metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Bis(2,2′-di­pyridyl­amine-κ2N,N′)­bis­­(1,1,3,3-tetra­cyano-2-eth­­oxy­propenido-κN)copper(II)

crossmark logo

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: m.aldouh@hu.edu.ye

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 6 December 2022; accepted 10 December 2022; online 23 December 2022)

The title compound, [Cu(C9H5N4O)2(C10H9N3)2], was synthesized solvothermally. The complex exhibits a distorted octa­hedral coordination geometry. The CuII atom is located on an inversion centre. The distorted octahedral CuN6 coordination sphere is composed of bidentate 2,2′-dipyrid­ylamine in the equatorial sites while the axial sites are occupied by 1,1,3,3-tetra­cyano-2-eth­oxy­propenide ligands. In the crystal, N—H⋯N hydrogen bonding results in chains parallel to [010].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Anionic polynitrile ligands are of inter­est because of their ability to act as bridging ligands with different coordination modes to generate many different topologies by functioning alone or in combination with other neutral co-ligands (Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856-3862.], 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.], 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Setifi et al., 2013[Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242-247.]; Dmitrienko et al., 2020[Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084-7092.]). In view of this coordinating ability, these ligands have also been explored for their utility in developing materials capable of magnetic exchange coupling (Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]). As a part of our continuing studies of the structural and magnetic properties of CuII complexes containing both polynitrile and polypyridyl units (Setifi et al., 2006[Setifi, F., Bouchama, A., Sala-Pala, J., Salaün, J.-Y. & Triki, S. (2006). Inorg. Chim. Acta, 359, 3269-3274.], 2007[Setifi, F., Benmansour, S., Triki, S., Gómez-García, C. J., Marchivie, M., Salaün, J.-Y. & Mustapha, M. (2007). Inorg. Chim. Acta, 360, 3879-3886.], 2009[Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269-1271.], 2014[Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19-22.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]), we report here the synthesis and the crystal and mol­ecular structure of a new mononuclear compound based on 2,2′-di­pyridyl­amine (dpa) as co-ligand and 1,1,3,3-tetra­cyano-2-eth­oxy­propenide (tcnoet) as ligands.

The title compound exhibits a distorted octa­hedral coordination environment, as expected for a six-coordinate, d9 coordination complex due to the Jahn–Teller effect (see Table 1[link]). The mol­ecular geometry and atom-labelling scheme are represented in Fig. 1[link]. The CuII ion is located on an inversion centre. The bidentate dpa ligands occupy equatorial sites, with coordinating tcnoet ligands in the axial sites. The Cu—N6 bond length compares well with those reported for other CuII complexes with axially coordinated tcnoet ligands (Thetiot et al., 2003[Thétiot, F., Triki, S. & Sala Pala, J. (2003). Polyhedron, 22, 1837-1843.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]).

Table 1
Selected geometric parameters (Å, °)

Cu1—N1 2.0196 (13) Cu1—N6 2.4828 (16)
Cu1—N3 2.0196 (13)    
       
N1—Cu1—N3i 94.54 (5) N3—Cu1—N6 92.15 (6)
N1—Cu1—N6 91.81 (6)    
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
View of the title compound showing the atom-labelling scheme. Anisotropic displacement parameters of non-H atoms are drawn at the 30% probability level. [Symmetry code: (a) −x + 1, −y + 1, −z + 1.]

The extended structure exhibits an N2—H2⋯N8 hydrogen-bonding network (Table 2[link]), resulting in chains running parallel to [010], as seen in Fig. 2[link]. Intra- and inter­molecular C—H⋯N hydrogen bonds are also observed (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N8ii 0.85 (2) 2.18 (2) 3.020 (2) 171.2 (19)
C7—H7⋯N5iii 0.93 2.43 3.234 (2) 145
C10—H10⋯N8ii 0.93 2.62 3.385 (3) 140
C12—H12A⋯N5 0.97 2.64 3.404 (3) 136
Symmetry codes: (ii) x, y+1, z; (iii) [x, y, z-1].
[Figure 2]
Figure 2
Partial packing diagram showing the N—H⋯N hydrogen-bonding inter­actions. Only H atoms involved in the inter­molecular inter­actions are shown. [Symmetry codes: (a) −x + 1, −y + 1, −z + 1; (b) x, y + 1, z; (c) −x + 1, −y + 2, −z + 1; (d) −x + 1,-y, −z + 1; (e) x, y − 1, z.]

