metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris(benzyl­di­phenyl­phosphane-κP)(nitrato-κO)silver(I)

crossmark logo

aDepartment of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa, and bDepartment of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 September 2022; accepted 30 November 2022; online 6 December 2022)

The mol­ecular structure of the title complex, [Ag(NO3)(C19H17P)3], exhibits a severely distorted tetra­hedral coordination environment around the central AgI atom, comprising one O and three P atoms. Apart from a primary Ag—O coordination of the nitrato ligand of 2.667 (3) Å, a second (weaker) secondary inter­action of the nitrato ligand via the other O atom of 3.118 (4) Å is observed. The compound crystallizes with a complete mol­ecule in the asymmetric unit. Weak C—H⋯O inter­actions consolidate the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As the class of bioactive silver(I) phosphine complexes continues to be a research focus area of several research groups (Potgieter et al., 2017[Potgieter, K., Engelbrecht, Z., Naganagowda, G., Cronjé, M. J. & Meijboom, R. (2017). J. Coord. Chem. 70, 2644-2658.]), the unpredictability of the solid-state mol­ecular structures of these compounds remain inter­esting and is continuously studied by means of X-ray diffraction techniques (Potgieter et al., 2022[Potgieter, K., Malan, F. P. & Meijboom, R. (2022). IUCrData, 7, x220772.]).

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The complex crystallizes with a complete mol­ecule in the asymmetric unit. The central AgI atom features three coordinating benzyl-di­phenyl­phosphine ligands, as well as one nitrato ligand. An umbrella configuration is seen with the three phosphino ligands on top of a plane with the central AgI atom at the apex with a plane-to-Ag separation of ca 0.361 Å. The near symmetric binding of the phosphine ligands are indicated by the narrow range of Ag—P bond lengths between 2.4737 (5) and 2.4990 (6) Å, which are within the known range of related AgI phosphine compounds (Meijboom et al., 2009[Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.]). The distorted tetra­hedral coordination environment displayed by the AgI cation is underpinned by the corresponding bond angles P1—Ag1—P2 (123.727 (19)°), P1—Ag1—P3 (106.310 (19)°), and P2—Ag1—P3 (123.634 (19)°). The nitrato coordinates to the AgI atom via O2 (Ag1—O2 = 2.667 (5) Å). A secondary weak inter­action between O1 and Ag1 is also observed, with an inter­action distance of 3.118 (4) Å, which is thought to help stabilize the coordination around Ag1. The three N—O bond lengths of the nitrato ligand are nearly identical with a range between 1.221 (3) and 1.233 (3) Å. The NO3 ligand and the Ag1—P3 bond all lie (almost) within the same plane, with P1 and P2 on either side of the plane. Corresponding torsion angles are N1—O2—Ag1—P1 = 110.78 (18)°, N1—O2—Ag1—P2 = −127.26 (19)°, and N1—O2—Ag1—P3 = −5.9 (2)°. The concentration of bulky arene groups from the three phosphine ligands also does not appear to notably affect the tetra­hedral environment of each of the P atoms, with typical C′—P—C′′ bond angles between 99.02 (10)–105.80 (11)°, and an average of 103.40°.

[Figure 1]
Figure 1
Mol­ecular structure of the silver(I) tris-phosphine complex. Displacement ellipsoids are drawn at the 50% probability level. For clarity, selected carbon atoms of the arene rings are shown in wireframe style and hydrogen atoms are omitted.

The complex packs in three dimensions as isolated layers of complexes featuring a metal-containing NO3 rich layer and an alternating arene-rich layer (Fig. 2[link]). No classical hydrogen-bonding or mentionable ππ stacking inter­actions are observed. Selected non-classical intra- and inter-mol­ecular hydrogen bonding inter­actions (C—H⋯O) are shown in Fig. 2[link] and included in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2 0.95 2.51 3.4612 (4) 175
C8—H8⋯O3i 0.95 2.33 3.102 (4) 139
C28—H28⋯O3i 0.95 2.30 3.096 (4) 141
C46—H46⋯O1 0.95 2.44 3.231 (4) 141
Symmetry code: (i) [x, y-1, z].
[Figure 2]
Figure 2
Packing diagram as viewed along the a axis of the structure of the title compound. Non-classical hydrogen-bonding inter­actions are indicated with cyan dotted lines.

