metal-organic compounds
Dichlorido(4,4′-dimethyl-2,2′-bipyridine-κ2N,N′)zinc(II) acetonitrile monosolvate
aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu
In the title complex, [ZnCl2(C12H12N2)]·CH3CN, the zinc(II) atom is fourfold coordinated by two chloride ligands and a bidentate 4,4′-dimethyl-2,2′-bipyridine ligand in a distorted tetrahedral shape with a molecule of acetonitrile sitting in the outer coordination sphere of the complex. π–π stacking interactions between the pyridyl rings in adjacent molecules contribute to the alignment of the complexes in columns parallel to the a axis.
Keywords: zinc; crystal structure; 4,4′-dimethyl-2,2′-bipyridine; 2,2′-bi-4-picoline; dmb; coordinating chloride; tetrahedral coordination sphere.
CCDC reference: 2223395
Structure description
Over the last decade, metal complexes of 4,4′-dimethyl-2,2′-bipyridine have garnered significant attention due to their photophysical properties (Tamer et al., 2020; Queiroz et al., 2022), electrocatalytic activity (Ogihara et al., 2018; Taylor et al., 2018), and potential as antitumor agents (Amani et al., 2014). Recently, platinum complexes incorporating 4,4′-dimethyl-2,2′-bipyridine were found to be effective against several cancer cell lines, including L1210 murine leukemia, HT29 human colon carcinoma, and U87 human glioblastoma (Pages et al., 2015). Our research group interest currently lies in synthesizing metal complexes with applications in biological systems; as part of our research in this area, herein, we describe the synthesis and structure of the title complex, which promises to be a useful starting material in the synthesis of novel zinc(II) complexes.
The ). The Zn—N bond lengths are in good agreement with the comparable bromide analog complex currently available in the CSD (version 5.43 with update June 2022; Alizadeh et al., 2010, refcode DURYAR) and with other 2,2′-bipyridine-based zinc(II) complexes (Khan & Tuck, 1984, refcode CEFFOI; Hossienifard et al., 2011, refcode DAKMUZ; Nauha et al., 2016, refcode EMERAR; Khalighi et al., 2008, refcode POFKOL). Similar behavior is observed for the Zn—Cl bond lengths. The small bite angle N2—Zn1—N1 of 80.19 (7)° reflects the distortion from the ideal tetrahedral coordination. Numerical data of relevant bonds and angles are presented in Table 1.
contains one molecule of the title compound and one solvent molecule of acetonitrile. The zinc(II) atom exhibits a distorted tetrahedral cooordination environment defined by two pyridine nitrogen atoms from the 4,4′-dimethyl-2,2′-bipyridine ligand and two chlorido ligands (Fig. 1
|
The title complex packs into layers extending parallel to the bc plane that are packed along the a-axis direction (Fig. 2). Contiguous pyridine rings show π–π stacking interactions, with centroid-to-centroid distances (Cg⋯Cg) alternating between 3.718 (1) Å and 3.725 (1) Å, and offset distances of 1.166 and 1.191 Å, respectively (Fig. 3). No other significant supramolecular interaction is present in the crystal packing of the title compound.
