metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Nitrito-κ2O,O′)bis­­[tris­­(4-methyl­phen­yl)phosphane-κP]silver(I)

crossmark logo

aDepartment of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa, and bDepartment of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 September 2022; accepted 30 November 2022; online 6 December 2022)

The mol­ecular structure of the title compound, [Ag(NO2)(C21H21P)2], exhibits a pseudo-tetra­hedral coordination around the central AgI atom. The compound crystallizes with one mol­ecule in the asymmetric unit in the monoclinic space group P21/n with a rather long b axis [33.8752 (2) Å]. Weak C—H⋯O and C—H⋯N inter­actions consolidate the crystal packing. The nitrite-O atoms each occupy a single position in the coordination geometry.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Silver is oligodynamic as a result of its excellent anti­microbial, anti­bacterial and anti­cancer properties (Meijboom et al., 2009[Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.]). Continuous development of phosphine silver(I) complexes has resulted in this class of compounds being evaluated against numerous cancer cell lines (Potgieter et al., 2016[Potgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443-451.]). In this context, we report another phosphine silver(I) complex with nitrite as a co-ligand.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The asymmetric unit contains one complex mol­ecule, featuring a central AgI atom, two tris-p-tolyl­phosphine ligands, and one chelating nitrito ligand. Minor differences in the two Ag—P bond lengths are observed [Ag1—P1 = 2.4287 (5) Å; Ag1—P2 = 2.4570 (5) Å]. The nitrito ligand coordinates in a near symmetric fashion with similar bond lengths [Ag1—O1 = 2.4125 (19) Å; Ag1—O2 = 2.4227 (16) Å; N1—O1 = 1.249 (3) Å; N1—O2 = 1.233 (3) Å]. The pseudo-tetra­hedral coordination environment exhibited around the AgI atom stems from the three coordinating ligands, with corresponding bond angles of P1—Ag1—P2 [124.597 (16)°], P1—Ag1—O1 [116.26 (6)°], P1—Ag1—O2 [125.62 (4)°], P2—Ag1—O1 [107.68 (7)°], and P2—Ag1—O2 [107.83 (4)°]. The bidentate coordination of the nitrito ligand is underpinned by the O1—Ag1—O2 bite angle of 50.80 (7)°. The ipso-aryl carbon atoms of each of the phosphine ligands overlap in a near-staggered fashion when viewed down the P1—Ag1—P2 axis, presumably due to the steric effect of the bulky phosphine ligands. Corresponding torsion angles are P2—Ag1—P1—C1 = 9.90 (7)°, P2—Ag1—P1—C8 = −108.02 (8)°, P2—Ag1—P1—C15 = 128.73 (9)°, P1—Ag1—P2—C22 = −172.57 (7)°, P1—Ag1—P2—C36 = 70.75 (8)°, and P1—Ag1—P2—C29 = −47.35 (7)°. All of the aforementioned bond lengths and angles closely correspond to those of related AgI phosphine complexes (Meijboom et al., 2009[Meijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325-342.]).

[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

The complex packs in three dimensions as ribbons of isolated mol­ecular complexes. The mol­ecular packing is consolidated through weak inter­molecular C—H⋯O and C—H⋯N inter­actions (Fig. 2[link], Table 1[link]) involving methyl donor groups and the N and O atom of the nitrito ligand as acceptor atoms; π-stacking inter­actions are not observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28B⋯O2i 0.98 2.34 3.292 (3) 165
C42—H42B⋯N1ii 0.98 2.52 3.491 (4) 170
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x, y, z-1].
[Figure 2]
Figure 2
Packing diagram viewed along the a axis indicating two non-classical C—H⋯N and C—H⋯O hydrogen bonds as cyan dotted lines.

Synthesis and crystallization

Tris-p-tolyl­phosphine (2 mmol) and silver nitrite (1 mmol) were dissolved separately in aceto­nitrile (10 ml). The two solutions were carefully mixed together and heated to 353 K for approximately 2 h. The solution was left to crystallize, and small clear colourless crystals were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ag(NO2)(C21H21P)2]
Mr 762.57
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 10.8253 (1), 33.8752 (2), 11.3921 (1)
β (°) 116.880 (1)
V3) 3726.22 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.43
Crystal size (mm) 0.21 × 0.15 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.])