Synthesis and crystallization

Benzyl­diphenyl­phosphine (3 mmol) was added to a solution of silver nitrate (1 mmol) in 20 ml aceto­nitrile. The reaction mixture was heated under reflux for a few hours. It was filtered and left to form crystals. Small colourless crystals were obtained overnight.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ag(NO3)(C19H17P)3]
Mr 998.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 13.5643 (2), 9.9979 (2), 35.4391 (6)
β (°) 99.248 (2)
V3) 4743.59 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.57
Crystal size (mm) 0.21 × 0.18 × 0.16
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.269, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 77751, 12895, 10926
Rint 0.051
(sin θ/λ)max−1) 0.727
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.096, 1.07
No. of reflections 12895
No. of parameters 586
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.78
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Tris(benzyldiphenylphosphane-κP)(nitrato-κO)silver(I) top
Crystal data top
[Ag(NO3)(C19H17P)3]F(000) = 2064
Mr = 998.76Dx = 1.399 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.5643 (2) ÅCell parameters from 49121 reflections
b = 9.9979 (2) Åθ = 2.6–31.3°
c = 35.4391 (6) ŵ = 0.57 mm1
β = 99.248 (2)°T = 150 K
V = 4743.59 (15) Å3Block, colourless
Z = 40.21 × 0.18 × 0.16 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
12895 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source10926 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.051
Detector resolution: 10.0000 pixels mm-1θmax = 31.1°, θmin = 2.4°
ω scansh = 1815
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1414
Tmin = 0.269, Tmax = 1.000l = 4349
77751 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0341P)2 + 5.9508P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
12895 reflectionsΔρmax = 0.90 e Å3
586 parametersΔρmin = 0.78 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.74798 (2)0.69605 (2)0.37571 (2)0.02091 (5)
P10.58242 (4)0.59000 (6)0.37839 (2)0.02200 (11)
P20.83407 (4)0.68482 (5)0.31933 (2)0.02064 (11)
P30.83722 (4)0.70570 (5)0.44299 (2)0.02071 (11)
N10.72422 (15)1.0224 (2)0.36449 (6)0.0296 (4)
C70.59306 (15)0.4655 (2)0.41680 (6)0.0229 (4)
O20.70309 (18)0.9312 (2)0.34174 (8)0.0674 (8)
C450.75566 (16)0.7562 (2)0.47712 (6)0.0235 (4)
O30.7075 (3)1.1395 (2)0.35565 (8)0.0745 (8)
C520.93733 (16)0.4638 (2)0.43405 (6)0.0234 (4)
C200.95104 (16)0.7790 (2)0.32598 (6)0.0229 (4)
C390.95066 (15)0.8048 (2)0.45606 (6)0.0218 (4)
C260.86546 (17)0.5186 (2)0.30363 (6)0.0244 (4)
C400.98711 (17)0.8780 (2)0.42795 (7)0.0268 (5)
H400.95040.88110.40280.032*
C80.62320 (17)0.3353 (2)0.41041 (7)0.0288 (5)
H80.63000.30830.38530.035*
C120.58538 (17)0.5036 (2)0.45431 (6)0.0257 (4)
H120.56590.59220.45940.031*
C320.77378 (17)0.7596 (2)0.27341 (6)0.0263 (4)
H32A0.76340.85610.27760.032*
