organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Ethyl-4-methyl-1H-imidazol-3-ium bromide

crossmark logo

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and bChemistry Division, Code 6123, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 27 October 2022; accepted 6 December 2022; online 15 December 2022)

In the title mol­ecular salt, C6H11N2+·Br, the components are linked by N—H⋯Br⋯H—N hydrogen bonds into C(8)chains of alternating cations and anions propagating in the b-axis direction; these chains are cross-linked in the c-axis direction by weak C—H⋯Br hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The unique structure of imidazole, containing two N atoms in a five-membered ring, permits it to accept a proton on one of its N atoms to form a cation and simultaneously deliver another proton from the other N atom to a suitable acceptor. In fact, this sort of shuttling action has been proposed as part of the catalytic mechanism of a number of enzymes (Mikulski & Silverman, 2010[Mikulski, R. L. & Silverman, D. N. (2010). Biochim. Biophys. Acta, 1804, 422-426.]), and is consistent with the proton-conductivity properties of imidazole in the solid state where long hydrogen-bonded chains are present (Kawada et al., 1970[Kawada, A., McGhie, A. R. & Labes, M. M. J. (1970). J. Chem. Phys. 52, 3121-3125.]). These moieties and their derivatives have been implicated in proton-coupled electron-transfer processes (Huynh & Meyer, 2007[Huynh, M. H. V. & Meyer, T. J. (2007). Chem. Rev. 107, 5004-5064.]; Onidas et al., 2010[Onidas, D., Stachnik, J. M., Brucker, S., Krätzig, S. & Gerwert, K. (2010). Eur. J. Cell Biol. 89, 983-989.]). Consequently, there have been many theoretical (Scheiner & Yi, 1996[Scheiner, S. & Yi, M. (1996). J. Phys. Chem. 100, 9235-9241.]; Kumar & Venkatnathan, 2015[Kumar, M. & Venkatnathan, A. (2015). J. Phys. Chem. B, 119, 3213-3222.]) and structural studies (Purdy et al., 2007[Purdy, A. P., Gilardi, R., Luther, J. & Butcher, R. J. (2007). Polyhedron, 26, 3930-3938.]; Kim et al., 2016[Kim, H. S., Eom, D., Koo, Y. & Yingling, Y. G. (2016). Phys. Chem. Chem. Phys. 18, 22062-22069.]) investigating these species. In this paper, we report a crystal structure containing the 2-ethyl-4-methyl-1H-imidazol-3-ium (C6H11N2+) cation. There have been four previous reports of structures containing this species (CSD refcode LEZSAL, Amanokura et al., 2007[Amanokura, N., Kaneko, M., Sahara, T. & Sato, R. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, X21-X22.]; POJFOL, Beckett et al., 2014[Beckett, M., Horton, P., Hursthouse, M. & Timmis, J. (2014). Polyhedron, 77, 96-102.]; HOJJAT, Arici et al., 2014[Arıcı, M., Yeşilel, O. Z., Yeşilöz, Y. & Şahin, O. (2014). J. Solid State Chem. 220, 70-78.]; UMALAX, Kazimierczuk et al., 2016[Kazimierczuk, K., Dołęga, A. & Wierzbicka, J. (2016). Polyhedron, 115, 9-16.]).

The title salt, 1, crystallizes in the monoclinic space group P21/c with one ion pair in the asymmetric unit (Fig. 1[link]) and consists of C6H11N2+ cations and Br anions. The C8 methyl group is close to coplanar with the imidazole ring [N1—C2—C7—C8 = −8.03 (15)°]. Otherwise, the metrical parameters of the cation agree well with those observed in the other structures involving this species. In the extended structure, the component ions are linked by N—H⋯Br⋯H—N hydrogen bonds (Table 1[link]) into C(8) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]) chains propagating in the b-axis direction. The chains are cross-linked in the c-axis direction by weak C—H⋯Br hydrogen bonds (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Bri 0.829 (17) 2.446 (17) 3.2490 (9) 163.3 (16)
N3—H3N⋯Br 0.780 (16) 2.485 (16) 3.2642 (8) 176.6 (16)
C5—H5A⋯Brii 0.95 2.93 3.7842 (10) 151
C6—H6C⋯Briii 0.98 3.08 3.8349 (11) 135
C7—H7B⋯Briv 0.99 2.93 3.8771 (11) 161
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of 1 showing 30% displacement ellipsoids. The hydrogen bond is shown with a dashed line.
[Figure 2]
Figure 2
Packing diagram of 1 viewed down [100] showing how the cations and anions are linked into C(8)chains propagating in the b-axis direction.