Tmin, Tmax 0.524, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 46007, 7335, 7025
Rint 0.037
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.03
No. of reflections 7335
No. of parameters 439
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.55
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

(Nitrito-κ2O,O')bis[tris(4-methylphenyl)phosphane-κP]silver(I) top
Crystal data top
[Ag(NO2)(C21H21P)2]F(000) = 1576
Mr = 762.57Dx = 1.359 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 10.8253 (1) ÅCell parameters from 37839 reflections
b = 33.8752 (2) Åθ = 2.6–78.9°
c = 11.3921 (1) ŵ = 5.43 mm1
β = 116.880 (1)°T = 150 K
V = 3726.22 (6) Å3Block, colourless
Z = 40.21 × 0.15 × 0.12 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
7335 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source7025 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.0000 pixels mm-1θmax = 72.1°, θmin = 2.6°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 3341
Tmin = 0.524, Tmax = 1.000l = 1314
46007 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0325P)2 + 2.634P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
7335 reflectionsΔρmax = 0.45 e Å3
439 parametersΔρmin = 0.55 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.65533 (2)0.63978 (2)0.42841 (2)0.02180 (5)
P10.77595 (5)0.57779 (2)0.44820 (5)0.02163 (10)
P20.65036 (5)0.69483 (2)0.28591 (4)0.01930 (10)
O20.57699 (19)0.66458 (5)0.58283 (16)0.0448 (4)
C290.81563 (18)0.70936 (5)0.29381 (18)0.0199 (4)
C21.0300 (2)0.57988 (6)0.43210 (18)0.0244 (4)
H21.07440.57260.52240.029*
C250.44352 (19)0.80859 (5)0.34053 (19)0.0235 (4)
C10.8860 (2)0.58141 (5)0.36531 (18)0.0220 (4)
C360.54431 (19)0.68106 (5)0.11468 (18)0.0210 (4)
C260.52576 (19)0.78451 (6)0.44557 (19)0.0244 (4)
H260.53960.79120.53160.029*
C220.57132 (18)0.74079 (5)0.30246 (18)0.0204 (4)
C370.5988 (2)0.67381 (6)0.02701 (19)0.0252 (4)
H370.69540.67680.05530.030*
C270.58811 (19)0.75088 (6)0.42752 (18)0.0228 (4)
H270.64260.73460.50070.027*
C150.8942 (2)0.55952 (6)0.61134 (18)0.0228 (4)
C230.49327 (19)0.76552 (5)0.19701 (18)0.0223 (4)
H230.48330.75960.11170.027*
C31.1093 (2)0.58891 (6)0.3678 (2)0.0281 (4)
H31.20750.58820.41530.034*
C80.6598 (2)0.53656 (6)0.37059 (19)0.0255 (4)
C240.42994 (19)0.79888 (5)0.21635 (19)0.0245 (4)
H240.37640.81540.14350.029*
C400.3180 (2)0.66502 (6)0.0583 (2)0.0295 (4)
H400.22120.66240.08710.035*
C390.3715 (2)0.65788 (6)0.14628 (19)0.0257 (4)
C300.93294 (19)0.68737 (6)0.37074 (18)0.0235 (4)
H300.92620.66560.42020.028*
C340.8276 (2)0.74140 (6)0.2224 (2)0.0283 (4)
H340.74840.75680.16990.034*
O10.4291 (2)0.63526 (8)0.4201 (2)0.0757 (7)