H32B0.82070.75200.25480.032*
C270.8137 (2)0.4102 (2)0.31479 (7)0.0326 (5)
H270.77000.42210.33300.039*
C510.87716 (17)0.5366 (2)0.46029 (6)0.0251 (4)
H51A0.91800.54420.48600.030*
H51B0.81720.48280.46280.030*
C10.48491 (16)0.7039 (2)0.38875 (6)0.0243 (4)
C251.04431 (18)0.7184 (2)0.33519 (7)0.0287 (5)
H251.04860.62410.33820.034*
C130.52699 (17)0.5003 (2)0.33411 (6)0.0279 (5)
H13A0.53340.55860.31200.034*
H13B0.56770.41930.33180.034*
C330.67541 (18)0.6995 (2)0.25573 (6)0.0288 (5)
C140.41952 (17)0.4579 (2)0.33067 (6)0.0265 (5)
C90.64343 (18)0.2446 (3)0.44029 (8)0.0334 (5)
H90.66320.15600.43540.040*
C210.94684 (18)0.9193 (2)0.32359 (7)0.0273 (5)
H210.88390.96300.31850.033*
C531.03062 (17)0.5100 (2)0.42783 (7)0.0283 (5)
H531.05620.59170.43910.034*
C570.90097 (18)0.3451 (2)0.41677 (7)0.0290 (5)
H570.83650.31450.41990.035*
C541.08633 (18)0.4372 (2)0.40518 (7)0.0300 (5)
H541.14890.47040.40050.036*
C441.00465 (17)0.8037 (2)0.49331 (6)0.0268 (4)
H440.97970.75560.51290.032*
C221.03420 (19)0.9945 (3)0.32863 (7)0.0330 (5)
H221.03061.08920.32660.040*
C310.93097 (18)0.4982 (3)0.27725 (7)0.0301 (5)
H310.96650.57180.26910.036*
C60.40306 (18)0.6613 (3)0.40516 (7)0.0307 (5)
H60.39400.56890.40980.037*
C460.67781 (17)0.8448 (2)0.46439 (7)0.0288 (5)
H460.67110.88100.43930.035*
C190.39218 (19)0.3394 (3)0.34654 (8)0.0339 (5)
H190.44210.28330.36030.041*
C500.76469 (19)0.7058 (3)0.51408 (7)0.0315 (5)
H500.81780.64630.52320.038*
C411.07705 (19)0.9469 (3)0.43651 (7)0.0321 (5)
H411.10160.99660.41710.039*
C50.33482 (18)0.7550 (3)0.41466 (7)0.0363 (6)
H50.28000.72640.42630.044*
C560.9573 (2)0.2707 (3)0.39504 (8)0.0347 (5)
H560.93210.18860.38400.042*
C20.49522 (19)0.8392 (2)0.38089 (7)0.0311 (5)
H20.54990.86870.36930.037*
C421.13090 (18)0.9434 (3)0.47317 (7)0.0323 (5)
H421.19280.98930.47880.039*
O10.7673 (3)0.9985 (4)0.39716 (8)0.0922 (11)
C551.0505 (2)0.3162 (3)0.38947 (7)0.0336 (5)
H551.08960.26460.37490.040*
C380.5872 (2)0.7659 (3)0.25900 (8)0.0385 (6)
H380.58930.84380.27450.046*
C110.60614 (19)0.4122 (3)0.48413 (7)0.0325 (5)
H110.60050.43880.50940.039*
C431.09414 (18)0.8724 (3)0.50165 (7)0.0306 (5)
H431.13050.87110.52690.037*
C100.63498 (19)0.2827 (3)0.47725 (8)0.0341 (5)
H100.64880.22060.49770.041*
C231.1262 (2)0.9324 (3)0.33650 (7)0.0360 (6)
H231.18570.98390.33950.043*
C280.8251 (2)0.2829 (3)0.29945 (9)0.0432 (7)
H280.78780.20940.30660.052*
C480.61863 (19)0.8284 (3)0.52465 (8)0.0360 (6)
H480.57140.85200.54060.043*
C241.13108 (19)0.7946 (3)0.34007 (8)0.0351 (5)
H241.19420.75180.34590.042*
C150.3448 (2)0.5380 (3)0.31089 (8)0.0361 (5)
H150.36190.62010.30010.043*
C470.61029 (19)0.8801 (3)0.48816 (8)0.0348 (6)
H470.55770.94060.47920.042*
C300.9440 (2)0.3715 (3)0.26309 (7)0.0371 (6)
H300.98990.35800.24580.045*
C490.6962 (2)0.7419 (3)0.53789 (8)0.0367 (6)
H490.70290.70720.56310.044*
C290.8905 (2)0.2646 (3)0.27398 (8)0.0413 (6)
H290.89880.17820.26380.050*