Synthesis and crystallization

The title compound was synthesized solvothermally under autogenous pressure using a mixture of copper(II) sulfate penta­hydrate (25 mg, 0.1 mmol), 2,2′-di­pyridyl­amine (34 mg, 0.2 mmol) and potassium 1,1,3,3-tetra­cyano-2-eth­oxy­propenide (45 mg, 0.2 mmol) in water-methanol (3:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and held at 438 K for 2 d, and then cooled to ambient temperature at a rate of 10 K per hour (yield 42%). Green blocks of the title complex suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C9H5N4O)2(C10H9N3)2]
Mr 776.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 300
a, b, c (Å) 7.5101 (3), 9.2232 (4), 13.6405 (6)
α, β, γ (°) 99.068 (1), 98.864 (1), 93.139 (1)
V3) 918.86 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.40 × 0.10 × 0.06
 
Data collection
Diffractometer Oxford Diffraction Xcalibur CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.481, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 51758, 5649, 4388
Rint 0.062
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.05
No. of reflections 5649
No. of parameters 255
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.44
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Bis(2,2'-dipyridylamine-κ2N,N')bis(1,1,3,3-tetracyano-2-ethoxypropenido-κN)copper(II) top
Crystal data top
[Cu(C9H5N4O)2(C10H9N3)2]Z = 1
Mr = 776.28F(000) = 399
Triclinic, P1Dx = 1.403 Mg m3
a = 7.5101 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2232 (4) ÅCell parameters from 937 reflections
c = 13.6405 (6) Åθ = 2.6–28.1°
α = 99.068 (1)°µ = 0.65 mm1
β = 98.864 (1)°T = 300 K
γ = 93.139 (1)°Block, blue
V = 918.86 (7) Å30.40 × 0.10 × 0.06 mm
Data collection top
Oxford Diffraction X calibur CCD
diffractometer
4388 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray sourceRint = 0.062
ω scansθmax = 30.6°, θmin = 2.5°
Absorption correction: multi-scan
(CrysalisRed; Oxford Diffraction, 2009)
h = 1010
Tmin = 0.481, Tmax = 1.000k = 1313
51758 measured reflectionsl = 1919
5649 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.4397P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5649 reflectionsΔρmax = 0.32 e Å3
255 parametersΔρmin = 0.44 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms bonded to C atoms were positioned geometrically and treated as riding atoms, using C—H = 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and 1.2 for all other H atoms bonded to C atoms. The H atom bonded to the amine N atom was refined freely, including its isotropic displacement parameter.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50.50.50.03141 (9)
N10.67538 (19)0.64977 (14)0.59690 (10)0.0313 (3)