C380.5131 (2)0.66231 (6)0.10136 (19)0.0279 (4)
H380.55220.65740.15970.033*
C50.9032 (2)0.59927 (6)0.16815 (19)0.0288 (4)
H50.85890.60500.07670.035*
C311.0598 (2)0.69698 (6)0.37583 (19)0.0285 (4)
H311.13910.68160.42820.034*
C41.0474 (2)0.59896 (6)0.2356 (2)0.0277 (4)
C160.9020 (2)0.52008 (6)0.6477 (2)0.0289 (4)
H160.83970.50150.58770.035*
C90.5328 (2)0.53614 (6)0.3729 (2)0.0296 (4)
H90.50540.55820.40720.035*
C200.9859 (2)0.58611 (6)0.7025 (2)0.0298 (4)
H200.98010.61340.68100.036*
C410.4026 (2)0.67585 (6)0.0705 (2)0.0286 (4)
H410.36370.67980.12950.034*
N10.4549 (3)0.65427 (8)0.5226 (3)0.0564 (6)
C60.8232 (2)0.59131 (6)0.23182 (19)0.0270 (4)
H60.72510.59260.18450.032*
C321.0722 (2)0.72882 (6)0.30523 (19)0.0276 (4)
C330.9545 (2)0.75080 (6)0.2280 (2)0.0302 (4)
H330.96140.77250.17860.036*
C280.3653 (2)0.84282 (6)0.3593 (2)0.0340 (5)
H28A0.34990.83800.43650.051*
H28B0.27590.84560.28110.051*
H28C0.41930.86710.37250.051*
C191.0855 (2)0.57326 (7)0.8241 (2)0.0352 (5)
H191.14910.59170.88370.042*
C170.9994 (2)0.50771 (6)0.7705 (2)0.0349 (5)
H171.00190.48070.79410.042*
C181.0939 (2)0.53389 (7)0.8601 (2)0.0353 (5)
C100.4457 (2)0.50374 (7)0.3256 (2)0.0355 (5)
H100.35950.50380.32870.043*
C130.6959 (2)0.50441 (6)0.3161 (2)0.0363 (5)
H130.78140.50450.31160.044*
C110.4816 (2)0.47134 (7)0.2740 (2)0.0381 (5)
C420.2782 (2)0.64668 (7)0.2869 (2)0.0362 (5)
H42A0.25730.61840.29180.054*
H42B0.32480.65250.34140.054*
H42C0.19200.66180.31910.054*
C120.6074 (3)0.47235 (7)0.2686 (3)0.0424 (6)
H120.63320.45060.23160.051*
C351.2110 (2)0.73985 (9)0.3151 (3)0.0476 (6)
H35A1.26940.75080.40250.071*
H35B1.19870.75960.24780.071*
H35C1.25550.71630.30130.071*
C71.1342 (3)0.60951 (8)0.1673 (2)0.0437 (6)
H7A1.13570.63820.15810.066*
H7B1.09440.59730.07990.066*
H7C1.22890.59980.21940.066*
C211.2034 (3)0.51936 (9)0.9912 (2)0.0580 (8)
H21A1.27330.54001.03270.087*
H21B1.24770.49570.97790.087*
H21C1.16050.51291.04830.087*
C140.3882 (3)0.43554 (8)0.2267 (3)0.0555 (7)
H14A0.42290.41500.29440.083*
H14B0.38730.42550.14560.083*
H14C0.29400.44290.20950.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02209 (8)0.02094 (8)0.02489 (8)0.00118 (5)0.01282 (6)0.00266 (5)
P10.0233 (2)0.0191 (2)0.0242 (2)0.00116 (17)0.01238 (19)0.00274 (18)
P20.0196 (2)0.0189 (2)0.0222 (2)0.00115 (17)0.01191 (18)0.00183 (17)
O20.0480 (10)0.0589 (11)0.0329 (8)0.0042 (8)0.0229 (8)0.0024 (8)
C290.0199 (9)0.0200 (9)0.0224 (9)0.0014 (7)0.0118 (7)0.0016 (7)
C20.0266 (10)0.0256 (9)0.0213 (9)0.0021 (8)0.0111 (8)0.0004 (7)
C250.0188 (9)0.0212 (9)0.0323 (10)0.0035 (7)0.0132 (8)0.0059 (8)
C10.0275 (10)0.0165 (8)0.0245 (9)0.0008 (7)0.0138 (8)0.0010 (7)