C180.2920 (2)0.3019 (3)0.34248 (8)0.0437 (7)
H180.27410.22070.35360.052*
C170.2190 (2)0.3817 (3)0.32255 (8)0.0416 (7)
H170.15080.35560.31980.050*
C340.6704 (2)0.5834 (3)0.23413 (8)0.0424 (6)
H340.72960.53530.23200.051*
C160.2450 (2)0.4988 (3)0.30674 (8)0.0412 (6)
H160.19470.55380.29280.049*
C40.3467 (2)0.8895 (3)0.40719 (8)0.0411 (6)
H40.30040.95290.41400.049*
C30.4257 (2)0.9316 (3)0.38990 (9)0.0420 (6)
H30.43261.02360.38420.050*
C370.4957 (2)0.7200 (4)0.23997 (10)0.0534 (9)
H370.43610.76740.24200.064*
C360.4922 (3)0.6057 (4)0.21824 (10)0.0627 (11)
H360.43000.57410.20510.075*
C350.5782 (3)0.5373 (4)0.21551 (10)0.0596 (9)
H350.57500.45760.20080.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02052 (8)0.02433 (8)0.01770 (8)0.00022 (6)0.00252 (6)0.00111 (6)
P10.0190 (2)0.0257 (3)0.0212 (3)0.0010 (2)0.0029 (2)0.0022 (2)
P20.0229 (3)0.0230 (2)0.0163 (2)0.0005 (2)0.0038 (2)0.00008 (19)
P30.0196 (2)0.0239 (3)0.0179 (2)0.0023 (2)0.0008 (2)0.00154 (19)
N10.0258 (10)0.0267 (10)0.0377 (11)0.0026 (8)0.0092 (8)0.0034 (8)
C70.0170 (9)0.0257 (10)0.0257 (11)0.0009 (8)0.0026 (8)0.0004 (8)
O20.0477 (13)0.0483 (13)0.101 (2)0.0064 (10)0.0031 (13)0.0391 (14)
C450.0199 (10)0.0271 (10)0.0231 (10)0.0001 (8)0.0022 (8)0.0054 (8)
O30.132 (3)0.0289 (11)0.0673 (17)0.0155 (13)0.0303 (17)0.0030 (11)
C520.0233 (10)0.0249 (10)0.0215 (10)0.0057 (8)0.0016 (8)0.0030 (8)
C200.0261 (10)0.0261 (10)0.0163 (9)0.0024 (8)0.0035 (8)0.0016 (8)
C390.0201 (9)0.0243 (10)0.0202 (10)0.0026 (8)0.0009 (8)0.0034 (8)
C260.0289 (11)0.0243 (10)0.0198 (10)0.0026 (8)0.0032 (9)0.0011 (8)
C400.0278 (11)0.0309 (11)0.0216 (10)0.0017 (9)0.0035 (9)0.0036 (8)
C80.0253 (11)0.0294 (11)0.0319 (12)0.0038 (9)0.0047 (9)0.0036 (9)
C120.0265 (11)0.0263 (10)0.0251 (11)0.0013 (8)0.0064 (9)0.0007 (8)
C320.0292 (11)0.0270 (10)0.0208 (10)0.0039 (9)0.0016 (9)0.0039 (8)
C270.0378 (13)0.0281 (11)0.0336 (13)0.0018 (10)0.0112 (11)0.0028 (10)
C510.0261 (11)0.0251 (10)0.0244 (11)0.0042 (8)0.0054 (9)0.0018 (8)
C10.0211 (10)0.0298 (11)0.0203 (10)0.0020 (8)0.0015 (8)0.0028 (8)
C250.0319 (12)0.0285 (11)0.0241 (11)0.0013 (9)0.0002 (9)0.0018 (9)
C130.0256 (11)0.0364 (12)0.0220 (11)0.0042 (9)0.0045 (9)0.0052 (9)
C330.0321 (12)0.0321 (11)0.0204 (10)0.0074 (10)0.0016 (9)0.0062 (9)
C140.0249 (11)0.0336 (11)0.0206 (10)0.0029 (9)0.0021 (9)0.0083 (9)
C90.0280 (12)0.0276 (11)0.0445 (15)0.0063 (9)0.0056 (11)0.0021 (10)
C210.0295 (11)0.0271 (11)0.0253 (11)0.0005 (9)0.0045 (9)0.0029 (9)
C530.0269 (11)0.0261 (11)0.0323 (12)0.0032 (9)0.0064 (9)0.0004 (9)
C570.0259 (11)0.0304 (11)0.0303 (12)0.0016 (9)0.0039 (9)0.0003 (9)
C540.0269 (11)0.0325 (12)0.0319 (12)0.0044 (9)0.0091 (10)0.0022 (9)
C440.0262 (11)0.0320 (11)0.0206 (10)0.0010 (9)0.0013 (9)0.0001 (9)
C220.0386 (13)0.0282 (11)0.0308 (12)0.0072 (10)0.0013 (10)0.0041 (9)
C310.0328 (12)0.0347 (12)0.0242 (11)0.0016 (10)0.0085 (10)0.0015 (9)
