metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Diaceto­nitrile­(2,2′-bi­pyridine-κ2N,N′)palladium(II) bis­­(tri­fluoro­methane­sulfonate)

crossmark logo

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 29 November 2022; accepted 30 November 2022; online 6 December 2022)

In the title complex, [Pd(C10H8N2)(CH3CN)2](CF3SO3)2 or [Pd(bipy)(CH3CN)2](CF3SO3)2, the palladium(II) ion is fourfold coordinated by two aceto­nitrile mol­ecules and a bidentate 2,2′-bi­pyridine ligand in a distorted square-planar geometry.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Palladium(II) complexes of 2,2′-bi­pyridine continue to be investigated due to their application in catalysis (Kitanosono et al., 2021[Kitanosono, T., Hisada, T., Yamashita, Y. & Kobayashi, S. (2021). Angew. Chem. 133, 3449-3453.]) and remarkable anti­proliferative activity against cancer cells (Fatahian-Nezhad et al., 2021[Fatahian-Nezhad, M., Alizadeh, R., Sadeghi Mohammadi, S., Tohidlou, M., Naderi-Manesh, H. & Amani, V. (2021). Inorg. Chim. Acta, 514, 119953.]; Tabrizi et al., 2020[Tabrizi, L., Zouchoune, B. & Zaiter, A. (2020). Inorg. Chim. Acta, 499, 119211.]; Icsel et al., 2015[Icsel, C., Yilmaz, V. T., Kaya, Y., Samli, H., Harrison, W. T. & Buyukgungor, O. (2015). Dalton Trans. 44, 6880-6895.]). Our research group has been exploring the synthesis of palladium(II) and copper(II) complexes containing various ancillary ligands. With that in mind, herein, we report the synthesis and structure of the title complex, an excellent starting material for synthesizing novel palladium complexes.

The asymmetric unit contains only half of the title complex due to the presence of a vertical plane of symmetry along the a axis that bis­ects the bond between the pyridine rings, C1—C1i, and the Pd1, O1, F1, O3, and F4 atoms. The title complex exhibits a PdII ion in a distorted square-planar coordination environment defined by two N atoms of the bidentate 2,2′-bi­pyridine ligand and one nitro­gen from each of the two coordinated aceto­nitrile mol­ecules. Two tri­fluoro­methane­sulfonate ions sit outside the coordination sphere of the title complex balancing the charge of the metal (Fig. 1[link]). The Pd—N1 and Pd—N2 bond lengths of 1.999 (2) Å and 2.012 (3) Å, respectively, are in good agreement with the only comparable palladium(II) 2,2′-bi­pyridine complex, a tetra­fluoro­borate salt, (1.993 and 2.004 Å) currently available in the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; version 5.43 with update of September 2022; refcode WEFCAL; Nesper et al., 1993[Nesper, R., Pregosin, P. S., Püntener, K. & Wörle, M. (1993). Helv. Chim. Acta, 76, 2239-2249.]). The N—Pd—N angles also correlate well with the previously referenced complex, with differences of less than one degree in all cases. All relevant bonds and angles are presented in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 1.999 (2) Pd1—N2 2.012 (3)
       
N1i—Pd1—N1 81.82 (14) N1—Pd1—N2 176.99 (9)
N1—Pd1—N2i 95.18 (11) N2—Pd1—N2i 87.83 (14)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity. Symmetry code: (i) x, −y + [{3\over 2}], z.

In the molecular packing of the title complex, the palladium(II) complex ions align in layers along the b-axis orienting their coordinated aceto­nitrile toward the same direction, with the tri­fluoro­methane­sulfonate ions occupying the gaps between layers, as shown in Fig. 2[link]. Meanwhile, adjacent layers alternate the orientation of the coordinated aceto­nitrile mol­ecules. No directional supra­mol­ecular inter­actions are present in the crystal packing of the title compound.

[Figure 2]
Figure 2
Perspective view of the packing structure of the title complex; H atoms are omitted for clarity.