N20.4406 (2)0.79956 (16)0.62884 (10)0.0345 (3)
H20.413 (3)0.872 (2)0.6688 (16)0.042 (5)*
N30.37389 (19)0.67548 (15)0.46127 (10)0.0313 (3)
O10.33800 (19)0.57177 (13)0.88700 (10)0.0459 (3)
N50.2377 (3)0.4862 (2)1.13970 (13)0.0691 (6)
N60.3087 (3)0.47360 (18)0.63022 (12)0.0506 (4)
N70.0144 (3)0.1256 (2)0.91228 (16)0.0691 (6)
N80.3262 (3)0.07139 (19)0.75000 (14)0.0630 (5)
C10.6156 (2)0.76147 (16)0.65471 (11)0.0301 (3)
C20.7266 (3)0.84429 (19)0.73900 (13)0.0416 (4)
H2A0.680.91680.7810.05*
C30.9045 (3)0.8172 (2)0.75871 (16)0.0511 (5)
H30.980.87030.81480.061*
C40.9713 (3)0.7099 (2)0.69434 (16)0.0487 (5)
H41.09340.69340.70440.058*
C50.8543 (2)0.6287 (2)0.61567 (14)0.0394 (4)
H50.89910.55570.57310.047*
C60.3509 (2)0.78931 (17)0.53097 (12)0.0318 (3)
C70.2986 (3)0.6766 (2)0.36427 (13)0.0403 (4)
H70.31950.60060.3150.048*
C80.1940 (3)0.7837 (2)0.33556 (15)0.0506 (5)
H80.14540.78110.26830.061*
C90.1619 (3)0.8964 (3)0.40891 (17)0.0568 (6)
H90.08720.96880.39180.068*
C100.2409 (3)0.9008 (2)0.50707 (15)0.0482 (5)
H100.22170.97660.5570.058*
C110.3586 (4)0.8295 (2)0.9359 (2)0.0680 (7)
H11A0.48810.83170.94990.102*
H11B0.31880.90960.9790.102*
H11C0.3210.8390.86690.102*
C120.2784 (4)0.6878 (2)0.95455 (17)0.0560 (6)
H12A0.31770.6761.02380.067*
H12B0.14750.68550.94240.067*
C130.2780 (2)0.43072 (17)0.87862 (12)0.0315 (3)
C140.2105 (2)0.37033 (18)0.95387 (12)0.0335 (3)
C150.2291 (3)0.4382 (2)1.05654 (13)0.0417 (4)
C160.2916 (2)0.34824 (18)0.78366 (12)0.0344 (4)
C170.3030 (3)0.42011 (19)0.70040 (13)0.0377 (4)
C180.1052 (3)0.2327 (2)0.92985 (13)0.0415 (4)
C190.3079 (3)0.1948 (2)0.76699 (13)0.0407 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04112 (17)0.02558 (14)0.02394 (14)0.00860 (11)0.00108 (11)0.00461 (10)
N10.0365 (7)0.0290 (6)0.0257 (6)0.0051 (5)0.0044 (5)0.0037 (5)
N20.0445 (8)0.0299 (7)0.0270 (7)0.0121 (6)0.0069 (6)0.0056 (5)
N30.0402 (7)0.0299 (6)0.0231 (6)0.0083 (6)0.0039 (5)0.0018 (5)
O10.0580 (8)0.0292 (6)0.0501 (8)0.0050 (6)0.0255 (6)0.0082 (5)
N50.0958 (16)0.0746 (14)0.0308 (9)0.0078 (12)0.0136 (9)0.0077 (9)
N60.0751 (12)0.0427 (9)0.0402 (9)0.0118 (8)0.0270 (8)0.0065 (7)
N70.1046 (17)0.0401 (10)0.0621 (12)0.0155 (10)0.0345 (12)0.0062 (9)
N80.1070 (16)0.0381 (9)0.0497 (10)0.0243 (10)0.0317 (11)0.0004 (8)
C10.0411 (9)0.0237 (7)0.0246 (7)0.0038 (6)0.0062 (6)0.0004 (6)
C20.0569 (11)0.0287 (8)0.0331 (9)0.0042 (8)0.0005 (8)0.0069 (7)
C30.0535 (12)0.0390 (10)0.0490 (11)0.0008 (9)0.0125 (9)0.0061 (8)
C40.0383 (10)0.0434 (10)0.0579 (12)0.0025 (8)0.0034 (9)0.0004 (9)
C50.0378 (9)0.0376 (9)0.0411 (9)0.0069 (7)0.0072 (7)0.0004 (7)
C60.0370 (8)0.0295 (8)0.0297 (8)0.0084 (6)0.0080 (6)0.0029 (6)