C60.0248 (11)0.0384 (13)0.0280 (12)0.0010 (9)0.0014 (9)0.0044 (10)
C460.0246 (11)0.0304 (11)0.0307 (12)0.0010 (9)0.0018 (9)0.0068 (9)
C190.0297 (12)0.0360 (13)0.0340 (13)0.0053 (10)0.0013 (10)0.0021 (10)
C500.0306 (12)0.0373 (13)0.0271 (12)0.0053 (10)0.0061 (10)0.0019 (10)
C410.0325 (12)0.0332 (12)0.0321 (12)0.0068 (10)0.0097 (10)0.0040 (10)
C50.0225 (11)0.0558 (16)0.0297 (13)0.0063 (11)0.0019 (10)0.0082 (11)
C560.0387 (14)0.0307 (12)0.0345 (13)0.0004 (10)0.0049 (11)0.0082 (10)
C20.0287 (12)0.0317 (12)0.0308 (12)0.0023 (9)0.0015 (10)0.0010 (9)
C420.0230 (11)0.0339 (12)0.0390 (14)0.0036 (9)0.0021 (10)0.0116 (10)
O10.096 (2)0.124 (3)0.0568 (17)0.056 (2)0.0128 (15)0.0268 (17)
C550.0366 (13)0.0346 (12)0.0313 (12)0.0087 (10)0.0105 (10)0.0038 (10)
C380.0350 (13)0.0405 (14)0.0372 (14)0.0014 (11)0.0023 (11)0.0130 (11)
C110.0313 (12)0.0390 (13)0.0283 (12)0.0006 (10)0.0077 (10)0.0034 (10)
C430.0265 (11)0.0352 (12)0.0274 (12)0.0017 (9)0.0037 (9)0.0068 (9)
C100.0316 (12)0.0327 (12)0.0382 (14)0.0004 (10)0.0061 (11)0.0099 (10)
C230.0322 (13)0.0427 (14)0.0311 (13)0.0116 (11)0.0011 (10)0.0059 (10)
C280.0555 (17)0.0247 (12)0.0497 (17)0.0021 (11)0.0098 (14)0.0010 (11)
C480.0286 (12)0.0435 (14)0.0386 (14)0.0001 (10)0.0138 (11)0.0157 (11)
C240.0258 (11)0.0430 (14)0.0336 (13)0.0009 (10)0.0038 (10)0.0051 (11)
C150.0351 (13)0.0389 (13)0.0328 (13)0.0000 (11)0.0011 (11)0.0019 (10)
C470.0260 (12)0.0377 (13)0.0397 (14)0.0069 (10)0.0027 (10)0.0116 (11)
C300.0429 (15)0.0431 (14)0.0258 (12)0.0108 (12)0.0072 (11)0.0071 (10)
C490.0386 (14)0.0458 (15)0.0275 (12)0.0015 (11)0.0110 (11)0.0050 (11)
C290.0523 (17)0.0302 (12)0.0388 (14)0.0109 (12)0.0004 (13)0.0085 (11)
C180.0374 (15)0.0515 (17)0.0417 (15)0.0168 (13)0.0048 (12)0.0027 (13)
C170.0250 (12)0.0670 (19)0.0322 (13)0.0090 (12)0.0033 (10)0.0140 (13)
C340.0514 (17)0.0417 (15)0.0312 (13)0.0112 (13)0.0026 (12)0.0037 (11)
C160.0288 (13)0.0565 (17)0.0359 (14)0.0073 (12)0.0023 (11)0.0072 (12)
C40.0325 (13)0.0478 (16)0.0394 (15)0.0154 (12)0.0053 (11)0.0121 (12)
C30.0410 (15)0.0342 (13)0.0469 (16)0.0105 (11)0.0044 (12)0.0029 (11)
C370.0331 (14)0.065 (2)0.056 (2)0.0113 (14)0.0099 (14)0.0251 (16)
C360.051 (2)0.073 (2)0.053 (2)0.0326 (18)0.0236 (16)0.0225 (17)
C350.075 (2)0.0534 (19)0.0436 (18)0.0279 (18)0.0112 (17)0.0057 (14)
Geometric parameters (Å, º) top
Ag1—P12.4990 (6)C54—H540.9500
Ag1—P22.4737 (5)C44—C431.385 (3)
Ag1—P32.4964 (6)C44—H440.9500
Ag1—O22.667 (3)C22—C231.381 (4)
Ag1—O13.118 (4)C22—H220.9500
P1—C11.827 (2)C31—C301.384 (4)
P1—C71.833 (2)C31—H310.9500
P1—C131.858 (2)C6—C51.395 (3)
P2—C261.824 (2)C6—H60.9500
P2—C201.827 (2)C46—C471.386 (3)
P2—C321.857 (2)C46—H460.9500
P3—C391.826 (2)C19—C181.395 (4)
P3—C451.836 (2)C19—H190.9500
P3—C511.850 (2)C50—C491.399 (3)
N1—O21.221 (3)C50—H500.9500
N1—O31.224 (3)C41—C421.385 (4)
N1—O11.233 (3)C41—H410.9500
C7—C81.394 (3)C5—C41.385 (4)
C7—C121.403 (3)C5—H50.9500
