metal-organic compounds
(Carbazol-9-ido-κN)dichlorido(η5:η1-2,3,4,5-tetramethylpentafulvene)tantalum(V)
aCarl von Ossietzky Universität Oldenburg, Fakultät V - Mathematik und Naturwissenschaften, Institut für Chemie, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany
*Correspondence e-mail: ruediger.beckhaus@uni-oldenburg.de
The reaction of (η5:η1-2,3,4,5-tetramethylpentafulvene)tantalum(V) dicarbazolide chloride (1) with etheric HCl results in the formation of the title compound (2), [Ta(C10H14)(C12H8N)Cl2]. The TaV atom has a distorted tetrahedral coordination environment in a three-legged piano-stool fashion. The conformation of the pentafulvene exocyclic C atom to the three other ligands is staggered and not eclipsed, as found in the of 1. Intermolecular interactions include π–π stacking, H⋯π interactions and weak C—H⋯Cl hydrogen bonds.
Keywords: crystal structure; tantalum; pentafulvene; amide; chloride.
CCDC reference: 2231842
Structure description
Pentafulvenes are versatile compounds in organic and organometallic chemistry (Preethalayam et al., 2017). The latter is dominated by group 4 complexes and their broad scope of (Beckhaus, 2018). For group 5 derivatives, a bis(pentafulvene)niobium complex was synthesized (Manssen et al., 2018), and subsequently alkylidene (de Graaff et al., 2021), and ethylene pentafulvene complexes were investigated (de Graaff et al., 2022). For tantalum, a series of pentafulvene complexes has been prepared by C—H activation of a cyclopentadienyl methyl group, also known as `tuck-in' complexes: from decamethyl tantalocene hydride by of one methyl C—H bond to the metal (Antonelli et al., 1993) and trapping by elemental sulfur (Brunner et al., 1996), as well as by rearrangement of a borataalkene tantalocene (Cook et al., 2002), or Cp*Ta[N(iPr)C(NMe2)N(iPr)](κ1-NNMe2) (Keane et al., 2013). Uncommonly, Riley et al. (1999) found the C—H activation at the Cp* ligand of Cp*TaCl4 by an amide, synthesizing 1, η5:η1-(2,3,4,5-tetramethylpentafulvene)tantalum(V) dicarbazolide chloride.
The molecular structure of the title compound 2 is shown in Fig. 1. The TaV atom is coordinated in a tetrahedrally distorted three-legged piano-stool fashion. Two angles between the three η1-ligands are smaller [Cl1—Ta1—Cl2: 88.239 (10)°; N1—Ta1—Cl2: 93.54 (3)°], the third being widened due to the direct neighboring of the pentafulvene exocyclic η1-carbon (C6exo) coordination site [N1—Ta1—Cl1: 114.15 (3)°]. The C6exo atom coordinates roughly opposite of Cl2 to the central tantalum atom [C6—Ta1—Cl2: 171.58 (3)°]. Relative to the centroid of the five-membered ring (Ct), the angles to the chloride ligands are smaller than to the nitrogen ligands [Cl1—Ta1—Ct: 116.715 (8)°; Cl2—Ta1—Ct: 115.508 (9)°; N1—Ta1—Ct: 121.012 (3)°]. The bond length Ta1—N1 [2.0433 (9) Å] and the sum of angles at N1 [347.1 (2)°] indicates a weak interaction of the nitrogen lone pair with the metal. The pentafulvene coordinates in a π-η5:σ-η1 fashion and exhibits typical distortion parameters (Fig. 2a). The C—C bond lengths within the pentafulvene are summarized in Fig. 2b. The pentafulvene has a ring slippage Δ of 0.31 Å and a θ angle of the Cipso—Cexo bond out of the plane of the five-membered ring of 36.30 (12)°. The Cipso—Cexo bond is a single to double bond [C1–C6: 1.4311 (7) Å; Allen et al., 1987] and the distance between the central tantalum atom and the Cexo atom exceeds the sum of their covalent radii [Ta1—C6: 2.379 (11) Å; sum of covalent radii 2.11 Å (Pyykkö & Atsumi, 2009)].
