metal-organic compounds
trans-Bis(2,2′-dipyridylamine-κ2N,N′)bis(1,1,3,3-tetracyano-2-ethoxypropenido-κN)copper(II)
aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: m.aldouh@hu.edu.ye
The title compound, [Cu(C9H5N4O)2(C10H9N3)2], was synthesized solvothermally. The complex exhibits a distorted octahedral coordination geometry. The CuII atom is located on an inversion centre. The distorted octahedral CuN6 coordination sphere is composed of bidentate 2,2′-dipyridylamine in the equatorial sites while the axial sites are occupied by 1,1,3,3-tetracyano-2-ethoxypropenide ligands. In the crystal, N—H⋯N hydrogen bonding results in chains parallel to [010].
Keywords: crystal structure; copper(II); 2,2′-dipyridylamine (dpa); 1,1,3,3-tetracyano-2-ethoxypropenide (tcnoet).
CCDC reference: 2225624
Structure description
Anionic polynitrile ligands are of interest because of their ability to act as bridging ligands with different coordination modes to generate many different topologies by functioning alone or in combination with other neutral co-ligands (Miyazaki et al., 2003; Benmansour et al., 2008, 2010, 2012; Setifi et al., 2013; Dmitrienko et al., 2020). In view of this coordinating ability, these ligands have also been explored for their utility in developing materials capable of magnetic exchange coupling (Yuste et al., 2009; Atmani et al., 2008). As a part of our continuing studies of the structural and magnetic properties of CuII complexes containing both polynitrile and polypyridyl units (Setifi et al., 2006, 2007, 2009, 2014; Addala et al., 2015), we report here the synthesis and the crystal and molecular structure of a new mononuclear compound based on 2,2′-dipyridylamine (dpa) as co-ligand and 1,1,3,3-tetracyano-2-ethoxypropenide (tcnoet) as ligands.
The title compound exhibits a distorted octahedral coordination environment, as expected for a six-coordinate, d9 coordination complex due to the Jahn–Teller effect (see Table 1). The molecular geometry and atom-labelling scheme are represented in Fig. 1. The CuII ion is located on an inversion centre. The bidentate dpa ligands occupy equatorial sites, with coordinating tcnoet ligands in the axial sites. The Cu—N6 bond length compares well with those reported for other CuII complexes with axially coordinated tcnoet ligands (Thetiot et al., 2003; Addala et al., 2015).
|
The extended structure exhibits an N2—H2⋯N8 hydrogen-bonding network (Table 2), resulting in chains running parallel to [010], as seen in Fig. 2. Intra- and intermolecular C—H⋯N hydrogen bonds are also observed (Table 2).
Synthesis and crystallization
The title compound was synthesized solvothermally under autogenous pressure using a mixture of copper(II) sulfate pentahydrate (25 mg, 0.1 mmol), 2,2′-dipyridylamine (34 mg, 0.2 mmol) and potassium 1,1,3,3-tetracyano-2-ethoxypropenide (45 mg, 0.2 mmol) in water-methanol (3:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and held at 438 K for 2 d, and then cooled to ambient temperature at a rate of 10 K per hour (yield 42%). Green blocks of the title complex suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3Structural data