C45—C501.390 (3)C56—C551.386 (4)
C45—C461.396 (3)C56—H560.9500
C52—C571.389 (3)C2—C31.393 (4)
C52—C531.397 (3)C2—H20.9500
C52—C511.518 (3)C42—C431.390 (4)
C20—C251.393 (3)C42—H420.9500
C20—C211.407 (3)C55—H550.9500
C39—C401.390 (3)C38—C371.391 (4)
C39—C441.403 (3)C38—H380.9500
C26—C271.383 (3)C11—C101.385 (4)
C26—C311.404 (3)C11—H110.9500
C40—C411.391 (3)C43—H430.9500
C40—H400.9500C10—H100.9500
C8—C91.388 (4)C23—C241.384 (4)
C8—H80.9500C23—H230.9500
C12—C111.391 (3)C28—C291.375 (4)
C12—H120.9500C28—H280.9500
C32—C331.505 (3)C48—C471.381 (4)
C32—H32A0.9900C48—C491.384 (4)
C32—H32B0.9900C48—H480.9500
C27—C281.402 (4)C24—H240.9500
C27—H270.9500C15—C161.395 (4)
C51—H51A0.9900C15—H150.9500
C51—H51B0.9900C47—H470.9500
C1—C21.393 (3)C30—C291.381 (4)
C1—C61.400 (3)C30—H300.9500
C25—C241.389 (3)C49—H490.9500
C25—H250.9500C29—H290.9500
C13—C141.504 (3)C18—C171.376 (4)
C13—H13A0.9900C18—H180.9500
C13—H13B0.9900C17—C161.369 (4)
C33—C341.386 (4)C17—H170.9500
C33—C381.390 (4)C34—C351.395 (4)
C14—C191.388 (4)C34—H340.9500
C14—C151.389 (4)C16—H160.9500
C9—C101.387 (4)C4—C31.383 (4)
C9—H90.9500C4—H40.9500
C21—C221.390 (3)C3—H30.9500
C21—H210.9500C37—C361.375 (6)
C53—C541.393 (3)C37—H370.9500
C53—H530.9500C36—C351.368 (6)
C57—C561.385 (3)C36—H360.9500
C57—H570.9500C35—H350.9500
C54—C551.387 (4)
P2—Ag1—P3123.634 (19)C23—C22—C21120.4 (2)
P2—Ag1—P1123.727 (19)C23—C22—H22119.8
P3—Ag1—P1106.310 (19)C21—C22—H22119.8
C1—P1—C7104.31 (10)C30—C31—C26120.3 (2)
C1—P1—C13105.23 (10)C30—C31—H31119.8
C7—P1—C13105.80 (11)C26—C31—H31119.8
C1—P1—Ag1115.30 (8)C5—C6—C1119.8 (2)
C7—P1—Ag1110.64 (7)C5—C6—H6120.1
C13—P1—Ag1114.63 (7)C1—C6—H6120.1
C26—P2—C20105.56 (10)C47—C46—C45120.3 (2)
C26—P2—C32101.02 (10)C47—C46—H46119.8
C20—P2—C3299.02 (10)C45—C46—H46119.8
C26—P2—Ag1116.82 (7)C14—C19—C18120.5 (3)
C20—P2—Ag1112.65 (7)C14—C19—H19119.8
C32—P2—Ag1119.40 (8)C18—C19—H19119.8
C39—P3—C45104.83 (10)C45—C50—C49120.5 (2)
C39—P3—C51102.82 (10)C45—C50—H50119.7
C45—P3—C51102.03 (10)C49—C50—H50119.7
C39—P3—Ag1121.52 (7)C42—C41—C40120.2 (2)
C45—P3—Ag1112.88 (7)C42—C41—H41119.9
C51—P3—Ag1110.63 (8)C40—C41—H41119.9
O2—N1—O3122.1 (3)C4—C5—C6120.2 (3)
O2—N1—O1120.1 (3)C4—C5—H5119.9
O3—N1—O1117.8 (3)C6—C5—H5119.9
C8—C7—C12118.4 (2)C57—C56—C55120.0 (2)
C8—C7—P1120.24 (17)C57—C56—H56120.0
C12—C7—P1120.70 (17)C55—C56—H56120.0
C50—C45—C46118.8 (2)C1—C2—C3120.3 (3)
C50—C45—P3123.34 (17)C1—C2—H2119.9
C46—C45—P3117.77 (17)C3—C2—H2119.9
C57—C52—C53118.6 (2)C41—C42—C43119.9 (2)
C57—C52—C51119.4 (2)C41—C42—H42120.1
C53—C52—C51121.9 (2)C43—C42—H42120.1
C25—C20—C21118.3 (2)C56—C55—C54119.9 (2)
C25—C20—P2122.93 (17)C56—C55—H55120.1
C21—C20—P2118.70 (17)C54—C55—H55120.1
C40—C39—C44119.1 (2)C33—C38—C37121.0 (3)
C40—C39—P3119.10 (16)C33—C38—H38119.5
C44—C39—P3121.72 (17)C37—C38—H38119.5
C27—C26—C31118.8 (2)C10—C11—C12120.6 (2)
C27—C26—P2118.20 (17)C10—C11—H11119.7
C31—C26—P2122.59 (18)C12—C11—H11119.7