On the supramolecular level, around an inversion center, two molecules mutually interact via two weak carbazolide C—H⋯Cl hydrogen bonds [H13⋯Cl2: 2.7719 (12) Å; Fig. 3a]. Consequently, the Ta1—Cl2 bond [2.3965 (3) Å) is longer than the Ta1—Cl1 bond [2.3452 (3) Å]. These pairs form a double-chain (Fig. 3b), linked by supramolecular contacts of the pentafulvene and the carbazolide ligands via π–π stacking [C1⋯C17: 3.3867 (15) Å] and an H⋯π interaction [C15⋯H10c: 2.773 (6) Å]. Numerical details of other hydrogen-bonding interactions are summerized in Table 1.
Synthesis and crystallization
All steps were carried out under a dry argon atmosphere in a glovebox and under a dry nitrogen atmosphere using Schlenk techniques. Compound 1 was prepared according to Riley et al. (1999), substituting potassium for lithium. Solvents were dried according to standard procedures over Na/K alloy with benzophenone as indicator and distilled under a nitrogen atmosphere. Etheric HCl was acquired from Sigma-Aldrich.
Complex 1 (550 mg, 0.8 mmol) was dissolved in tetrahydrofuran (20 ml) and cooled to 223 K. One equivalent of etheric HCl (2 M, 0.4 ml, 0.8 mmol) was added dropwise and the solution was slowly brought to room temperature. After stirring over night, the solvents were removed in vacuo and the residue was extracted with toluene (10 ml). The solution was diluted with n-hexane (10 ml) and stored at 277 K for three days to yield a red crystalline material containing 1 and 2 (1:1). 1H NMR (300 MHz, C6D6, 294 K): δ = 0.79 (s, 3H, 1), 0.85 (s, 3H, 1), 1.27 (s, 6H, 2), 1.49 (s, 3H, 1), 1.53 (s, 6H, 2), 2.13 (s, 3H, 1), 2.62 (s, 2H, 2), 3.27 (d, 2JHH = 7.4 Hz, 1H, 1), 3.65 (d, 2JHH = 7.4 Hz, 1H, 1), 6.30–8.29 (aromatic signals unassigned) p.p.m.
Refinement
Crystal data, data collection and structure . using SHELXL (Sheldrick, 2015) and anisotropic displacement parameters results in high residual electron densities next to the tantalum atom (maximum: 4.16 e− Å−3; minimum: −2.83 e− Å−3). with OLEX2 (Bourhis et al., 2015) provides the possibility to refine the tantalum atom with anharmonic displacement parameters. Thereby, the residue electron density is lowered significantly (maximum: 1.28 e− Å−3; minimum: −1.24 e− Å−3). Refining all atoms anharmonically was dismissed, because it lowers the reliability factors only marginally, but more than triples the parameters (263 versus 888 parameters).
details are summarized in Table 2
|
Structural data
CCDC reference: 2231842