Synthesis and crystallization
Zinc(II) chloride (0.370 g, 2.71 mmol) was added to a methanol solution (40 ml) of 4,4′-dimethyl-2,2′-bipyridine (0.500 g, 2.71 mmol). After stirring for 30 min, the resulting suspension was filtrated to obtain a white precipitate of the title compound (0.470 g, 54%). Crystals suitable for X-ray diffraction were obtained by vapor diffusion of diethyl ether over a saturated acetonitrile solution of the title compound at 277 K.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2223395
https://doi.org/10.1107/S241431462201149X/wm4177sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462201149X/wm4177Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431462201149X/wm4177Isup3.mol
Data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).[ZnCl2(C12H12N2)]·C2H3N | F(000) = 736 |
Mr = 361.56 | Dx = 1.529 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 7.2893 (1) Å | Cell parameters from 7600 reflections |
b = 13.3443 (2) Å | θ = 4.3–75.6° |
c = 16.1667 (3) Å | µ = 5.23 mm−1 |
β = 92.486 (2)° | T = 100 K |
V = 1571.06 (4) Å3 | Plank, clear colourless |
Z = 4 | 0.26 × 0.10 × 0.05 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3137 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 2851 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.040 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 76.3°, θmin = 4.3° |
ω scans | h = −9→8 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2020) | k = −16→11 |
Tmin = 0.467, Tmax = 1.000 | l = −20→18 |
15078 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0506P)2 + 0.740P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.002 |
3137 reflections | Δρmax = 0.47 e Å−3 |
184 parameters | Δρmin = −0.75 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.26341 (4) | 0.28826 (2) | 0.57710 (2) | 0.02312 (11) | |
Cl1 | 0.52433 (7) | 0.21775 (4) | 0.61998 (3) | 0.03091 (14) | |
Cl2 | 0.01137 (8) | 0.20050 (4) | 0.59191 (4) | 0.03469 (15) | |
N1 | 0.2201 (2) | 0.43399 (12) | 0.61281 (10) | 0.0234 (3) | |
N2 | 0.2934 (2) | 0.35984 (12) | 0.46587 (10) | 0.0238 (3) | |
C6 | 0.2711 (3) | 0.46056 (15) | 0.46862 (12) | 0.0229 (4) | |
C5 | 0.2270 (3) | 0.50205 (15) | 0.55085 (12) | 0.0224 (4) | |
N3 | 0.2294 (3) | 0.42938 (15) | 0.88678 (12) | 0.0386 (5) | |
C4 | 0.1954 (3) | 0.60303 (15) | 0.56446 (13) | 0.0257 (4) | |
H4 | 0.199479 | 0.649436 | 0.520011 | 0.031* | |
C7 | 0.2912 (3) | 0.51951 (15) | 0.39878 (13) | 0.0258 (4) | |
H7 | 0.275570 | 0.590064 | 0.401893 | 0.031* | |
C1 | 0.1812 (3) | 0.46558 (16) | 0.68887 (13) | 0.0271 (4) | |