C360.0220 (9)0.0174 (8)0.0257 (9)0.0015 (7)0.0127 (7)0.0003 (7)
C260.0240 (9)0.0279 (10)0.0244 (9)0.0057 (8)0.0136 (8)0.0070 (8)
C220.0191 (8)0.0200 (8)0.0246 (9)0.0016 (7)0.0122 (7)0.0004 (7)
C370.0200 (9)0.0309 (10)0.0266 (9)0.0010 (8)0.0122 (8)0.0008 (8)
C270.0208 (9)0.0252 (9)0.0217 (9)0.0007 (7)0.0090 (7)0.0013 (7)
C150.0266 (9)0.0226 (9)0.0242 (9)0.0033 (7)0.0159 (8)0.0027 (7)
C230.0232 (9)0.0227 (9)0.0218 (9)0.0002 (7)0.0110 (7)0.0012 (7)
C30.0244 (10)0.0321 (10)0.0294 (10)0.0012 (8)0.0135 (8)0.0037 (8)
C80.0257 (10)0.0237 (9)0.0247 (9)0.0002 (8)0.0092 (8)0.0050 (8)
C240.0215 (9)0.0219 (9)0.0268 (9)0.0006 (7)0.0080 (8)0.0012 (8)
C400.0211 (9)0.0313 (10)0.0376 (11)0.0043 (8)0.0146 (8)0.0090 (9)
C390.0263 (10)0.0223 (9)0.0271 (10)0.0007 (8)0.0109 (8)0.0000 (8)
C300.0240 (9)0.0236 (9)0.0221 (9)0.0014 (7)0.0097 (7)0.0007 (7)
C340.0275 (10)0.0262 (10)0.0335 (10)0.0028 (8)0.0158 (9)0.0065 (8)
O10.0377 (11)0.115 (2)0.0844 (16)0.0280 (11)0.0367 (11)0.0450 (14)
C380.0269 (10)0.0365 (11)0.0251 (9)0.0011 (8)0.0161 (8)0.0007 (8)
C50.0337 (11)0.0295 (10)0.0233 (9)0.0013 (8)0.0129 (8)0.0045 (8)
C310.0196 (9)0.0351 (11)0.0270 (10)0.0014 (8)0.0072 (8)0.0012 (8)
C40.0323 (10)0.0267 (10)0.0288 (10)0.0008 (8)0.0181 (9)0.0005 (8)
C160.0308 (10)0.0232 (10)0.0322 (10)0.0007 (8)0.0136 (9)0.0020 (8)
C90.0288 (10)0.0321 (11)0.0273 (10)0.0008 (8)0.0122 (8)0.0022 (8)
C200.0424 (12)0.0231 (9)0.0270 (10)0.0003 (9)0.0184 (9)0.0008 (8)
C410.0257 (10)0.0333 (11)0.0346 (11)0.0049 (8)0.0204 (9)0.0093 (9)
N10.0489 (14)0.0755 (16)0.0647 (15)0.0005 (12)0.0433 (13)0.0034 (13)
C60.0251 (10)0.0264 (10)0.0278 (10)0.0028 (8)0.0105 (8)0.0047 (8)
C320.0242 (10)0.0360 (11)0.0248 (9)0.0096 (8)0.0131 (8)0.0076 (8)
C330.0334 (11)0.0292 (10)0.0325 (10)0.0077 (8)0.0190 (9)0.0020 (8)
C280.0311 (11)0.0299 (11)0.0424 (12)0.0019 (9)0.0178 (10)0.0084 (9)
C190.0447 (13)0.0350 (11)0.0239 (10)0.0020 (10)0.0137 (9)0.0046 (9)
C170.0446 (13)0.0241 (10)0.0355 (11)0.0077 (9)0.0177 (10)0.0082 (9)
C180.0436 (13)0.0370 (12)0.0246 (10)0.0112 (10)0.0148 (9)0.0044 (9)
C100.0299 (11)0.0410 (12)0.0326 (11)0.0093 (9)0.0113 (9)0.0036 (9)
C130.0369 (12)0.0287 (11)0.0441 (13)0.0004 (9)0.0191 (10)0.0040 (9)
C110.0394 (12)0.0309 (11)0.0314 (11)0.0084 (9)0.0050 (9)0.0056 (9)
C420.0310 (11)0.0465 (13)0.0287 (11)0.0027 (10)0.0113 (9)0.0041 (9)
C120.0467 (14)0.0279 (11)0.0485 (14)0.0021 (10)0.0178 (11)0.0062 (10)
C350.0282 (12)0.0679 (17)0.0473 (14)0.0169 (11)0.0176 (11)0.0008 (12)
C70.0408 (13)0.0611 (16)0.0385 (12)0.0009 (12)0.0261 (11)0.0052 (11)
C210.0705 (19)0.0537 (16)0.0314 (13)0.0160 (14)0.0069 (13)0.0056 (12)
C140.0536 (16)0.0370 (13)0.0582 (16)0.0176 (12)0.0096 (13)0.0002 (12)