https://doi.org/10.1107/S2414314622012019/wm4176sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622012019/wm4176Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: Olex2 (Bourhis et al., 2015); molecular graphics: Olex2 (Bourhis et al., 2015); software used to prepare material for publication: Olex2 (Bourhis et al., 2015).[Ta(C10H14)(C12H8N)Cl2] | F(000) = 1072.380 |
Mr = 552.28 | Dx = 1.888 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.8422 (12) Å | Cell parameters from 9727 reflections |
b = 7.3442 (5) Å | θ = 2.6–40.3° |
c = 16.7885 (11) Å | µ = 5.94 mm−1 |
β = 117.950 (2)° | T = 100 K |
V = 1943.3 (2) Å3 | Block, red |
Z = 4 | 0.12 × 0.11 × 0.05 mm |
Bruker Photon III CPAD diffractometer | 11363 reflections with I ≥ 2θ(I) |
φ and ω scans | Rint = 0.043 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 40.3°, θmin = 2.4° |
Tmin = 0.511, Tmax = 0.651 | h = −32→32 |
128718 measured reflections | k = −13→13 |
12240 independent reflections | l = −30→30 |
Refinement on F2 | 35 constraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.016 | H-atom parameters constrained |
wR(F2) = 0.044 | w = 1/[σ2(Fo2) + (0.0164P)2 + 1.1947P] where P = (Fo2 + 2Fc2)/3 |
S = 1.11 | (Δ/σ)max = −0.001 |
12240 reflections | Δρmax = 1.28 e Å−3 |
264 parameters | Δρmin = −1.24 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
Ta1 | 0.278227 (6) | 0.666931 (14) | 0.609660 (6) | 0.01317 (5) | |
Cl1 | 0.392598 (18) | 0.63539 (4) | 0.754919 (18) | 0.02060 (5) | |
Cl2 | 0.188124 (17) | 0.54264 (4) | 0.666091 (19) | 0.01858 (5) | |
N1 | 0.26155 (5) | 0.45000 (13) | 0.52677 (6) | 0.01386 (12) | |
C1 | 0.31669 (7) | 0.90414 (15) | 0.55660 (7) | 0.01712 (16) | |
C2 | 0.30629 (8) | 0.98409 (15) | 0.62994 (8) | 0.01875 (17) | |
C3 | 0.21917 (8) | 0.97380 (15) | 0.60722 (8) | 0.01822 (17) | |
C4 | 0.17348 (7) | 0.89795 (15) | 0.51906 (8) | 0.01707 (16) | |
C5 | 0.23188 (7) | 0.85726 (15) | 0.48611 (7) | 0.01642 (16) | |
C6 | 0.38444 (7) | 0.77942 (18) | 0.57472 (8) | 0.01934 (18) | |
H6a | 0.44053 (7) | 0.80823 (18) | 0.62603 (8) | 0.0232 (2)* | |
H6b | 0.38711 (7) | 0.72515 (18) | 0.52213 (8) | 0.0232 (2)* | |
C7 | 0.37542 (10) | 1.06857 (19) | 0.71354 (9) | 0.0256 (2) | |
H7a | 0.3710 (6) | 1.20151 (19) | 0.7085 (4) | 0.0384 (3)* | |
H7b | 0.3696 (6) | 1.0293 (16) | 0.76616 (15) | 0.0384 (3)* | |
H7c | 0.43078 (10) | 1.0301 (16) | 0.7205 (5) | 0.0384 (3)* | |
C8 | 0.17969 (10) | 1.03756 (19) | 0.66363 (10) | 0.0256 (2) | |
H8a | 0.22378 (17) | 1.052 (2) | 0.7263 (2) | 0.0384 (3)* | |