Synthesis and crystallization

Silver tri­fluoro­methane­sulfonate (0.154 g, 0.600 mmol) was added to a 40.0 ml aceto­nitrile suspension of (2,2′-bi­pyridine)­dichloro­palladium(II) (0.100 g, 0.300 mmol). The resulting solution was filtrated using a 0.45 mm PTFE syringe filter and heated at 323 K to reduce the volume to 10.0 ml. Crystals suitable for X-ray diffraction were obtained by vapor diffusion of diethyl ether over the saturated aceto­nitrile solution of the title complex at 277 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Pd(C10H8N2)(C2H3N)2](CF3O3S)2
Mr 642.83
Crystal system, space group Monoclinic, P21/m
Temperature (K) 100
a, b, c (Å) 9.2732 (3), 12.5307 (2), 10.0983 (3)
β (°) 110.627 (3)
V3) 1098.20 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 9.49
Crystal size (mm) 0.15 × 0.13 × 0.09
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.746, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10720, 2318, 2234
Rint 0.048
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.093, 1.09
No. of reflections 2318
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.93
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Diacetonitrile(2,2'-bipyridine-κ2N,N')palladium(II) bis(trifluoromethanesulfonate) top
Crystal data top
[Pd(C10H8N2)(C2H3N)2](CF3O3S)2F(000) = 636
Mr = 642.83Dx = 1.944 Mg m3
Monoclinic, P121/m1Cu Kα radiation, λ = 1.54184 Å
a = 9.2732 (3) ÅCell parameters from 5466 reflections
b = 12.5307 (2) Åθ = 4.7–75.7°
c = 10.0983 (3) ŵ = 9.49 mm1
β = 110.627 (3)°T = 100 K
V = 1098.20 (6) Å3Block, clear colourless
Z = 20.15 × 0.13 × 0.09 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2318 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2234 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.048
Detector resolution: 10.0000 pixels mm-1θmax = 76.3°, θmin = 4.7°
ω scansh = 1111
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2020)
k = 1115
Tmin = 0.746, Tmax = 1.000l = 1212
10720 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.5328P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.75 e Å3
2318 reflectionsΔρmin = 0.93 e Å3
174 parametersExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00084 (18)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.45413 (3)0.7500000.68769 (3)0.01791 (13)
S10.95842 (11)0.7500000.87020 (10)0.0194 (2)
S20.58391 (11)0.7500000.25835 (10)0.0222 (2)
F11.2500 (3)0.7500000.8920 (3)0.0318 (6)
F21.0991 (2)0.66371 (16)0.7117 (2)0.0362 (5)
F40.8145 (3)0.7500000.1642 (3)0.0343 (6)
F30.8599 (2)0.83614 (19)0.3585 (2)0.0455 (5)
O20.9882 (2)0.84692 (17)0.9529 (2)0.0240 (4)
O10.8188 (3)0.7500000.7478 (3)0.0250 (6)
O30.5802 (4)0.7500000.3998 (3)0.0276 (6)