Geometric parameters (Å, º) top
Ag1—O12.4125 (19)C38—H380.9500
Ag1—O22.4227 (16)C5—C61.384 (3)
Ag1—P12.4287 (5)C5—C41.394 (3)
Ag1—P22.4570 (5)C5—H50.9500
P1—C81.819 (2)C31—C321.388 (3)
P1—C151.8234 (19)C31—H310.9500
P1—C11.8282 (19)C4—C71.510 (3)
P2—C291.8182 (18)C16—C171.382 (3)
P2—C361.8209 (19)C16—H160.9500
P2—C221.8269 (19)C9—C101.387 (3)
O1—N11.249 (3)C9—H90.9500
O2—N11.233 (3)C20—C191.386 (3)
C29—C301.389 (3)C20—H200.9500
C29—C341.397 (3)C41—H410.9500
C2—C31.392 (3)C6—H60.9500
C2—C11.392 (3)C32—C331.392 (3)
C2—H20.9500C32—C351.503 (3)
C25—C261.388 (3)C33—H330.9500
C25—C241.394 (3)C28—H28A0.9800
C25—C281.507 (3)C28—H28B0.9800
C1—C61.397 (3)C28—H28C0.9800
C36—C371.392 (3)C19—C181.386 (3)
C36—C411.392 (3)C19—H190.9500
C26—C271.386 (3)C17—C181.390 (3)
C26—H260.9500C17—H170.9500
C22—C231.393 (3)C18—C211.510 (3)
C22—C271.395 (3)C10—C111.381 (3)
C37—C381.387 (3)C10—H100.9500
C37—H370.9500C13—C121.386 (3)
C27—H270.9500C13—H130.9500
C15—C161.390 (3)C11—C121.391 (4)
C15—C201.394 (3)C11—C141.513 (3)
C23—C241.390 (3)C42—H42A0.9800
C23—H230.9500C42—H42B0.9800
C3—C41.385 (3)C42—H42C0.9800
C3—H30.9500C12—H120.9500
C8—C91.387 (3)C35—H35A0.9800
C8—C131.394 (3)C35—H35B0.9800
C24—H240.9500C35—H35C0.9800
C40—C411.382 (3)C7—H7A0.9800
C40—C391.387 (3)C7—H7B0.9800
C40—H400.9500C7—H7C0.9800
C39—C381.388 (3)C21—H21A0.9800
C39—C421.506 (3)C21—H21B0.9800
C30—C311.387 (3)C21—H21C0.9800
C30—H300.9500C14—H14A0.9800
C34—C331.383 (3)C14—H14B0.9800
C34—H340.9500C14—H14C0.9800
O1—N11.249 (3)
O1—Ag1—O250.80 (7)C3—C4—C5118.19 (18)
O1—Ag1—P1116.26 (6)C3—C4—C7120.69 (19)
O2—Ag1—P1125.62 (4)C5—C4—C7121.11 (19)
O1—Ag1—P2107.68 (7)C17—C16—C15120.6 (2)
O2—Ag1—P2107.83 (4)C17—C16—H16119.7
P1—Ag1—P2124.597 (16)C15—C16—H16119.7
C8—P1—C15104.32 (9)C8—C9—C10120.4 (2)
C8—P1—C1105.61 (9)C8—C9—H9119.8
C15—P1—C1103.18 (9)C10—C9—H9119.8
C8—P1—Ag1113.22 (7)C19—C20—C15120.78 (19)
C15—P1—Ag1119.24 (6)C19—C20—H20119.6
C1—P1—Ag1110.03 (6)C15—C20—H20119.6
C29—P2—C36104.60 (8)C40—C41—C36120.68 (18)
C29—P2—C22105.10 (8)C40—C41—H41119.7
C36—P2—C22103.35 (8)C36—C41—H41119.7
C29—P2—Ag1116.47 (6)O2—N1—O1113.4 (2)
C36—P2—Ag1109.17 (6)C5—C6—C1120.37 (19)
C22—P2—Ag1116.74 (6)C5—C6—H6119.8
N1—O2—Ag197.86 (14)C1—C6—H6119.8
C30—C29—C34119.00 (17)C31—C32—C33118.79 (18)
C30—C29—P2118.98 (14)C31—C32—C35120.3 (2)
C34—C29—P2122.00 (14)C33—C32—C35120.9 (2)
C3—C2—C1120.60 (18)C34—C33—C32120.79 (19)
C3—C2—H2119.7C34—C33—H33119.6
C1—C2—H2119.7C32—C33—H33119.6
C26—C25—C24117.94 (17)C25—C28—H28A109.5
C26—C25—C28120.83 (18)C25—C28—H28B109.5
C24—C25—C28121.15 (18)H28A—C28—H28B109.5
C2—C1—C6118.49 (17)C25—C28—H28C109.5
C2—C1—P1123.02 (14)H28A—C28—H28C109.5