H8b | 0.1516 (9) | 1.1549 (10) | 0.6408 (7) | 0.0384 (3)* | |
H8c | 0.1378 (7) | 0.9479 (10) | 0.6608 (8) | 0.0384 (3)* | |
C9 | 0.07868 (8) | 0.88368 (19) | 0.46864 (9) | 0.0225 (2) | |
H9a | 0.06216 (9) | 0.8053 (15) | 0.4158 (5) | 0.0337 (3)* | |
H9b | 0.05769 (11) | 0.8313 (17) | 0.5081 (3) | 0.0337 (3)* | |
H9c | 0.05421 (9) | 1.0052 (3) | 0.4490 (8) | 0.0337 (3)* | |
C10 | 0.21185 (8) | 0.78707 (18) | 0.39424 (7) | 0.01993 (18) | |
H10a | 0.2608 (3) | 0.7197 (15) | 0.39786 (18) | 0.0299 (3)* | |
H10b | 0.1626 (5) | 0.7060 (14) | 0.3724 (4) | 0.0299 (3)* | |
H10c | 0.1992 (8) | 0.8897 (2) | 0.3526 (2) | 0.0299 (3)* | |
C11 | 0.18132 (6) | 0.39330 (14) | 0.45672 (7) | 0.01415 (14) | |
C12 | 0.10037 (7) | 0.42830 (16) | 0.44654 (8) | 0.01689 (16) | |
H12 | 0.09314 (7) | 0.49491 (16) | 0.49097 (8) | 0.02027 (19)* | |
C13 | 0.03042 (7) | 0.36314 (17) | 0.36962 (8) | 0.01928 (18) | |
H13 | −0.02505 (7) | 0.38633 (17) | 0.36168 (8) | 0.0231 (2)* | |
C14 | 0.04027 (7) | 0.26427 (18) | 0.30388 (8) | 0.01979 (18) | |
H14 | −0.00838 (7) | 0.22206 (18) | 0.25180 (8) | 0.0238 (2)* | |
C15 | 0.12064 (7) | 0.22749 (16) | 0.31426 (7) | 0.01721 (16) | |
H15 | 0.12740 (7) | 0.16001 (16) | 0.26977 (7) | 0.02065 (19)* | |
C16 | 0.19144 (6) | 0.29109 (14) | 0.39104 (7) | 0.01395 (14) | |
C17 | 0.28193 (6) | 0.27368 (14) | 0.42311 (7) | 0.01377 (14) | |
C18 | 0.32964 (7) | 0.18151 (15) | 0.38960 (8) | 0.01630 (16) | |
H18 | 0.30272 (7) | 0.12006 (15) | 0.33329 (8) | 0.01957 (19)* | |
C19 | 0.41763 (7) | 0.18178 (16) | 0.44069 (8) | 0.01833 (17) | |
H19 | 0.45125 (7) | 0.12051 (16) | 0.41887 (8) | 0.0220 (2)* | |
C20 | 0.45710 (7) | 0.27159 (17) | 0.52402 (8) | 0.01864 (17) | |
H20 | 0.51720 (7) | 0.26906 (17) | 0.55802 (8) | 0.0224 (2)* | |
C21 | 0.41031 (7) | 0.36438 (16) | 0.55811 (7) | 0.01696 (16) | |
H21 | 0.43742 (7) | 0.42398 (16) | 0.61491 (7) | 0.02035 (19)* | |
C22 | 0.32212 (6) | 0.36687 (14) | 0.50595 (7) | 0.01367 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ta1 | 0.01119 (6) | 0.01644 (8) | 0.01408 (7) | 0.00048 (3) | 0.00775 (5) | 0.00024 (3) |
Cl1 | 0.01654 (10) | 0.02804 (12) | 0.01445 (9) | −0.00206 (9) | 0.00495 (8) | 0.00104 (8) |
Cl2 | 0.01698 (10) | 0.02367 (11) | 0.01952 (10) | 0.00074 (8) | 0.01225 (8) | 0.00389 (8) |
N1 | 0.0117 (3) | 0.0159 (3) | 0.0152 (3) | 0.0003 (2) | 0.0074 (2) | −0.0015 (2) |
C1 | 0.0197 (4) | 0.0167 (4) | 0.0181 (4) | −0.0030 (3) | 0.0115 (3) | 0.0003 (3) |
C2 | 0.0256 (5) | 0.0139 (4) | 0.0200 (4) | −0.0037 (3) | 0.0135 (4) | −0.0021 (3) |