C70.0500 (10)0.0451 (10)0.0246 (8)0.0065 (8)0.0035 (7)0.0037 (7)
C80.0548 (12)0.0627 (13)0.0359 (10)0.0155 (10)0.0006 (9)0.0162 (9)
C90.0601 (13)0.0600 (13)0.0559 (13)0.0299 (11)0.0059 (10)0.0221 (10)
C100.0575 (12)0.0427 (10)0.0474 (11)0.0248 (9)0.0119 (9)0.0064 (8)
C110.0748 (16)0.0323 (10)0.0917 (19)0.0020 (10)0.0112 (14)0.0005 (11)
C120.0835 (16)0.0299 (9)0.0549 (12)0.0032 (9)0.0289 (11)0.0086 (8)
C130.0350 (8)0.0281 (7)0.0295 (8)0.0034 (6)0.0076 (6)0.0030 (6)
C140.0420 (9)0.0317 (8)0.0255 (7)0.0056 (7)0.0072 (7)0.0017 (6)
C150.0478 (10)0.0447 (10)0.0307 (9)0.0008 (8)0.0082 (8)0.0005 (7)
C160.0458 (10)0.0290 (8)0.0298 (8)0.0060 (7)0.0140 (7)0.0003 (6)
C170.0495 (10)0.0309 (8)0.0349 (9)0.0077 (7)0.0183 (8)0.0010 (7)
C180.0612 (12)0.0335 (9)0.0317 (9)0.0058 (8)0.0172 (8)0.0009 (7)
C190.0586 (11)0.0349 (9)0.0308 (8)0.0107 (8)0.0166 (8)0.0004 (7)
Geometric parameters (Å, º) top
Cu1—N12.0196 (13)C4—C51.367 (3)
Cu1—N1i2.0196 (13)C4—H40.93
Cu1—N3i2.0196 (13)C5—H50.93
Cu1—N32.0196 (13)C6—C101.400 (2)
Cu1—N6i2.4828 (16)C7—C81.363 (3)
Cu1—N62.4828 (16)C7—H70.93
N1—C11.3374 (19)C8—C91.383 (3)
N1—C51.359 (2)C8—H80.93
N2—C61.386 (2)C9—C101.372 (3)
N2—C11.386 (2)C9—H90.93
N2—H20.85 (2)C10—H100.93
N3—C61.339 (2)C11—C121.484 (3)
N3—C71.358 (2)C11—H11A0.96
O1—C131.335 (2)C11—H11B0.96
O1—C121.436 (2)C11—H11C0.96
N5—C151.142 (2)C12—H12A0.97
N6—C171.149 (2)C12—H12B0.97
N7—C181.140 (3)C13—C141.389 (2)
N8—C191.145 (2)C13—C161.416 (2)
C1—C21.400 (2)C14—C181.422 (2)
C2—C31.366 (3)C14—C151.423 (2)
C2—H2A0.93C16—C191.413 (2)
C3—C41.385 (3)C16—C171.413 (2)
C3—H30.93
N1—Cu1—N1i180.0N3—C6—N2119.59 (14)
N1—Cu1—N3i94.54 (5)N3—C6—C10121.57 (16)
N1i—Cu1—N3i85.46 (5)N2—C6—C10118.82 (15)
N1—Cu1—N385.46 (5)N3—C7—C8123.29 (17)
N1i—Cu1—N394.54 (5)N3—C7—H7118.4
N3i—Cu1—N3180.00 (7)C8—C7—H7118.4
N1—Cu1—N6i88.19 (6)C7—C8—C9118.40 (18)
N1i—Cu1—N6i91.82 (6)C7—C8—H8120.8
N3i—Cu1—N6i92.15 (6)C9—C8—H8120.8
N3—Cu1—N6i87.85 (6)C10—C9—C8119.61 (18)
N1—Cu1—N691.81 (6)C10—C9—H9120.2
N1i—Cu1—N688.18 (6)C8—C9—H9120.2
N3i—Cu1—N687.85 (6)C9—C10—C6119.00 (18)
N3—Cu1—N692.15 (6)C9—C10—H10120.5
N6i—Cu1—N6180.0C6—C10—H10120.5
C1—N1—C5117.73 (14)C12—C11—H11A109.5
C1—N1—Cu1120.69 (11)C12—C11—H11B109.5
C5—N1—Cu1120.93 (11)H11A—C11—H11B109.5
C6—N2—C1124.60 (14)C12—C11—H11C109.5
C6—N2—H2113.2 (14)H11A—C11—H11C109.5
C1—N2—H2113.6 (14)H11B—C11—H11C109.5
C6—N3—C7117.92 (14)O1—C12—C11107.53 (18)
C6—N3—Cu1121.18 (11)O1—C12—H12A110.2
C7—N3—Cu1120.73 (11)C11—C12—H12A110.2
C13—O1—C12122.75 (14)O1—C12—H12B110.2
C17—N6—Cu1141.76 (15)C11—C12—H12B110.2
N1—C1—N2119.24 (14)H12A—C12—H12B108.5
N1—C1—C2121.84 (16)O1—C13—C14124.44 (14)
N2—C1—C2118.89 (14)O1—C13—C16112.14 (15)
C3—C2—C1119.08 (17)C14—C13—C16123.42 (15)