H1 | 0.174326 | 0.417554 | 0.731999 | 0.032* | |
C8 | 0.3344 (3) | 0.47496 (16) | 0.32421 (13) | 0.0271 (4) | |
C2 | 0.1508 (3) | 0.56532 (16) | 0.70690 (13) | 0.0287 (4) | |
H2 | 0.125591 | 0.585262 | 0.761657 | 0.034* | |
C10 | 0.3363 (3) | 0.31691 (16) | 0.39416 (13) | 0.0277 (4) | |
H10 | 0.352298 | 0.246295 | 0.392476 | 0.033* | |
C3 | 0.1576 (3) | 0.63621 (15) | 0.64396 (13) | 0.0279 (4) | |
C9 | 0.3580 (3) | 0.37158 (16) | 0.32278 (13) | 0.0287 (4) | |
H9 | 0.388748 | 0.338853 | 0.273078 | 0.034* | |
C13 | 0.2438 (3) | 0.47359 (16) | 0.94688 (14) | 0.0296 (4) | |
C12 | 0.3516 (3) | 0.53683 (18) | 0.24735 (14) | 0.0350 (5) | |
H12A | 0.232760 | 0.539310 | 0.216670 | 0.053* | |
H12B | 0.443377 | 0.506603 | 0.212485 | 0.053* | |
H12C | 0.389982 | 0.604955 | 0.262723 | 0.053* | |
C14 | 0.2648 (3) | 0.52852 (18) | 1.02426 (14) | 0.0334 (5) | |
H14A | 0.321179 | 0.593786 | 1.014092 | 0.050* | |
H14B | 0.343360 | 0.490338 | 1.063596 | 0.050* | |
H14C | 0.143993 | 0.538499 | 1.047313 | 0.050* | |
C11 | 0.1310 (3) | 0.74589 (17) | 0.66062 (16) | 0.0360 (5) | |
H11A | 0.248128 | 0.781058 | 0.656074 | 0.054* | |
H11B | 0.086842 | 0.754766 | 0.716555 | 0.054* | |
H11C | 0.040579 | 0.773390 | 0.620108 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02849 (17) | 0.01792 (16) | 0.02321 (17) | 0.00069 (9) | 0.00410 (11) | 0.00276 (9) |
Cl1 | 0.0305 (3) | 0.0271 (3) | 0.0353 (3) | 0.00510 (18) | 0.0030 (2) | 0.00574 (19) |
Cl2 | 0.0334 (3) | 0.0319 (3) | 0.0392 (3) | −0.0078 (2) | 0.0068 (2) | 0.0031 (2) |
N1 | 0.0274 (8) | 0.0205 (8) | 0.0223 (8) | 0.0008 (6) | 0.0021 (6) | 0.0005 (6) |
N2 | 0.0300 (8) | 0.0187 (8) | 0.0227 (8) | 0.0000 (6) | 0.0028 (6) | 0.0006 (6) |
C6 | 0.0253 (9) | 0.0213 (9) | 0.0221 (9) | −0.0014 (7) | 0.0002 (7) | 0.0011 (7) |
C5 | 0.0235 (9) | 0.0209 (9) | 0.0225 (9) | 0.0001 (7) | −0.0017 (7) | 0.0013 (8) |
N3 | 0.0588 (13) | 0.0285 (10) | 0.0286 (10) | −0.0025 (9) | 0.0040 (9) | −0.0004 (8) |
C4 | 0.0292 (10) | 0.0215 (10) | 0.0260 (10) | 0.0001 (8) | −0.0014 (8) | 0.0013 (8) |
C7 | 0.0300 (10) | 0.0226 (9) | 0.0245 (10) | −0.0007 (8) | −0.0015 (8) | 0.0028 (8) |
C1 | 0.0322 (10) | 0.0261 (10) | 0.0229 (10) | 0.0009 (8) | 0.0013 (8) | 0.0023 (8) |
C8 | 0.0286 (10) | 0.0297 (10) | 0.0229 (10) | −0.0003 (8) | −0.0004 (8) | 0.0038 (8) |
C2 | 0.0318 (10) | 0.0292 (11) | 0.0253 (10) | 0.0011 (8) | 0.0021 (8) | −0.0046 (8) |
C10 | 0.0336 (10) | 0.0235 (10) | 0.0262 (10) | −0.0001 (8) | 0.0027 (8) | −0.0028 (8) |
C3 | 0.0285 (10) | 0.0233 (10) | 0.0317 (11) | 0.0003 (8) | −0.0012 (8) | −0.0033 (8) |