C3 | 0.0228 (4) | 0.0155 (4) | 0.0200 (4) | 0.0021 (3) | 0.0130 (4) | −0.0002 (3) |
C4 | 0.0187 (4) | 0.0159 (4) | 0.0182 (4) | 0.0030 (3) | 0.0100 (3) | 0.0023 (3) |
C5 | 0.0192 (4) | 0.0166 (4) | 0.0155 (4) | 0.0004 (3) | 0.0098 (3) | 0.0016 (3) |
C6 | 0.0165 (4) | 0.0244 (5) | 0.0207 (4) | −0.0033 (3) | 0.0118 (3) | −0.0016 (4) |
C7 | 0.0300 (6) | 0.0238 (5) | 0.0232 (5) | −0.0088 (4) | 0.0127 (4) | −0.0072 (4) |
C8 | 0.0324 (6) | 0.0230 (5) | 0.0292 (6) | 0.0029 (4) | 0.0210 (5) | −0.0041 (4) |
C9 | 0.0192 (4) | 0.0235 (5) | 0.0250 (5) | 0.0062 (4) | 0.0106 (4) | 0.0036 (4) |
C10 | 0.0243 (5) | 0.0215 (4) | 0.0153 (4) | 0.0007 (4) | 0.0105 (4) | 0.0018 (3) |
C11 | 0.0122 (3) | 0.0154 (4) | 0.0151 (3) | 0.0006 (3) | 0.0066 (3) | −0.0001 (3) |
C12 | 0.0128 (3) | 0.0197 (4) | 0.0194 (4) | 0.0011 (3) | 0.0086 (3) | −0.0007 (3) |
C13 | 0.0121 (4) | 0.0240 (5) | 0.0207 (4) | 0.0016 (3) | 0.0068 (3) | 0.0011 (4) |
C14 | 0.0135 (4) | 0.0251 (5) | 0.0180 (4) | −0.0009 (3) | 0.0050 (3) | −0.0003 (4) |
C15 | 0.0153 (4) | 0.0204 (4) | 0.0146 (4) | −0.0005 (3) | 0.0060 (3) | −0.0010 (3) |
C16 | 0.0126 (3) | 0.0154 (3) | 0.0144 (3) | 0.0004 (3) | 0.0068 (3) | −0.0001 (3) |
C17 | 0.0124 (3) | 0.0156 (4) | 0.0142 (3) | 0.0009 (3) | 0.0069 (3) | −0.0001 (3) |
C18 | 0.0154 (4) | 0.0195 (4) | 0.0162 (4) | 0.0014 (3) | 0.0093 (3) | −0.0011 (3) |
C19 | 0.0154 (4) | 0.0232 (5) | 0.0194 (4) | 0.0031 (3) | 0.0106 (3) | 0.0000 (3) |
C20 | 0.0128 (4) | 0.0240 (5) | 0.0195 (4) | 0.0034 (3) | 0.0079 (3) | 0.0006 (3) |
C21 | 0.0121 (3) | 0.0228 (4) | 0.0155 (4) | 0.0013 (3) | 0.0061 (3) | −0.0007 (3) |
C22 | 0.0118 (3) | 0.0162 (4) | 0.0138 (3) | 0.0012 (3) | 0.0068 (3) | −0.0001 (3) |
Ta1—Cl1 | 2.3452 (3) | C8—H8c | 0.9800 |
Ta1—Cl2 | 2.3965 (3) | C9—H9a | 0.9800 |
Ta1—N1 | 2.0433 (9) | C9—H9b | 0.9800 |
Ta1—C1 | 2.2074 (11) | C9—H9c | 0.9800 |
Ta1—C2 | 2.3732 (11) | C10—H10a | 0.9800 |
Ta1—C3 | 2.4801 (11) | C10—H10b | 0.9800 |
Ta1—C4 | 2.4536 (11) | C10—H10c | 0.9800 |
Ta1—C5 | 2.3091 (11) | C11—C12 | 1.3965 (14) |
Ta1—C6 | 2.3791 (11) | C11—C16 | 1.4137 (14) |
N1—C11 | 1.4238 (13) | C12—H12 | 0.9500 |
N1—C22 | 1.4202 (13) | C12—C13 | 1.3941 (16) |
C1—C2 | 1.4525 (16) | C13—H13 | 0.9500 |
C1—C5 | 1.4594 (16) | C13—C14 | 1.3994 (18) |
C1—C6 | 1.4311 (17) | C14—H14 | 0.9500 |
C2—C3 | 1.4183 (18) | C14—C15 | 1.3876 (16) |
C2—C7 | 1.5012 (18) | C15—H15 | 0.9500 |
C3—C4 | 1.4263 (16) | C15—C16 | 1.3960 (15) |
C3—C8 | 1.4959 (17) | C16—C17 | 1.4486 (14) |
C4—C5 | 1.4217 (16) | C17—C18 | 1.3957 (15) |