C3—C2—H2A120.5C13—C14—C18120.00 (15)
C1—C2—H2A120.5C13—C14—C15125.50 (16)
C2—C3—C4119.39 (17)C18—C14—C15114.42 (16)
C2—C3—H3120.3N5—C15—C14176.1 (2)
C4—C3—H3120.3C19—C16—C17115.91 (14)
C5—C4—C3118.66 (18)C19—C16—C13123.65 (16)
C5—C4—H4120.7C17—C16—C13120.29 (15)
C3—C4—H4120.7N6—C17—C16177.3 (2)
N1—C5—C4122.93 (17)N7—C18—C14176.8 (2)
N1—C5—H5118.5N8—C19—C16176.7 (2)
C4—C5—H5118.5
C5—N1—C1—N2170.75 (15)C6—N3—C7—C83.4 (3)
Cu1—N1—C1—N218.4 (2)Cu1—N3—C7—C8172.08 (16)
C5—N1—C1—C27.2 (2)N3—C7—C8—C90.4 (3)
Cu1—N1—C1—C2163.65 (13)C7—C8—C9—C102.5 (4)
C6—N2—C1—N133.7 (2)C8—C9—C10—C60.8 (3)
C6—N2—C1—C2144.31 (17)N3—C6—C10—C93.1 (3)
N1—C1—C2—C34.7 (3)N2—C6—C10—C9175.5 (2)
N2—C1—C2—C3173.20 (18)C13—O1—C12—C11174.33 (19)
C1—C2—C3—C40.8 (3)C12—O1—C13—C1425.1 (3)
C2—C3—C4—C53.5 (3)C12—O1—C13—C16155.17 (18)
C1—N1—C5—C44.4 (3)O1—C13—C14—C18162.61 (17)
Cu1—N1—C5—C4166.43 (16)C16—C13—C14—C1817.7 (3)
C3—C4—C5—N10.9 (3)O1—C13—C14—C1514.0 (3)
C7—N3—C6—N2173.51 (16)C16—C13—C14—C15165.63 (18)
Cu1—N3—C6—N211.1 (2)O1—C13—C16—C19153.95 (18)
C7—N3—C6—C105.1 (3)C14—C13—C16—C1925.7 (3)
Cu1—N3—C6—C10170.32 (15)O1—C13—C16—C1721.4 (2)
C1—N2—C6—N337.9 (2)C14—C13—C16—C17158.95 (18)
C1—N2—C6—C10140.78 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N8ii0.85 (2)2.18 (2)3.020 (2)171.2 (19)
C7—H7···N5iii0.932.433.234 (2)145
C10—H10···N8ii0.932.623.385 (3)140
C12—H12A···N50.972.643.404 (3)136
Symmetry codes: (ii) x, y+1, z; (iii) x, y, z1.
 

Footnotes

Additional correspondence author, e-mail: fatima.setifi@univ-setif.dz.

Acknowledgements

Author contributions are as follows. Conceptualization, ZS and MHAD; methodology, ZS and MHAD; investigation, YS and AS; writing (original draft), DKG and ZS; writing (review and editing of the manuscript), DKG, FS and ZS; visualization, ZS and DKG; funding acquisition, ZS and MHAD; resources, FS; supervision, FS.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique); the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique; PRFU project (grant No. B00L01UN190120230003).

References

First citationAddala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSetifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSetifi, F., Benmansour, S., Triki, S., Gómez-García, C. J., Marchivie, M., Salaün, J.-Y. & Mustapha, M. (2007). Inorg. Chim. Acta, 360, 3879–3886.  CrossRef CAS Google Scholar
First citationSetifi, F., Bouchama, A., Sala-Pala, J., Salaün, J.-Y. & Triki, S. (2006). Inorg. Chim. Acta, 359, 3269–3274.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThétiot, F., Triki, S. & Sala Pala, J. (2003). Polyhedron, 22, 1837–1843.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146