Fig. 2). The packing also features C—H⋯O hydrogen bonds (Table 1), forming zigzag motifs propagating along the c-axis direction (Fig. 3).
Synthesis and crystallization
A solution of 2,3-dioxopyrrolidine (2.00 g, 10.04 mmol) together with Pd—C (10% wt; 1.39 g, 1.31 mmol) and acetic acid (4.59 ml, 80.32 mmol) was stirred in ethanol. The reaction was stirred vigorously under a hydrogen atmosphere to completion (24 h) and then filtered through Celite. After removal of the solvent, the crude product was purified by flash trans-hydroxyester 1 as a white solid and cis-hydroxyester 2 as a colourless oil. The white solid of trans-hydroxyester 1 was recrystallized from methanol solution to give single crystals of the title compound 1 (0.24 g, 12%).
on silica gel using ethyl acetate/petroleum ether (9/1), to afford two compounds;trans-hydroxyester 1: 1H NMR (400 MHz, CDCl3): δ 4.57 (d, J = 8.5 Hz, 1H), 4.22 (q, J = 6.9 Hz, 2H), 3.63 (s, 1H), 2.82 (s, 3H), 2.67 (t, J = 8.4 Hz, 1H), 1.37 (d, J = 3.7 Hz, 3H), 1.29 (t, J = 6.9 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ 173.00 (C=O), 171.54 (C=O), 72.26 (CHOH), 61.71 (OCH2), 54.35 (CH), 31.23 (CHCH3), 27.33 (CH3N), 19.31 (CH3), 14.27 (CH3); GCMS m/z (EI, +ve): found: 201.10 ([M]+), calculated for C9H15NO4: 201.10.
cis-hydroxyester 2: (0.50 g, 25%). 1H NMR (400 MHz, CDCl3): δ 4.44 (d, J = 7.3 Hz, 1H), 4.19 (td, J = 7.2, 4.9 Hz, 2H), 3.74 (t, J = 6.6 Hz, 1H), 3.38 (t, J = 6.6 Hz, 1H), 2.82 (s, 3H), 1.32–1.23 (m, 6H); 13C NMR (100 MHz, CDCl3): δ 172.82 (C=O), 169.59 (C=O), 70.88 (CHOH), 61.11 (OCH2), 53.06 (CH), 49.21 (CHCH3), 27.13 (CH3N), 15.28 (CH3), 14.37 (CH3); GCMS m/z (EI, +ve): found: 201.10 ([M]+), calculated for C9H15NO4: 201.10.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2238498
https://doi.org/10.1107/S2414314623000755/bh4072sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314623000755/bh4072Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314623000755/bh4072Isup3.mol
Supporting information file. DOI: https://doi.org/10.1107/S2414314623000755/bh4072Isup4.cml
Data collection: CrystalClear-SM Expert (Rigaku, 2015); cell
CrystalClear-SM Expert (Rigaku, 2015); data reduction: CrystalClear-SM Expert (Rigaku, 2015); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).C9H15NO4 | F(000) = 864 |
Mr = 201.22 | Dx = 1.291 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71075 Å |
a = 12.1599 (15) Å | Cell parameters from 3484 reflections |
b = 8.6065 (8) Å | θ = 2.1–27.5° |
c = 20.217 (2) Å | µ = 0.10 mm−1 |
β = 101.960 (3)° | T = 173 K |
V = 2069.9 (4) Å3 | Prism, colorless |
Z = 8 | 0.2 × 0.2 × 0.1 mm |
Rigaku XtaLAB P200 diffractometer | 1769 reflections with I > 2σ(I) |
Detector resolution: 5.814 pixels mm-1 | Rint = 0.019 |
ω scans | θmax = 25.4°, θmin = 2.1° |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | h = −14→14 |