C4—C9 | 1.4988 (17) | C17—C22 | 1.4079 (14) |
C5—C10 | 1.5020 (16) | C18—H18 | 0.9500 |
C6—H6a | 0.9900 | C18—C19 | 1.3922 (16) |
C6—H6b | 0.9900 | C19—H19 | 0.9500 |
C7—H7a | 0.9800 | C19—C20 | 1.4015 (17) |
C7—H7b | 0.9800 | C20—H20 | 0.9500 |
C7—H7c | 0.9800 | C20—C21 | 1.3917 (16) |
C8—H8a | 0.9800 | C21—H21 | 0.9500 |
C8—H8b | 0.9800 | C21—C22 | 1.3969 (15) |
Cl2—Ta1—Cl1 | 88.239 (10) | C10—C5—C4 | 127.35 (11) |
N1—Ta1—Cl1 | 114.15 (3) | C1—C6—Ta1 | 65.39 (6) |
N1—Ta1—Cl2 | 93.54 (3) | H6a—C6—Ta1 | 117.19 (3) |
C1—Ta1—Cl1 | 102.36 (3) | H6a—C6—C1 | 117.19 (7) |
C1—Ta1—Cl2 | 148.56 (3) | H6b—C6—Ta1 | 117.19 (3) |
C1—Ta1—N1 | 108.30 (4) | H6b—C6—C1 | 117.19 (6) |
C2—Ta1—Cl1 | 85.73 (3) | H6b—C6—H6a | 114.2 |
C2—Ta1—Cl2 | 116.91 (3) | H7a—C7—C2 | 109.5 |
C2—Ta1—N1 | 144.74 (4) | H7b—C7—C2 | 109.5 |
C2—Ta1—C1 | 36.75 (4) | H7b—C7—H7a | 109.5 |
C3—Ta1—Cl1 | 105.24 (3) | H7c—C7—C2 | 109.5 |
C3—Ta1—Cl2 | 89.66 (3) | H7c—C7—H7a | 109.5 |
C3—Ta1—N1 | 140.55 (4) | H7c—C7—H7b | 109.5 |
C3—Ta1—C1 | 59.08 (4) | H8a—C8—C3 | 109.5 |
C3—Ta1—C2 | 33.89 (4) | H8b—C8—C3 | 109.5 |
C4—Ta1—Cl1 | 138.73 (3) | H8b—C8—H8a | 109.5 |
C4—Ta1—Cl2 | 92.94 (3) | H8c—C8—C3 | 109.5 |
C4—Ta1—N1 | 106.95 (4) | H8c—C8—H8a | 109.5 |
C4—Ta1—C1 | 59.64 (4) | H8c—C8—H8b | 109.5 |
C4—Ta1—C2 | 57.21 (4) | H9a—C9—C4 | 109.5 |
C4—Ta1—C3 | 33.60 (4) | H9b—C9—C4 | 109.5 |
C5—Ta1—Cl1 | 139.87 (3) | H9b—C9—H9a | 109.5 |
C5—Ta1—Cl2 | 124.16 (3) | H9c—C9—C4 | 109.5 |
C5—Ta1—N1 | 89.07 (4) | H9c—C9—H9a | 109.5 |
C5—Ta1—C1 | 37.62 (4) | H9c—C9—H9b | 109.5 |
C5—Ta1—C2 | 59.83 (4) | H10a—C10—C5 | 109.5 |
C5—Ta1—C3 | 57.63 (4) | H10b—C10—C5 | 109.5 |
C5—Ta1—C4 | 34.57 (4) | H10b—C10—H10a | 109.5 |
C6—Ta1—Cl1 | 83.41 (3) | H10c—C10—C5 | 109.5 |
C6—Ta1—Cl2 | 171.58 (3) | H10c—C10—H10a | 109.5 |
C6—Ta1—N1 | 88.93 (4) | H10c—C10—H10b | 109.5 |
C6—Ta1—C1 | 36.12 (4) | C12—C11—N1 | 128.98 (9) |
C6—Ta1—C2 | 63.62 (4) | C16—C11—N1 | 110.67 (8) |
C6—Ta1—C3 | 93.54 (4) | C16—C11—C12 | 120.34 (9) |
C6—Ta1—C4 | 94.03 (4) | H12—C12—C11 | 120.80 (6) |
C6—Ta1—C5 | 63.87 (4) | C13—C12—C11 | 118.41 (10) |
C11—N1—Ta1 | 124.03 (7) | C13—C12—H12 | 120.80 (7) |
C22—N1—Ta1 | 128.17 (7) | H13—C13—C12 | 119.34 (7) |
C22—N1—C11 | 104.92 (8) | C14—C13—C12 | 121.33 (10) |
C2—C1—Ta1 | 77.85 (6) | C14—C13—H13 | 119.34 (6) |
C5—C1—Ta1 | 74.97 (6) | H14—C14—C13 | 119.79 (6) |
C5—C1—C2 | 106.66 (10) | C15—C14—C13 | 120.42 (10) |
C6—C1—Ta1 | 78.49 (7) | C15—C14—H14 | 119.79 (7) |
C6—C1—C2 | 120.62 (10) | H15—C15—C14 | 120.48 (7) |
C6—C1—C5 | 118.22 (10) | C16—C15—C14 | 119.04 (10) |