C9 | 0.0329 (10) | 0.0309 (11) | 0.0224 (9) | −0.0009 (8) | 0.0018 (8) | −0.0025 (8) |
C13 | 0.0344 (11) | 0.0267 (10) | 0.0280 (11) | 0.0008 (8) | 0.0023 (8) | 0.0025 (9) |
C12 | 0.0434 (13) | 0.0386 (12) | 0.0229 (10) | 0.0005 (10) | 0.0010 (9) | 0.0083 (9) |
C14 | 0.0374 (12) | 0.0341 (12) | 0.0288 (11) | 0.0012 (9) | 0.0009 (9) | −0.0042 (9) |
C11 | 0.0435 (13) | 0.0233 (11) | 0.0414 (13) | −0.0009 (9) | 0.0024 (10) | −0.0075 (9) |
Zn1—Cl1 | 2.2065 (6) | C8—C9 | 1.390 (3) |
Zn1—Cl2 | 2.2005 (6) | C8—C12 | 1.502 (3) |
Zn1—N1 | 2.0570 (17) | C2—H2 | 0.9500 |
Zn1—N2 | 2.0562 (17) | C2—C3 | 1.392 (3) |
N1—C5 | 1.355 (3) | C10—H10 | 0.9500 |
N1—C1 | 1.342 (3) | C10—C9 | 1.380 (3) |
N2—C6 | 1.355 (3) | C3—C11 | 1.502 (3) |
N2—C10 | 1.342 (3) | C9—H9 | 0.9500 |
C6—C5 | 1.488 (3) | C13—C14 | 1.452 (3) |
C6—C7 | 1.389 (3) | C12—H12A | 0.9800 |
C5—C4 | 1.386 (3) | C12—H12B | 0.9800 |
N3—C13 | 1.138 (3) | C12—H12C | 0.9800 |
C4—H4 | 0.9500 | C14—H14A | 0.9800 |
C4—C3 | 1.398 (3) | C14—H14B | 0.9800 |
C7—H7 | 0.9500 | C14—H14C | 0.9800 |
C7—C8 | 1.392 (3) | C11—H11A | 0.9800 |
C1—H1 | 0.9500 | C11—H11B | 0.9800 |
C1—C2 | 1.382 (3) | C11—H11C | 0.9800 |
Cl2—Zn1—Cl1 | 116.82 (2) | C1—C2—C3 | 119.29 (19) |
N1—Zn1—Cl1 | 117.12 (5) | C3—C2—H2 | 120.4 |
N1—Zn1—Cl2 | 109.48 (5) | N2—C10—H10 | 118.8 |
N2—Zn1—Cl1 | 110.49 (5) | N2—C10—C9 | 122.41 (19) |
N2—Zn1—Cl2 | 117.59 (5) | C9—C10—H10 | 118.8 |
N2—Zn1—N1 | 80.19 (7) | C4—C3—C11 | 120.37 (19) |
C5—N1—Zn1 | 114.53 (13) | C2—C3—C4 | 118.13 (19) |
C1—N1—Zn1 | 126.54 (14) | C2—C3—C11 | 121.5 (2) |
C1—N1—C5 | 118.89 (17) | C8—C9—H9 | 120.3 |
C6—N2—Zn1 | 114.51 (13) | C10—C9—C8 | 119.47 (19) |
C10—N2—Zn1 | 126.48 (14) | C10—C9—H9 | 120.3 |
C10—N2—C6 | 118.99 (17) | N3—C13—C14 | 178.8 (3) |
N2—C6—C5 | 115.42 (17) | C8—C12—H12A | 109.5 |
N2—C6—C7 | 121.21 (18) | C8—C12—H12B | 109.5 |
C7—C6—C5 | 123.36 (18) | C8—C12—H12C | 109.5 |
N1—C5—C6 | 115.31 (17) | H12A—C12—H12B | 109.5 |
N1—C5—C4 | 121.51 (18) | H12A—C12—H12C | 109.5 |
C4—C5—C6 | 123.18 (18) | H12B—C12—H12C | 109.5 |
C5—C4—H4 | 120.2 | C13—C14—H14A | 109.5 |
C5—C4—C3 | 119.63 (19) | C13—C14—H14B | 109.5 |
C3—C4—H4 | 120.2 | C13—C14—H14C | 109.5 |
C6—C7—H7 | 120.1 | H14A—C14—H14B | 109.5 |
C6—C7—C8 | 119.85 (19) | H14A—C14—H14C | 109.5 |
C8—C7—H7 | 120.1 | H14B—C14—H14C | 109.5 |
N1—C1—H1 | 118.7 | C3—C11—H11A | 109.5 |
N1—C1—C2 | 122.54 (19) | C3—C11—H11B | 109.5 |
C2—C1—H1 | 118.7 | C3—C11—H11C | 109.5 |
C7—C8—C12 | 120.8 (2) | H11A—C11—H11B | 109.5 |
C9—C8—C7 | 118.07 (19) | H11A—C11—H11C | 109.5 |