Tmin = 0.879, Tmax = 0.990 | k = −10→10 |
11140 measured reflections | l = −24→24 |
1874 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: mixed |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0452P)2 + 1.1669P] where P = (Fo2 + 2Fc2)/3 |
1874 reflections | (Δ/σ)max < 0.001 |
134 parameters | Δρmax = 0.24 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
Refinement. The hydroxyl H atom (H2) was refined with free coordinates and isotropic displacement parameter. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.65691 (7) | 0.16087 (10) | 0.24315 (4) | 0.0360 (2) | |
O2 | 0.53577 (7) | 0.18679 (11) | 0.35435 (4) | 0.0388 (2) | |
O3 | 0.58426 (9) | 0.59491 (13) | 0.40623 (5) | 0.0556 (3) | |
O4 | 0.68278 (7) | 0.49308 (10) | 0.50163 (4) | 0.0348 (2) | |
N1 | 0.78865 (8) | 0.29976 (11) | 0.31723 (5) | 0.0282 (2) | |
C2 | 0.68560 (9) | 0.24451 (13) | 0.29333 (5) | 0.0275 (3) | |
C3 | 0.60731 (9) | 0.30292 (13) | 0.33799 (5) | 0.0278 (3) | |
H3 | 0.561557 | 0.391982 | 0.315420 | 0.033* | |
C4 | 0.68834 (9) | 0.35965 (13) | 0.40091 (5) | 0.0259 (3) | |
H4 | 0.706096 | 0.271938 | 0.433837 | 0.031* | |
C1 | 0.79582 (9) | 0.40440 (13) | 0.37550 (5) | 0.0275 (3) | |
H1 | 0.789576 | 0.514521 | 0.359380 | 0.033* | |
C9 | 0.88156 (10) | 0.28015 (15) | 0.28261 (6) | 0.0359 (3) | |
H9A | 0.902826 | 0.381524 | 0.267070 | 0.043* | |
H9B | 0.858357 | 0.211119 | 0.243670 | 0.043* | |
H9C | 0.946000 | 0.234634 | 0.313807 | 0.043* | |
C5 | 0.64421 (9) | 0.49526 (13) | 0.43501 (6) | 0.0294 (3) | |
C6 | 0.64892 (11) | 0.62159 (15) | 0.54030 (6) | 0.0364 (3) | |
H6A | 0.566573 | 0.619870 | 0.537083 | 0.044* | |
H6B | 0.669524 | 0.722225 | 0.522480 | 0.044* | |
C7 | 0.70872 (15) | 0.60126 (19) | 0.61170 (7) | 0.0567 (4) | |
H7A | 0.790035 | 0.600863 | 0.614059 | 0.068* | |
H7B | 0.686220 | 0.502495 | 0.629065 | 0.068* | |
H7C | 0.689349 | 0.687011 | 0.639073 | 0.068* | |
C8 | 0.90310 (10) | 0.38489 (16) | 0.42851 (6) | 0.0374 (3) | |
H8A | 0.967321 | 0.419643 | 0.410005 | 0.045* | |
H8B | 0.912839 | 0.275194 | 0.441383 | 0.045* | |
H8C | 0.898462 | 0.447241 | 0.468402 | 0.045* | |
H2 | 0.4729 (10) | 0.174 (2) | 0.3162 (6) | 0.063 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0353 (5) | 0.0407 (5) | 0.0292 (4) | 0.0041 (4) | 0.0005 (3) | −0.0061 (4) |
O2 | 0.0307 (4) | 0.0512 (5) | 0.0333 (5) | −0.0129 (4) | 0.0038 (4) | 0.0043 (4) |
O3 | 0.0666 (7) | 0.0579 (7) | 0.0377 (5) | 0.0363 (5) | 0.0007 (5) | −0.0005 (4) |
O4 | 0.0418 (5) | 0.0345 (5) | 0.0271 (4) | 0.0084 (4) | 0.0048 (3) | −0.0033 (3) |
N1 | 0.0256 (5) | 0.0321 (5) | 0.0274 (5) | 0.0024 (4) | 0.0067 (4) | 0.0004 (4) |
C2 | 0.0280 (5) | 0.0283 (6) | 0.0247 (5) | 0.0033 (4) | 0.0022 (4) | 0.0041 (4) |
C3 | 0.0239 (5) | 0.0324 (6) | 0.0262 (6) | 0.0001 (4) | 0.0031 (4) | 0.0030 (4) |
C4 | 0.0238 (5) | 0.0286 (6) | 0.0247 (5) | 0.0024 (4) | 0.0034 (4) | 0.0025 (4) |