O40.5311 (3)0.65247 (18)0.1802 (2)0.0332 (5)
N10.3443 (3)0.64555 (19)0.5361 (2)0.0201 (5)
N20.5598 (3)0.8614 (2)0.8330 (3)0.0220 (5)
C10.2630 (3)0.6910 (2)0.4102 (3)0.0192 (5)
C50.3494 (3)0.5388 (2)0.5486 (3)0.0218 (6)
H50.4053110.5081520.6354960.026*
C40.2733 (4)0.4734 (2)0.4351 (3)0.0254 (6)
H40.2777370.3996080.4453450.030*
C60.6305 (3)0.9177 (2)0.9187 (3)0.0219 (6)
C20.1852 (3)0.6298 (2)0.2937 (3)0.0241 (6)
H20.1299530.6620050.2077400.029*
C30.1905 (3)0.5194 (2)0.3063 (3)0.0248 (6)
H30.1387640.4767420.2286810.030*
C70.7208 (4)0.9927 (2)1.0251 (3)0.0255 (6)
H7A0.6888761.0642120.9943670.038*
H7B0.8279410.9843721.0385910.038*
H7C0.7052700.9791901.1126780.038*
C90.7904 (5)0.7500000.2872 (5)0.0285 (9)
C81.1090 (5)0.7500000.7920 (5)0.0265 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02209 (19)0.01259 (19)0.01685 (19)0.0000.00414 (13)0.000
S10.0234 (5)0.0146 (5)0.0189 (4)0.0000.0057 (4)0.000
S20.0243 (5)0.0181 (5)0.0229 (5)0.0000.0067 (4)0.000
F10.0236 (13)0.0283 (14)0.0400 (14)0.0000.0067 (11)0.000
F20.0426 (11)0.0326 (10)0.0392 (11)0.0031 (9)0.0217 (9)0.0121 (8)
F40.0387 (15)0.0366 (15)0.0341 (14)0.0000.0210 (12)0.000
F30.0350 (11)0.0549 (13)0.0496 (13)0.0183 (10)0.0187 (10)0.0220 (11)
O20.0303 (11)0.0174 (10)0.0225 (10)0.0003 (8)0.0069 (8)0.0030 (8)
O10.0236 (14)0.0221 (15)0.0248 (14)0.0000.0030 (11)0.000
O30.0294 (16)0.0280 (16)0.0267 (15)0.0000.0113 (13)0.000
O40.0362 (12)0.0276 (12)0.0357 (12)0.0069 (10)0.0127 (10)0.0090 (9)
N10.0230 (11)0.0161 (11)0.0202 (11)0.0015 (9)0.0065 (9)0.0007 (9)
N20.0247 (12)0.0168 (12)0.0235 (12)0.0027 (10)0.0070 (10)0.0021 (10)
C10.0212 (13)0.0152 (14)0.0207 (13)0.0006 (11)0.0070 (11)0.0001 (10)
C50.0257 (14)0.0171 (14)0.0209 (13)0.0009 (11)0.0061 (11)0.0011 (11)
C40.0312 (15)0.0154 (13)0.0294 (14)0.0029 (12)0.0104 (12)0.0021 (11)
C60.0251 (14)0.0174 (14)0.0205 (13)0.0012 (11)0.0045 (11)0.0029 (11)
C20.0263 (14)0.0219 (15)0.0221 (13)0.0006 (12)0.0060 (11)0.0007 (11)
C30.0279 (14)0.0214 (15)0.0240 (13)0.0018 (12)0.0078 (11)0.0048 (11)
C70.0281 (15)0.0195 (14)0.0249 (14)0.0041 (12)0.0043 (12)0.0025 (12)
C90.028 (2)0.029 (2)0.027 (2)0.0000.0092 (18)0.000
C80.028 (2)0.022 (2)0.029 (2)0.0000.0104 (18)0.000
Geometric parameters (Å, º) top
Pd1—N1i1.999 (2)N1—C11.354 (4)
Pd1—N11.999 (2)N1—C51.343 (4)
Pd1—N22.012 (3)N2—C61.130 (4)
Pd1—N2i2.012 (3)C1—C1i1.480 (5)
S1—O2i1.444 (2)C1—C21.376 (4)
S1—O21.444 (2)C5—H50.9300
S1—O11.441 (3)C5—C41.383 (4)
S1—C81.830 (4)C4—H40.9300
S2—O31.441 (3)C4—C31.382 (4)
S2—O4i1.443 (2)C6—C71.451 (4)
S2—O41.444 (2)C2—H20.9300
S2—C91.833 (5)C2—C31.389 (4)
F1—C81.341 (5)C3—H30.9300
F2—C81.335 (3)C7—H7A0.9600
F4—C91.338 (5)C7—H7B0.9600
F3—C91.331 (3)C7—H7C0.9600
N1i—Pd1—N181.82 (14)C5—C4—H4120.5