Synthesis and crystallization

The title compound resulted from an attempt to link two 2-ethyl-4-methyl­imidazole rings with a two-carbon chain by the reaction of 2-Et-4-Me-imidazole (6.20 g, 56.3 mmol) with BrCH2CH2Br (5.32 g, 28.3 mmol) in EtOH at 80°C overnight and several hours at 100°C. Ba(OH)2·8H2O (8.95 g, 28.3 mmol) was added with ethanol and water and heated to dissolve. On cooling, the mixture was rotovapped down and extracted between water and ether, and the ether layer was evaporated down to 3.1 g of an oil identified as primarily the starting imidazole by NMR. Recovery of about half of the starting imidazole must mean that the oligomer forms preferentially over the dimer. The barium ion was removed from the water layer by titration with H2SO4 followed by filtration. The solution was rotovapped down to an oil that precipitated a mass of salts on cooling. More crystals of 1 crystallized from the oil over time, and were washed with i-PrOH to remove the oil for NMR. NMR of 1 in D2O, DSS ref: 1H, 1.26 (t, 3H), 2.88 (q, 2H) (Et), 2.20 (s, 3H) (Me), 4.70 (s, 1H) (C—H), 6.95 (s, 2H) (N—H); 13C, 11.8 (Me), 13.3, 21.8 (Et), 117.1 (C—H), 131.4 (4-C), 150.7 (2-C).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H11N2+·Br
Mr 191.08
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.8432 (6), 15.5962 (13), 7.5748 (7)
β (°) 94.360 (4)
V3) 806.10 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.02
Crystal size (mm) 0.25 × 0.15 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.571, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 24466, 3936, 3324
Rint 0.027
(sin θ/λ)max−1) 0.836
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.042, 1.03
No. of reflections 3936
No. of parameters 92
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

2-Ethyl-4-methyl-1H-imidazol-3-ium bromide top
Crystal data top
C6H11N2+·BrF(000) = 384
Mr = 191.08Dx = 1.574 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.8432 (6) ÅCell parameters from 9911 reflections
b = 15.5962 (13) Åθ = 3.0–36.4°
c = 7.5748 (7) ŵ = 5.02 mm1
β = 94.360 (4)°T = 100 K
V = 806.10 (12) Å3Prism, colorless
Z = 40.25 × 0.15 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
3324 reflections with I > 2σ(I)
φ and ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 36.5°, θmin = 2.6°
Tmin = 0.571, Tmax = 0.747h = 1111
24466 measured reflectionsk = 2626
3936 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: mixed
wR(F2) = 0.042H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0166P)2 + 0.2838P]
where P = (Fo2 + 2Fc2)/3
3936 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were located in difference Fourier maps and those attached to N were refined isotropically. Those attached to carbon atoms were refined in idealized geometry using a riding model with with atomic displacement parameters of Uiso(H) = 1.2Ueq(C) [for CH3, 1.5Ueq(C)] with C—H distances of 0.95 to 0.99 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.28697 (2)0.12428 (2)0.15497 (2)0.01551 (3)
N10.63750 (12)0.41897 (5)0.31428 (11)0.01531 (14)
H1N0.631 (3)0.4721 (11)0.314 (2)0.037 (5)*
C20.49850 (13)0.36487 (6)0.25237 (11)0.01449 (16)
N30.56746 (12)0.28564 (5)0.28135 (11)0.01568 (13)
H3N0.503 (2)0.2457 (9)0.254 (2)0.026 (4)*
C40.75365 (14)0.28880 (6)0.36671 (13)0.01609 (15)
C50.79682 (13)0.37312 (6)0.38762 (13)0.01694 (15)
H5A0.9145140.3964520.4424120.020*
C60.86990 (17)0.21085 (7)0.41511 (15)0.02302 (19)
H6A0.7930130.1726110.4856200.035*
H6B0.9908280.2272710.4844690.035*
H6C0.9026340.1811620.3072070.035*
C70.30245 (14)0.38674 (7)0.16718 (13)0.01933 (17)
H7A0.2017520.3538790.2256550.023*
H7B0.2964110.3688010.0415110.023*
C80.25416 (18)0.48149 (8)0.17584 (17)0.0284 (2)
H8A0.1204580.4912160.1238530.043*
H8B0.3466480.5141730.1096210.043*
H8C0.2641540.5002870.2996480.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.01508 (4)0.01385 (4)0.01734 (4)0.00039 (3)0.00055 (3)0.00153 (3)
N10.0149 (3)0.0141 (3)0.0167 (3)0.0012 (3)0.0004 (3)0.0013 (3)
C20.0152 (4)0.0147 (4)0.0135 (3)0.0015 (3)0.0006 (3)0.0010 (3)
N30.0159 (3)0.0150 (3)0.0162 (3)0.0026 (3)0.0014 (3)0.0022 (3)
C40.0150 (4)0.0173 (4)0.0160 (4)0.0012 (3)0.0015 (3)0.0011 (3)
C50.0131 (3)0.0187 (4)0.0188 (4)0.0006 (3)0.0001 (3)0.0023 (3)
C60.0240 (5)0.0210 (4)0.0244 (5)0.0076 (4)0.0038 (4)0.0006 (4)
C70.0166 (4)0.0238 (4)0.0168 (4)0.0007 (3)0.0036 (3)0.0005 (3)
C80.0238 (5)0.0265 (5)0.0331 (6)0.0058 (4)0.0089 (4)0.0014 (4)
Geometric parameters (Å, º) top
N1—C21.3299 (12)C6—H6A0.9800
N1—C51.3844 (13)C6—H6B0.9800
N1—H1N0.829 (17)C6—H6C0.9800
C2—N31.3351 (12)C7—C81.5167 (16)
C2—C71.4836 (13)C7—H7A0.9900
N3—C41.3851 (12)C7—H7B0.9900
N3—H3N0.780 (16)C8—H8A0.9800
C4—C51.3545 (14)C8—H8B0.9800
C4—C61.4836 (14)C8—H8C0.9800
C5—H5A0.9500
C2—N1—C5109.52 (8)H6A—C6—H6B109.5
C2—N1—H1N126.7 (12)C4—C6—H6C109.5
C5—N1—H1N123.7 (12)H6A—C6—H6C109.5
N1—C2—N3107.15 (8)H6B—C6—H6C109.5
N1—C2—C7127.33 (8)C2—C7—C8113.45 (8)
N3—C2—C7125.52 (8)C2—C7—H7A108.9
C2—N3—C4110.17 (8)C8—C7—H7A108.9
C2—N3—H3N120.7 (12)C2—C7—H7B108.9
C4—N3—H3N129.1 (12)C8—C7—H7B108.9
C5—C4—N3105.90 (8)H7A—C7—H7B107.7
C5—C4—C6131.20 (10)C7—C8—H8A109.5
N3—C4—C6122.89 (9)C7—C8—H8B109.5
C4—C5—N1107.24 (8)H8A—C8—H8B109.5
C4—C5—H5A126.4C7—C8—H8C109.5
N1—C5—H5A126.4H8A—C8—H8C109.5
C4—C6—H6A109.5H8B—C8—H8C109.5
C4—C6—H6B109.5
C5—N1—C2—N31.28 (10)N3—C4—C5—N10.29 (11)
C5—N1—C2—C7178.55 (9)C6—C4—C5—N1178.35 (10)
N1—C2—N3—C41.11 (10)C2—N1—C5—C40.98 (11)
C7—C2—N3—C4178.73 (9)N1—C2—C7—C88.03 (15)
C2—N3—C4—C50.50 (11)N3—C2—C7—C8171.77 (10)
C2—N3—C4—C6179.27 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Bri0.829 (17)2.446 (17)3.2490 (9)163.3 (16)
N3—H3N···Br0.780 (16)2.485 (16)3.2642 (8)176.6 (16)
C5—H5A···Brii0.952.933.7842 (10)151
C6—H6C···Briii0.983.083.8349 (11)135
C7—H7B···Briv0.992.933.8771 (11)161
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y+1/2, z1/2.
 