C1 | 0.0257 (5) | 0.0273 (5) | 0.0296 (6) | 0.0003 (4) | 0.0061 (4) | −0.0003 (4) |
C9 | 0.0297 (6) | 0.0449 (7) | 0.0353 (6) | 0.0061 (5) | 0.0118 (5) | 0.0014 (5) |
C5 | 0.0248 (5) | 0.0342 (6) | 0.0291 (6) | 0.0029 (5) | 0.0054 (4) | 0.0014 (5) |
C6 | 0.0399 (7) | 0.0341 (6) | 0.0370 (7) | 0.0036 (5) | 0.0126 (5) | −0.0060 (5) |
C7 | 0.0757 (10) | 0.0528 (9) | 0.0374 (7) | 0.0168 (8) | 0.0023 (7) | −0.0136 (6) |
C8 | 0.0252 (6) | 0.0478 (7) | 0.0372 (6) | −0.0010 (5) | 0.0021 (5) | −0.0065 (5) |
O1—C2 | 1.2340 (14) | C1—H1 | 1.0000 |
O2—C3 | 1.4087 (14) | C1—C8 | 1.5162 (16) |
O2—H2 | 0.973 (5) | C9—H9A | 0.9800 |
O3—C5 | 1.1957 (14) | C9—H9B | 0.9800 |
O4—C5 | 1.3313 (14) | C9—H9C | 0.9800 |
O4—C6 | 1.4620 (14) | C6—H6A | 0.9900 |
N1—C2 | 1.3337 (15) | C6—H6B | 0.9900 |
N1—C1 | 1.4709 (14) | C6—C7 | 1.4860 (19) |
N1—C9 | 1.4569 (14) | C7—H7A | 0.9800 |
C2—C3 | 1.5266 (15) | C7—H7B | 0.9800 |
C3—H3 | 1.0000 | C7—H7C | 0.9800 |
C3—C4 | 1.5192 (15) | C8—H8A | 0.9800 |
C4—H4 | 1.0000 | C8—H8B | 0.9800 |
C4—C1 | 1.5488 (14) | C8—H8C | 0.9800 |
C4—C5 | 1.5095 (15) | ||
C3—O2—H2 | 108.5 (10) | N1—C9—H9B | 109.5 |
C5—O4—C6 | 116.81 (9) | N1—C9—H9C | 109.5 |
C2—N1—C1 | 113.81 (9) | H9A—C9—H9B | 109.5 |
C2—N1—C9 | 123.27 (10) | H9A—C9—H9C | 109.5 |
C9—N1—C1 | 122.17 (9) | H9B—C9—H9C | 109.5 |
O1—C2—N1 | 126.17 (10) | O3—C5—O4 | 123.63 (11) |
O1—C2—C3 | 125.01 (10) | O3—C5—C4 | 124.81 (10) |
N1—C2—C3 | 108.82 (9) | O4—C5—C4 | 111.53 (9) |
O2—C3—C2 | 113.35 (10) | O4—C6—H6A | 110.3 |
O2—C3—H3 | 109.8 | O4—C6—H6B | 110.3 |
O2—C3—C4 | 110.88 (9) | O4—C6—C7 | 107.16 (10) |
C2—C3—H3 | 109.8 | H6A—C6—H6B | 108.5 |
C4—C3—C2 | 103.02 (8) | C7—C6—H6A | 110.3 |
C4—C3—H3 | 109.8 | C7—C6—H6B | 110.3 |
C3—C4—H4 | 109.1 | C6—C7—H7A | 109.5 |
C3—C4—C1 | 104.33 (8) | C6—C7—H7B | 109.5 |
C1—C4—H4 | 109.1 | C6—C7—H7C | 109.5 |
C5—C4—C3 | 113.62 (9) | H7A—C7—H7B | 109.5 |
C5—C4—H4 | 109.1 | H7A—C7—H7C | 109.5 |
C5—C4—C1 | 111.32 (9) | H7B—C7—H7C | 109.5 |
N1—C1—C4 | 101.50 (8) | C1—C8—H8A | 109.5 |
N1—C1—H1 | 109.4 | C1—C8—H8B | 109.5 |
N1—C1—C8 | 113.44 (9) | C1—C8—H8C | 109.5 |
C4—C1—H1 | 109.4 | H8A—C8—H8B | 109.5 |
C8—C1—C4 | 113.55 (9) | H8A—C8—H8C | 109.5 |
C8—C1—H1 | 109.4 | H8B—C8—H8C | 109.5 |
N1—C9—H9A | 109.5 | ||
O1—C2—C3—O2 | 45.04 (15) | C1—N1—C2—O1 | 176.42 (11) |
O1—C2—C3—C4 | 164.92 (11) | C1—N1—C2—C3 | −3.06 (12) |
O2—C3—C4—C1 | 148.36 (9) | C1—C4—C5—O3 | 84.29 (14) |
O2—C3—C4—C5 | −90.22 (11) | C1—C4—C5—O4 | −94.04 (11) |
N1—C2—C3—O2 | −135.48 (10) | C9—N1—C2—O1 | 6.15 (18) |
N1—C2—C3—C4 | −15.60 (12) | C9—N1—C2—C3 | −173.33 (10) |
C2—N1—C1—C4 | 19.89 (12) | C9—N1—C1—C4 | −169.72 (9) |
C2—N1—C1—C8 | 142.07 (10) | C9—N1—C1—C8 | −47.54 (14) |
C2—C3—C4—C1 | 26.79 (11) | C5—O4—C6—C7 | −175.57 (11) |
C2—C3—C4—C5 | 148.21 (9) | C5—C4—C1—N1 | −151.06 (9) |
C3—C4—C1—N1 | −28.13 (10) | C5—C4—C1—C8 | 86.83 (11) |