CCDC reference: 2225624
https://doi.org/10.1107/S2414314622011804/bt4129sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622011804/bt4129Isup2.hkl
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020), Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C9H5N4O)2(C10H9N3)2] | Z = 1 |
Mr = 776.28 | F(000) = 399 |
Triclinic, P1 | Dx = 1.403 Mg m−3 |
a = 7.5101 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2232 (4) Å | Cell parameters from 937 reflections |
c = 13.6405 (6) Å | θ = 2.6–28.1° |
α = 99.068 (1)° | µ = 0.65 mm−1 |
β = 98.864 (1)° | T = 300 K |
γ = 93.139 (1)° | Block, blue |
V = 918.86 (7) Å3 | 0.40 × 0.10 × 0.06 mm |
Oxford Diffraction X calibur CCD diffractometer | 4388 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray source | Rint = 0.062 |
ω scans | θmax = 30.6°, θmin = 2.5° |
Absorption correction: multi-scan (CrysalisRed; Oxford Diffraction, 2009) | h = −10→10 |
Tmin = 0.481, Tmax = 1.000 | k = −13→13 |
51758 measured reflections | l = −19→19 |
5649 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.094 | w = 1/[σ2(Fo2) + (0.0294P)2 + 0.4397P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
5649 reflections | Δρmax = 0.32 e Å−3 |
255 parameters | Δρmin = −0.44 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All hydrogen atoms bonded to C atoms were positioned geometrically and treated as riding atoms, using C—H = 0.93 Å (aromatic), 0.96 Å (CH3) or 0.97 Å (CH2), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups and 1.2 for all other H atoms bonded to C atoms. The H atom bonded to the amine N atom was refined freely, including its isotropic displacement parameter. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5 | 0.5 | 0.5 | 0.03141 (9) | |
N1 | 0.67538 (19) | 0.64977 (14) | 0.59690 (10) | 0.0313 (3) | |
N2 | 0.4406 (2) | 0.79956 (16) | 0.62884 (10) | 0.0345 (3) | |
H2 | 0.413 (3) | 0.872 (2) | 0.6688 (16) | 0.042 (5)* | |
N3 | 0.37389 (19) | 0.67548 (15) | 0.46127 (10) | 0.0313 (3) | |
O1 | 0.33800 (19) | 0.57177 (13) | 0.88700 (10) | 0.0459 (3) | |
N5 | 0.2377 (3) | 0.4862 (2) | 1.13970 (13) | 0.0691 (6) | |
N6 | 0.3087 (3) | 0.47360 (18) | 0.63022 (12) | 0.0506 (4) | |
N7 | 0.0144 (3) | 0.1256 (2) | 0.91228 (16) | 0.0691 (6) | |
N8 | 0.3262 (3) | 0.07139 (19) | 0.75000 (14) | 0.0630 (5) | |
C1 | 0.6156 (2) | 0.76147 (16) | 0.65471 (11) | 0.0301 (3) | |
C2 | 0.7266 (3) | 0.84429 (19) | 0.73900 (13) | 0.0416 (4) | |
H2A | 0.68 | 0.9168 | 0.781 | 0.05* | |
C3 | 0.9045 (3) | 0.8172 (2) | 0.75871 (16) | 0.0511 (5) | |
H3 | 0.98 | 0.8703 | 0.8148 | 0.061* | |
C4 | 0.9713 (3) | 0.7099 (2) | 0.69434 (16) | 0.0487 (5) | |
H4 | 1.0934 | 0.6934 | 0.7044 | 0.058* | |
C5 | 0.8543 (2) | 0.6287 (2) | 0.61567 (14) | 0.0394 (4) | |
H5 | 0.8991 | 0.5557 | 0.5731 | 0.047* | |
C6 | 0.3509 (2) | 0.78931 (17) | 0.53097 (12) | 0.0318 (3) | |
C7 | 0.2986 (3) | 0.6766 (2) | 0.36427 (13) | 0.0403 (4) | |
H7 | 0.3195 | 0.6006 | 0.315 | 0.048* | |
C8 | 0.1940 (3) | 0.7837 (2) | 0.33556 (15) | 0.0506 (5) | |