C39—C40—C41120.3 (2)C44—C43—C42120.2 (2)
C39—C40—H40119.8C44—C43—H43119.9
C41—C40—H40119.8C42—C43—H43119.9
C9—C8—C7120.9 (2)C11—C10—C9119.4 (2)
C9—C8—H8119.6C11—C10—H10120.3
C7—C8—H8119.6C9—C10—H10120.3
C11—C12—C7120.3 (2)C22—C23—C24119.7 (2)
C11—C12—H12119.8C22—C23—H23120.2
C7—C12—H12119.8C24—C23—H23120.2
C33—C32—P2116.14 (16)C29—C28—C27119.8 (3)
C33—C32—H32A108.3C29—C28—H28120.1
P2—C32—H32A108.3C27—C28—H28120.1
C33—C32—H32B108.3C47—C48—C49119.7 (2)
P2—C32—H32B108.3C47—C48—H48120.2
H32A—C32—H32B107.4C49—C48—H48120.2
C26—C27—C28120.5 (2)C23—C24—C25120.4 (2)
C26—C27—H27119.7C23—C24—H24119.8
C28—C27—H27119.7C25—C24—H24119.8
C52—C51—P3113.11 (15)C14—C15—C16120.6 (3)
C52—C51—H51A109.0C14—C15—H15119.7
P3—C51—H51A109.0C16—C15—H15119.7
C52—C51—H51B109.0C48—C47—C46120.7 (2)
P3—C51—H51B109.0C48—C47—H47119.6
H51A—C51—H51B107.8C46—C47—H47119.6
C2—C1—C6119.4 (2)C29—C30—C31120.2 (2)
C2—C1—P1117.77 (18)C29—C30—H30119.9
C6—C1—P1122.84 (18)C31—C30—H30119.9
C24—C25—C20120.7 (2)C48—C49—C50119.9 (2)
C24—C25—H25119.6C48—C49—H49120.0
C20—C25—H25119.6C50—C49—H49120.0
C14—C13—P1117.38 (16)C28—C29—C30120.3 (2)
C14—C13—H13A108.0C28—C29—H29119.9
P1—C13—H13A108.0C30—C29—H29119.9
C14—C13—H13B108.0C17—C18—C19120.4 (3)
P1—C13—H13B108.0C17—C18—H18119.8
H13A—C13—H13B107.2C19—C18—H18119.8
C34—C33—C38118.7 (2)C16—C17—C18119.6 (3)
C34—C33—C32121.7 (2)C16—C17—H17120.2
C38—C33—C32119.5 (2)C18—C17—H17120.2
C19—C14—C15118.4 (2)C33—C34—C35119.9 (3)
C19—C14—C13121.8 (2)C33—C34—H34120.0
C15—C14—C13119.8 (2)C35—C34—H34120.0
C10—C9—C8120.3 (2)C17—C16—C15120.5 (3)
C10—C9—H9119.8C17—C16—H16119.8
C8—C9—H9119.8C15—C16—H16119.8
C22—C21—C20120.4 (2)C3—C4—C5120.2 (2)
C22—C21—H21119.8C3—C4—H4119.9
C20—C21—H21119.8C5—C4—H4119.9
C54—C53—C52120.5 (2)C4—C3—C2120.1 (3)
C54—C53—H53119.8C4—C3—H3120.0
C52—C53—H53119.8C2—C3—H3120.0
C56—C57—C52121.0 (2)C36—C37—C38119.6 (3)
C56—C57—H57119.5C36—C37—H37120.2
C52—C57—H57119.5C38—C37—H37120.2
C55—C54—C53120.0 (2)C35—C36—C37120.1 (3)
C55—C54—H54120.0C35—C36—H36119.9
C53—C54—H54120.0C37—C36—H36119.9
C43—C44—C39120.3 (2)C36—C35—C34120.7 (3)
C43—C44—H44119.9C36—C35—H35119.6
C39—C44—H44119.9C34—C35—H35119.6
C1—P1—C7—C8150.85 (18)C25—C20—C21—C222.9 (3)
C13—P1—C7—C840.1 (2)P2—C20—C21—C22179.77 (18)
Ag1—P1—C7—C884.58 (18)C57—C52—C53—C540.9 (3)
C1—P1—C7—C1238.5 (2)C51—C52—C53—C54176.6 (2)
C13—P1—C7—C12149.21 (18)C53—C52—C57—C562.6 (3)
Ag1—P1—C7—C1286.08 (18)C51—C52—C57—C56175.0 (2)
C39—P3—C45—C5081.0 (2)C52—C53—C54—C551.7 (4)
C51—P3—C45—C5025.9 (2)C40—C39—C44—C431.4 (3)
Ag1—P3—C45—C50144.65 (18)P3—C39—C44—C43175.40 (18)
C39—P3—C45—C46102.23 (19)C20—C21—C22—C230.8 (4)
C51—P3—C45—C46150.84 (18)C27—C26—C31—C300.7 (4)
Ag1—P3—C45—C4632.1 (2)P2—C26—C31—C30172.94 (19)
C26—P2—C20—C2527.4 (2)C2—C1—C6—C52.2 (3)
C32—P2—C20—C25131.61 (19)P1—C1—C6—C5175.73 (18)
Ag1—P2—C20—C25101.16 (18)C50—C45—C46—C470.8 (4)
C26—P2—C20—C21155.82 (18)P3—C45—C46—C47176.11 (19)