C1—C2—Ta1 | 65.41 (6) | C16—C15—H15 | 120.48 (6) |
C3—C2—Ta1 | 77.19 (6) | C15—C16—C11 | 120.45 (9) |
C3—C2—C1 | 108.05 (10) | C17—C16—C11 | 106.53 (8) |
C7—C2—Ta1 | 124.43 (9) | C17—C16—C15 | 133.01 (10) |
C7—C2—C1 | 125.74 (12) | C18—C17—C16 | 132.62 (9) |
C7—C2—C3 | 126.17 (11) | C22—C17—C16 | 106.69 (8) |
C2—C3—Ta1 | 68.92 (6) | C22—C17—C18 | 120.63 (9) |
C4—C3—Ta1 | 72.18 (6) | H18—C18—C17 | 120.80 (6) |
C4—C3—C2 | 108.73 (10) | C19—C18—C17 | 118.40 (10) |
C8—C3—Ta1 | 126.62 (8) | C19—C18—H18 | 120.80 (6) |
C8—C3—C2 | 126.51 (11) | H19—C19—C18 | 119.68 (6) |
C8—C3—C4 | 124.72 (11) | C20—C19—C18 | 120.63 (10) |
C3—C4—Ta1 | 74.22 (6) | C20—C19—H19 | 119.68 (6) |
C5—C4—Ta1 | 67.15 (6) | H20—C20—C19 | 119.22 (6) |
C5—C4—C3 | 108.62 (10) | C21—C20—C19 | 121.56 (10) |
C9—C4—Ta1 | 129.19 (8) | C21—C20—H20 | 119.22 (6) |
C9—C4—C3 | 123.93 (10) | H21—C21—C20 | 121.14 (6) |
C9—C4—C5 | 127.19 (11) | C22—C21—C20 | 117.72 (10) |
C1—C5—Ta1 | 67.41 (6) | C22—C21—H21 | 121.14 (6) |
C4—C5—Ta1 | 78.28 (6) | C17—C22—N1 | 110.98 (8) |
C4—C5—C1 | 107.78 (10) | C21—C22—N1 | 127.94 (9) |
C10—C5—Ta1 | 121.82 (8) | C21—C22—C17 | 121.02 (9) |
C10—C5—C1 | 124.80 (10) | ||
Ta1—N1—C11—C12 | −21.34 (10) | N1—C11—C16—C15 | −177.53 (9) |
Ta1—N1—C11—C16 | 157.54 (8) | N1—C11—C16—C17 | 3.18 (9) |
Ta1—N1—C22—C17 | −156.81 (9) | N1—C22—C17—C16 | −2.47 (10) |
Ta1—N1—C22—C21 | 25.74 (11) | N1—C22—C17—C18 | −179.87 (9) |
Ta1—C1—C2—C3 | −66.06 (7) | N1—C22—C21—C20 | 179.22 (12) |
Ta1—C1—C2—C7 | 115.89 (8) | C1—C2—C3—C4 | −3.05 (10) |
Ta1—C1—C5—C4 | 68.63 (7) | C1—C2—C3—C8 | 179.13 (9) |
Ta1—C1—C5—C10 | −113.97 (7) | C1—C5—C4—C3 | 1.63 (10) |
Ta1—C2—C1—C5 | 70.04 (7) | C1—C5—C4—C9 | 175.84 (9) |
Ta1—C2—C1—C6 | −68.61 (7) | C2—C3—C4—C5 | 0.87 (10) |
Ta1—C2—C3—C4 | −61.51 (7) | C2—C3—C4—C9 | −173.56 (9) |
Ta1—C2—C3—C8 | 120.67 (8) | C3—C4—C5—C10 | −175.68 (9) |
Ta1—C3—C2—C1 | 58.46 (7) | C11—C12—C13—C14 | 0.24 (13) |
Ta1—C3—C2—C7 | −123.51 (8) | C11—C16—C15—C14 | −0.73 (13) |
Ta1—C3—C4—C5 | −58.60 (7) | C11—C16—C17—C18 | 176.53 (8) |
Ta1—C3—C4—C9 | 126.96 (7) | C11—C16—C17—C22 | −0.43 (10) |
Ta1—C4—C3—C2 | 59.48 (7) | C12—C13—C14—C15 | 0.48 (15) |
Ta1—C4—C3—C8 | −122.65 (8) | C13—C14—C15—C16 | −0.23 (14) |
Ta1—C4—C5—C1 | −61.41 (7) | C14—C15—C16—C17 | 178.34 (10) |
Ta1—C4—C5—C10 | 121.28 (7) | C15—C16—C17—C18 | −2.63 (16) |
Ta1—C5—C1—C2 | −72.07 (7) | C15—C16—C17—C22 | −179.59 (14) |
Ta1—C5—C1—C6 | 67.75 (7) | C16—C17—C18—C19 | −175.66 (13) |
Ta1—C5—C4—C3 | 63.04 (7) | C16—C17—C22—C21 | 175.18 (9) |