C6—C1—P1117.95 (15)H28B—C28—H28C109.5
C37—C36—C41118.24 (17)C20—C19—C18121.0 (2)
C37—C36—P2123.18 (14)C20—C19—H19119.5
C41—C36—P2118.52 (14)C18—C19—H19119.5
C27—C26—C25121.38 (17)C16—C17—C18121.4 (2)
C27—C26—H26119.3C16—C17—H17119.3
C25—C26—H26119.3C18—C17—H17119.3
C23—C22—C27118.79 (17)C19—C18—C17117.9 (2)
C23—C22—P2123.59 (14)C19—C18—C21121.6 (2)
C27—C22—P2117.61 (14)C17—C18—C21120.5 (2)
C38—C37—C36120.51 (18)C11—C10—C9121.4 (2)
C38—C37—H37119.7C11—C10—H10119.3
C36—C37—H37119.7C9—C10—H10119.3
C26—C27—C22120.37 (17)C12—C13—C8120.2 (2)
C26—C27—H27119.8C12—C13—H13119.9
C22—C27—H27119.8C8—C13—H13119.9
C16—C15—C20118.18 (18)C10—C11—C12117.9 (2)
C16—C15—P1123.38 (15)C10—C11—C14121.1 (2)
C20—C15—P1118.37 (14)C12—C11—C14120.9 (2)
C24—C23—C22120.16 (17)C39—C42—H42A109.5
C24—C23—H23119.9C39—C42—H42B109.5
C22—C23—H23119.9H42A—C42—H42B109.5
C4—C3—C2121.01 (19)C39—C42—H42C109.5
C4—C3—H3119.5H42A—C42—H42C109.5
C2—C3—H3119.5H42B—C42—H42C109.5
C9—C8—C13118.70 (19)C13—C12—C11121.3 (2)
C9—C8—P1118.16 (15)C13—C12—H12119.4
C13—C8—P1123.03 (16)C11—C12—H12119.4
C23—C24—C25121.30 (18)C32—C35—H35A109.5
C23—C24—H24119.4C32—C35—H35B109.5
C25—C24—H24119.4H35A—C35—H35B109.5
C41—C40—C39121.37 (18)C32—C35—H35C109.5
C41—C40—H40119.3H35A—C35—H35C109.5
C39—C40—H40119.3H35B—C35—H35C109.5
C40—C39—C38117.86 (18)C4—C7—H7A109.5
C40—C39—C42120.99 (19)C4—C7—H7B109.5
C38—C39—C42121.14 (18)H7A—C7—H7B109.5
C31—C30—C29120.40 (18)C4—C7—H7C109.5
C31—C30—H30119.8H7A—C7—H7C109.5
C29—C30—H30119.8H7B—C7—H7C109.5
C33—C34—C29120.26 (19)C18—C21—H21A109.5
C33—C34—H34119.9C18—C21—H21B109.5
C29—C34—H34119.9H21A—C21—H21B109.5
N1—O1—Ag197.87 (15)C18—C21—H21C109.5
C37—C38—C39121.31 (18)H21A—C21—H21C109.5
C37—C38—H38119.3H21B—C21—H21C109.5
C39—C38—H38119.3C11—C14—H14A109.5
C6—C5—C4121.28 (18)C11—C14—H14B109.5
C6—C5—H5119.4H14A—C14—H14B109.5
C4—C5—H5119.4C11—C14—H14C109.5
C30—C31—C32120.75 (19)H14A—C14—H14C109.5
C30—C31—H31119.6H14B—C14—H14C109.5
C32—C31—H31119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28B···O2i0.982.343.292 (3)165
C42—H42B···N1ii0.982.523.491 (4)170
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x, y, z1.
 

Acknowledgements

We greatly acknowledge the National Research Foundation (NRF, SA), the University of Pretoria and the University of Johannesburg for funding provided.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMeijboom, R., Bowen, R. J. & Berners-Price, S. J. (2009). Coord. Chem. Rev. 253, 325–342.  Web of Science CrossRef CAS Google Scholar
First citationPotgieter, K., Cronjé, M. J. & Meijboom, R. (2016). Inorg. Chim. Acta, 453, 443–451.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146