C32—P2—C20—C2151.63 (19)C15—C14—C19—C180.3 (4)
Ag1—P2—C20—C2175.59 (18)C13—C14—C19—C18179.2 (2)
C45—P3—C39—C40128.35 (18)C46—C45—C50—C490.8 (4)
C51—P3—C39—C40125.31 (18)P3—C45—C50—C49175.9 (2)
Ag1—P3—C39—C401.0 (2)C39—C40—C41—C420.2 (4)
C45—P3—C39—C4454.8 (2)C1—C6—C5—C41.3 (4)
C51—P3—C39—C4451.5 (2)C52—C57—C56—C551.6 (4)
Ag1—P3—C39—C44175.81 (15)C6—C1—C2—C31.1 (4)
C20—P2—C26—C27146.77 (19)P1—C1—C2—C3176.9 (2)
C32—P2—C26—C27110.5 (2)C40—C41—C42—C431.0 (4)
Ag1—P2—C26—C2720.7 (2)C57—C56—C55—C541.0 (4)
C20—P2—C26—C3140.9 (2)C53—C54—C55—C562.7 (4)
C32—P2—C26—C3161.8 (2)C34—C33—C38—C372.2 (4)
Ag1—P2—C26—C31167.02 (17)C32—C33—C38—C37173.8 (2)
C44—C39—C40—C411.4 (3)C7—C12—C11—C100.2 (4)
P3—C39—C40—C41175.52 (18)C39—C44—C43—C420.2 (4)
C12—C7—C8—C91.2 (3)C41—C42—C43—C441.0 (4)
P1—C7—C8—C9172.02 (18)C12—C11—C10—C90.2 (4)
C8—C7—C12—C110.9 (3)C8—C9—C10—C110.0 (4)
P1—C7—C12—C11171.74 (18)C21—C22—C23—C241.2 (4)
C26—P2—C32—C3367.3 (2)C26—C27—C28—C291.9 (4)
C20—P2—C32—C33175.23 (19)C22—C23—C24—C251.0 (4)
Ag1—P2—C32—C3362.3 (2)C20—C25—C24—C231.1 (4)
C31—C26—C27—C281.2 (4)C19—C14—C15—C160.8 (4)
P2—C26—C27—C28171.4 (2)C13—C14—C15—C16178.6 (2)
C57—C52—C51—P3118.1 (2)C49—C48—C47—C461.0 (4)
C53—C52—C51—P364.4 (3)C45—C46—C47—C480.1 (4)
C39—P3—C51—C5278.03 (18)C26—C31—C30—C291.9 (4)
C45—P3—C51—C52173.49 (16)C47—C48—C49—C501.0 (4)
Ag1—P3—C51—C5253.16 (17)C45—C50—C49—C480.1 (4)
C7—P1—C1—C2144.10 (18)C27—C28—C29—C300.8 (4)
C13—P1—C1—C2104.76 (19)C31—C30—C29—C281.1 (4)
Ag1—P1—C1—C222.6 (2)C14—C19—C18—C170.3 (4)
C7—P1—C1—C633.9 (2)C19—C18—C17—C160.2 (4)
C13—P1—C1—C677.3 (2)C38—C33—C34—C351.5 (4)
Ag1—P1—C1—C6155.40 (17)C32—C33—C34—C35174.5 (3)
C21—C20—C25—C243.0 (3)C18—C17—C16—C150.4 (4)
P2—C20—C25—C24179.79 (19)C14—C15—C16—C170.9 (4)
C1—P1—C13—C1440.4 (2)C6—C5—C4—C30.7 (4)
C7—P1—C13—C1469.7 (2)C5—C4—C3—C21.8 (4)
Ag1—P1—C13—C14168.14 (16)C1—C2—C3—C40.9 (4)
P2—C32—C33—C3481.8 (3)C33—C38—C37—C361.4 (4)
P2—C32—C33—C38102.3 (2)C38—C37—C36—C350.3 (5)
P1—C13—C14—C1984.4 (3)C37—C36—C35—C341.0 (5)
P1—C13—C14—C1596.2 (2)C33—C34—C35—C360.1 (5)
C7—C8—C9—C100.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O20.952.513.4612 (4)175
C8—H8···O3i0.952.333.102 (4)139
C28—H28···O3i0.952.303.096 (4)141
C46—H46···O10.952.443.231 (4)141
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors would like to acknowledge the University of Johannesburg, the University of Pretoria and the National Research Foundation for funding.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.  Web of Science CrossRef CAS Google Scholar
First citationPotgieter, K., Engelbrecht, Z., Naganagowda, G., Cronjé, M. J. & Meijboom, R. (2017). J. Coord. Chem. 70, 2644–2658.  Web of Science CSD CrossRef CAS Google Scholar
First citationPotgieter, K., Malan, F. P. & Meijboom, R. (2022). IUCrData, 7, x220772.  Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146