C3—C4—C1—C8 | −150.24 (10) | C6—O4—C5—O3 | −0.29 (17) |
C3—C4—C5—O3 | −33.14 (16) | C6—O4—C5—C4 | 178.06 (9) |
C3—C4—C5—O4 | 148.53 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.97 (1) | 1.78 (1) | 2.7405 (12) | 170 (2) |
C1—H1···O1ii | 1.00 | 2.62 | 3.3953 (14) | 134 |
C9—H9A···O1ii | 0.98 | 2.51 | 3.3355 (16) | 142 |
C9—H9C···O3iii | 0.98 | 2.54 | 3.5086 (15) | 169 |
C7—H7C···O1iv | 0.98 | 2.58 | 3.5134 (17) | 160 |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x+1/2, y−1/2, z; (iv) x, −y+1, z+1/2. |
Funding information
The authors thank Universiti Teknologi MARA and the Malaysian Government (MOHE) for financial support [grant No. 600-RMC/SRC/5/3 (043/2020)].
References
Abdel-Aziz, A. A.-M., El-Azab, A. S., AlSaif, N. A., Obaidullah, A. J., Al-Obaid, A. M. & Al-Suwaidan, I. A. (2021). J. Enzyme Inhib. Med. Chem. 36, 1520–1538. CAS Google Scholar
Abdul Rashid, F. N. A., Mohammat, M. F., Bouchamma, F. E., Shaameri, Z. & Hamzah, A. S. (2020). Russ. J. Org. Chem. 56, 1082–1088. CAS Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. 1–19. CrossRef Web of Science Google Scholar
Angelova, V., Karabeliov, V., Andreeva-Gateva, P. A. & Tchekalarova, J. (2016). Drug Dev. Res. 77, 379–392. Web of Science CrossRef CAS PubMed Google Scholar
Bacho, M. Z., Mohammat, M. F., Shaameri, Z., Wibowo, A., Kamarulzaman, F. & Hamzah, A. S. (2020). Orient. J. Chem. 36, 309–319. CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ghazouani, L., Khdhiri, E., Elmufti, A., Feriani, A., Tir, M., Baaziz, I., Hajji, R., Ben Mansour, H., Ammar, H., Abid, S. & Mnafgui, K. (2019). Can. J. Physiol. Pharmacol. 97, 989–998. Web of Science CrossRef CAS PubMed Google Scholar
Kulandasamy, R., Adhikari, A. V. & Stables, J. P. (2009). Eur. J. Med. Chem. 44, 4376–4384. Web of Science CrossRef PubMed CAS Google Scholar
Mashayekhi, V., Haj Mohammad Ebrahim Tehrani, K., Amidi, S. & Kobarfard, F. (2013). Chem. Pharm. Bull. 61, 144–150. Web of Science CrossRef CAS PubMed Google Scholar
Mohammat, M. F., Najim, N., Mansor, N. S., Sarman, S., Shaameri, Z., Zain, M. M. & Hamzah, A. S. (2011). Arkivoc, pp. 429–438. Web of Science CrossRef Google Scholar
Mohammat, M. F., Shaameri, Z. & Hamzah, A. S. (2009). Molecules, 14, 250–256. Web of Science CrossRef PubMed CAS Google Scholar
Özkay, Y., Tunali, Y., Karaca, H. & Işikdağ, I. (2010). Eur. J. Med. Chem. 45, 3293–3298. Web of Science PubMed Google Scholar
Pandya, K. M. & Desai, P. S. (2020). Rasayan J. Chem. 13, 1054–1062. CrossRef Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2015). CrystalClear SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Salgın-Gökşen, U., Gökhan-Kelekçi, N., Göktaş, Ö., Köysal, Y., Kılıç, E., Işık, Ş., Aktay, G. & Özalp, M. (2007). Bioorg. Med. Chem. 15, 5738–5751. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162–2167. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.