C9—C8—C12 | 121.12 (19) | H11B—C11—H11C | 109.5 |
C1—C2—H2 | 120.4 | ||
Zn1—N1—C5—C6 | −2.1 (2) | C6—C7—C8—C12 | 178.3 (2) |
Zn1—N1—C5—C4 | 178.15 (15) | C5—N1—C1—C2 | −1.1 (3) |
Zn1—N1—C1—C2 | −178.79 (15) | C5—C6—C7—C8 | 179.38 (19) |
Zn1—N2—C6—C5 | −0.7 (2) | C5—C4—C3—C2 | −0.8 (3) |
Zn1—N2—C6—C7 | 178.55 (15) | C5—C4—C3—C11 | 177.39 (19) |
Zn1—N2—C10—C9 | −178.35 (16) | C7—C6—C5—N1 | −177.36 (19) |
N1—C5—C4—C3 | 0.8 (3) | C7—C6—C5—C4 | 2.4 (3) |
N1—C1—C2—C3 | 1.0 (3) | C7—C8—C9—C10 | 0.7 (3) |
N2—C6—C5—N1 | 1.8 (3) | C1—N1—C5—C6 | 179.95 (18) |
N2—C6—C5—C4 | −178.40 (18) | C1—N1—C5—C4 | 0.2 (3) |
N2—C6—C7—C8 | 0.2 (3) | C1—C2—C3—C4 | −0.1 (3) |
N2—C10—C9—C8 | −0.2 (3) | C1—C2—C3—C11 | −178.2 (2) |
C6—N2—C10—C9 | −0.3 (3) | C10—N2—C6—C5 | −178.96 (18) |
C6—C5—C4—C3 | −179.00 (18) | C10—N2—C6—C7 | 0.2 (3) |
C6—C7—C8—C9 | −0.7 (3) | C12—C8—C9—C10 | −178.3 (2) |
Acknowledgements
We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at the University of Texas at San Antonio.
Funding information
Funding for this research was provided by: National Science Foundation (award No. 1920059); Welch Foundation (award No. BN0032).
References
Alizadeh, R., Mohammadi Eshlaghi, P. & Amani, V. (2010). Acta Cryst. E66, m996. Web of Science CSD CrossRef IUCr Journals Google Scholar
Amani, V., Abedi, A., Ghabeshi, S., Khavasi, H. R., Hosseini, S. M. & Safari, N. (2014). Polyhedron, 79, 104–115. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hossienifard, M., Hashemi, L., Amani, V., Kalateh, K. & Morsali, A. (2011). J. Inorg. Organomet. Polym. 21, 527–533. Web of Science CSD CrossRef CAS Google Scholar
Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nauha, E., Naumov, P. & Lusi, M. (2016). CrystEngComm, 18, 4699–4703. Web of Science CSD CrossRef CAS Google Scholar
Ogihara, H., Maezuru, T., Ogishima, Y. & Yamanaka, I. (2018). Electrocatalysis, 9, 220–225. Web of Science CrossRef CAS Google Scholar
Pages, B. J., Zhang, Y., Li, F., Sakoff, J., Gilbert, J. & Aldrich–Wright, J. R. (2015). Eur. J. Inorg. Chem. pp. 4167–4175. Web of Science CSD CrossRef Google Scholar
Queiroz, E. C., Franco, C. H., Ferreira, M. S., Freire, R. O. & Machado, F. C. (2022). J. Lumin. 249, 118990. Web of Science CSD CrossRef Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tamer, Ö., Avcı, D., Dege, N. & Atalay, Y. (2020). J. Mol. Struct. 1202, 127288. Web of Science CSD CrossRef Google Scholar
Taylor, J. O., Leavey, R. D. & Hartl, F. (2018). ChemElectroChem, 5, 3155–3161. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.