Ta1—C5—C4—C9 | −122.75 (7) | C17—C18—C19—C20 | 0.42 (13) |
Ta1—C6—C1—C2 | 68.27 (7) | C17—C22—C21—C20 | 2.00 (12) |
Ta1—C6—C1—C5 | −65.82 (7) | C18—C19—C20—C21 | −0.59 (14) |
N1—C11—C12—C13 | 177.59 (12) | C19—C20—C21—C22 | −0.62 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8b···Cl2i | 0.98 | 2.91 (1) | 3.7119 (14) | 140 (1) |
C12—H12···Cl2 | 0.95 | 2.64 (1) | 3.3663 (12) | 134 (1) |
C13—H13···Cl2ii | 0.95 | 2.77 (1) | 3.7217 (12) | 179 (1) |
C15—H15···Cl2iii | 0.95 | 2.86 (1) | 3.7923 (12) | 167 (1) |
C18—H18···Cl1iii | 0.95 | 3.13 (1) | 3.7645 (11) | 126 (1) |
C18—H18···Cl2iii | 0.95 | 2.85 (1) | 3.7795 (12) | 167 (1) |
C19—H19···Cl1iii | 0.95 | 3.08 (1) | 3.7479 (12) | 128 (1) |
C20—H20···Cl1iv | 0.95 | 2.95 (1) | 3.5548 (12) | 123 (1) |
Symmetry codes: (i) x, y+1, z; (ii) −x, −y+1, −z+1; (iii) x, −y+1/2, z−1/2; (iv) −x+1, y−1/2, −z+3/2. |
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. 2226).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19. CrossRef Web of Science Google Scholar
Antonelli, D. M., Schaefer, W. P., Parkin, G. & Bercaw, J. E. (1993). J. Organomet. Chem. 462, 213–220. CrossRef CAS Google Scholar
Beckhaus, R. (2018). Coord. Chem. Rev. 376, 467–477. Web of Science CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Brunner, H., Wachter, J., Gehart, G., Leblanc, J. & Moïse, C. (1996). Organometallics, 15, 1327–1330. CrossRef CAS Google Scholar
Cook, K. S., Piers, W. E. & McDonald, R. (2002). J. Am. Chem. Soc. 124, 5411–5418. CrossRef PubMed CAS Google Scholar
Graaff, S. de, Chandi, A., Schmidtmann, M. & Beckhaus, R. (2021). Organometallics, 40, 3298–3305. Google Scholar
Graaff, S. de, Schwitalla, K., Haaker, C. V., Bengen, N., Schmidtmann, M. & Beckhaus, R. (2022). Dalton Trans. 51, 12502–12511. PubMed Google Scholar
Keane, A. J., Zavalij, P. Y. & Sita, L. R. (2013). J. Am. Chem. Soc. 135, 9580–9583. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Manssen, M., Dierks, A., de Graaff, S., Schmidtmann, M. & Beckhaus, R. (2018). Angew. Chem. 130, 12238–12242. Google Scholar
Preethalayam, P., Krishnan, K. S., Thulasi, S., Chand, S. S., Joseph, J., Nair, V., Jaroschik, F. & Radhakrishnan, K. V. (2017). Chem. Rev. 117, 3930–3989. Web of Science CrossRef CAS PubMed Google Scholar
Pyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770–12779. Web of Science CrossRef PubMed Google Scholar
Riley, P. N., Parker, J. R., Fanwick, P. E. & Rothwell, I. P. (1999). Organometallics, 18, 3579–3583. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.