N1i—Pd1—N295.18 (11)C3—C4—C5119.0 (3)
N1—Pd1—N2i95.18 (11)C3—C4—H4120.5
N1—Pd1—N2176.99 (9)N2—C6—C7178.1 (3)
N1i—Pd1—N2i176.99 (9)C1—C2—H2120.5
N2—Pd1—N2i87.83 (14)C1—C2—C3119.0 (3)
O2—S1—O2i114.47 (17)C3—C2—H2120.5
O2i—S1—C8103.28 (12)C4—C3—C2119.4 (3)
O2—S1—C8103.28 (12)C4—C3—H3120.3
O1—S1—O2115.28 (10)C2—C3—H3120.3
O1—S1—O2i115.28 (11)C6—C7—H7A109.5
O1—S1—C8102.79 (19)C6—C7—H7B109.5
O3—S2—O4i114.85 (11)C6—C7—H7C109.5
O3—S2—O4114.85 (11)H7A—C7—H7B109.5
O3—S2—C9103.35 (19)H7A—C7—H7C109.5
O4i—S2—O4115.7 (2)H7B—C7—H7C109.5
O4i—S2—C9102.76 (12)F4—C9—S2111.1 (3)
O4—S2—C9102.75 (12)F3—C9—S2111.4 (2)
C1—N1—Pd1114.14 (18)F3i—C9—S2111.4 (2)
C5—N1—Pd1126.1 (2)F3—C9—F4107.2 (2)
C5—N1—C1119.8 (2)F3i—C9—F4107.2 (2)
C6—N2—Pd1173.7 (2)F3—C9—F3i108.4 (4)
N1—C1—C1i114.85 (15)F1—C8—S1111.4 (3)
N1—C1—C2121.3 (2)F2i—C8—S1111.2 (2)
C2—C1—C1i123.82 (17)F2—C8—S1111.2 (2)
N1—C5—H5119.3F2—C8—F1107.3 (2)
N1—C5—C4121.4 (3)F2i—C8—F1107.3 (2)
C4—C5—H5119.3F2i—C8—F2108.2 (3)
Pd1—N1—C1—C1i3.37 (19)O4—S2—C9—F460.23 (11)
Pd1—N1—C1—C2177.7 (2)O4i—S2—C9—F460.23 (11)
Pd1—N1—C5—C4177.6 (2)O4—S2—C9—F3i59.2 (3)
O2i—S1—C8—F159.77 (10)O4i—S2—C9—F359.2 (3)
O2—S1—C8—F159.77 (10)O4i—S2—C9—F3i179.6 (2)
O2i—S1—C8—F2i179.4 (2)O4—S2—C9—F3179.6 (2)
O2—S1—C8—F2i59.9 (3)N1—C1—C2—C30.1 (4)
O2—S1—C8—F2179.4 (2)N1—C5—C4—C30.1 (4)
O2i—S1—C8—F259.9 (3)C1—N1—C5—C40.1 (4)
O1—S1—C8—F1180.000 (1)C1i—C1—C2—C3178.68 (19)
O1—S1—C8—F260.3 (2)C1—C2—C3—C40.1 (4)
O1—S1—C8—F2i60.3 (2)C5—N1—C1—C1i178.68 (19)
O3—S2—C9—F4180.000 (1)C5—N1—C1—C20.2 (4)
O3—S2—C9—F360.6 (2)C5—C4—C3—C20.2 (4)
O3—S2—C9—F3i60.6 (2)
Symmetry code: (i) x, y+3/2, z.
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at the University of Texas at San Antonio.

Funding information

Funding for this research was provided by: National Science Foundation (award No. 1920059); Welch Foundation (award No. BN0032).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatahian-Nezhad, M., Alizadeh, R., Sadeghi Mohammadi, S., Tohidlou, M., Naderi-Manesh, H. & Amani, V. (2021). Inorg. Chim. Acta, 514, 119953.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIcsel, C., Yilmaz, V. T., Kaya, Y., Samli, H., Harrison, W. T. & Buyukgungor, O. (2015). Dalton Trans. 44, 6880–6895.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKitanosono, T., Hisada, T., Yamashita, Y. & Kobayashi, S. (2021). Angew. Chem. 133, 3449–3453.  CrossRef Google Scholar
First citationNesper, R., Pregosin, P. S., Püntener, K. & Wörle, M. (1993). Helv. Chim. Acta, 76, 2239–2249.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTabrizi, L., Zouchoune, B. & Zaiter, A. (2020). Inorg. Chim. Acta, 499, 119211.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146