Funding information

RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.

References

First citationAmanokura, N., Kaneko, M., Sahara, T. & Sato, R. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, X21–X22.  CSD CrossRef CAS Google Scholar
First citationArıcı, M., Yeşilel, O. Z., Yeşilöz, Y. & Şahin, O. (2014). J. Solid State Chem. 220, 70–78.  Google Scholar
First citationBeckett, M., Horton, P., Hursthouse, M. & Timmis, J. (2014). Polyhedron, 77, 96–102.  CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHuynh, M. H. V. & Meyer, T. J. (2007). Chem. Rev. 107, 5004–5064.  CrossRef PubMed CAS Google Scholar
First citationKawada, A., McGhie, A. R. & Labes, M. M. J. (1970). J. Chem. Phys. 52, 3121–3125.  CrossRef CAS Google Scholar
First citationKazimierczuk, K., Dołęga, A. & Wierzbicka, J. (2016). Polyhedron, 115, 9–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, H. S., Eom, D., Koo, Y. & Yingling, Y. G. (2016). Phys. Chem. Chem. Phys. 18, 22062–22069.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, M. & Venkatnathan, A. (2015). J. Phys. Chem. B, 119, 3213–3222.  CrossRef CAS PubMed Google Scholar
First citationMikulski, R. L. & Silverman, D. N. (2010). Biochim. Biophys. Acta, 1804, 422–426.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOnidas, D., Stachnik, J. M., Brucker, S., Krätzig, S. & Gerwert, K. (2010). Eur. J. Cell Biol. 89, 983–989.  CrossRef CAS PubMed Google Scholar
First citationPurdy, A. P., Gilardi, R., Luther, J. & Butcher, R. J. (2007). Polyhedron, 26, 3930–3938.  Web of Science CSD CrossRef CAS Google Scholar
First citationScheiner, S. & Yi, M. (1996). J. Phys. Chem. 100, 9235–9241.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146