H8 | 0.1454 | 0.7811 | 0.2683 | 0.061* | |
C9 | 0.1619 (3) | 0.8964 (3) | 0.40891 (17) | 0.0568 (6) | |
H9 | 0.0872 | 0.9688 | 0.3918 | 0.068* | |
C10 | 0.2409 (3) | 0.9008 (2) | 0.50707 (15) | 0.0482 (5) | |
H10 | 0.2217 | 0.9766 | 0.557 | 0.058* | |
C11 | 0.3586 (4) | 0.8295 (2) | 0.9359 (2) | 0.0680 (7) | |
H11A | 0.4881 | 0.8317 | 0.9499 | 0.102* | |
H11B | 0.3188 | 0.9096 | 0.979 | 0.102* | |
H11C | 0.321 | 0.839 | 0.8669 | 0.102* | |
C12 | 0.2784 (4) | 0.6878 (2) | 0.95455 (17) | 0.0560 (6) | |
H12A | 0.3177 | 0.676 | 1.0238 | 0.067* | |
H12B | 0.1475 | 0.6855 | 0.9424 | 0.067* | |
C13 | 0.2780 (2) | 0.43072 (17) | 0.87862 (12) | 0.0315 (3) | |
C14 | 0.2105 (2) | 0.37033 (18) | 0.95387 (12) | 0.0335 (3) | |
C15 | 0.2291 (3) | 0.4382 (2) | 1.05654 (13) | 0.0417 (4) | |
C16 | 0.2916 (2) | 0.34824 (18) | 0.78366 (12) | 0.0344 (4) | |
C17 | 0.3030 (3) | 0.42011 (19) | 0.70040 (13) | 0.0377 (4) | |
C18 | 0.1052 (3) | 0.2327 (2) | 0.92985 (13) | 0.0415 (4) | |
C19 | 0.3079 (3) | 0.1948 (2) | 0.76699 (13) | 0.0407 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.04112 (17) | 0.02558 (14) | 0.02394 (14) | 0.00860 (11) | 0.00108 (11) | −0.00461 (10) |
N1 | 0.0365 (7) | 0.0290 (6) | 0.0257 (6) | 0.0051 (5) | 0.0044 (5) | −0.0037 (5) |
N2 | 0.0445 (8) | 0.0299 (7) | 0.0270 (7) | 0.0121 (6) | 0.0069 (6) | −0.0056 (5) |
N3 | 0.0402 (7) | 0.0299 (6) | 0.0231 (6) | 0.0083 (6) | 0.0039 (5) | 0.0018 (5) |
O1 | 0.0580 (8) | 0.0292 (6) | 0.0501 (8) | −0.0050 (6) | 0.0255 (6) | −0.0082 (5) |
N5 | 0.0958 (16) | 0.0746 (14) | 0.0308 (9) | −0.0078 (12) | 0.0136 (9) | −0.0077 (9) |
N6 | 0.0751 (12) | 0.0427 (9) | 0.0402 (9) | 0.0118 (8) | 0.0270 (8) | 0.0065 (7) |
N7 | 0.1046 (17) | 0.0401 (10) | 0.0621 (12) | −0.0155 (10) | 0.0345 (12) | −0.0062 (9) |
N8 | 0.1070 (16) | 0.0381 (9) | 0.0497 (10) | 0.0243 (10) | 0.0317 (11) | 0.0004 (8) |
C1 | 0.0411 (9) | 0.0237 (7) | 0.0246 (7) | 0.0038 (6) | 0.0062 (6) | 0.0004 (6) |
C2 | 0.0569 (11) | 0.0287 (8) | 0.0331 (9) | 0.0042 (8) | 0.0005 (8) | −0.0069 (7) |
C3 | 0.0535 (12) | 0.0390 (10) | 0.0490 (11) | −0.0008 (9) | −0.0125 (9) | −0.0061 (8) |
C4 | 0.0383 (10) | 0.0434 (10) | 0.0579 (12) | 0.0025 (8) | −0.0034 (9) | 0.0004 (9) |
C5 | 0.0378 (9) | 0.0376 (9) | 0.0411 (9) | 0.0069 (7) | 0.0072 (7) | −0.0004 (7) |
C6 | 0.0370 (8) | 0.0295 (8) | 0.0297 (8) | 0.0084 (6) | 0.0080 (6) | 0.0029 (6) |
C7 | 0.0500 (10) | 0.0451 (10) | 0.0246 (8) | 0.0065 (8) | 0.0035 (7) | 0.0037 (7) |
C8 | 0.0548 (12) | 0.0627 (13) | 0.0359 (10) | 0.0155 (10) | 0.0006 (9) | 0.0162 (9) |
C9 | 0.0601 (13) | 0.0600 (13) | 0.0559 (13) | 0.0299 (11) | 0.0059 (10) | 0.0221 (10) |
C10 | 0.0575 (12) | 0.0427 (10) | 0.0474 (11) | 0.0248 (9) | 0.0119 (9) | 0.0064 (8) |
C11 | 0.0748 (16) | 0.0323 (10) | 0.0917 (19) | −0.0020 (10) | 0.0112 (14) | −0.0005 (11) |
C12 | 0.0835 (16) | 0.0299 (9) | 0.0549 (12) | 0.0032 (9) | 0.0289 (11) | −0.0086 (8) |
C13 | 0.0350 (8) | 0.0281 (7) | 0.0295 (8) | 0.0034 (6) | 0.0076 (6) | −0.0030 (6) |
C14 | 0.0420 (9) | 0.0317 (8) | 0.0255 (7) | 0.0056 (7) | 0.0072 (7) | −0.0017 (6) |
C15 | 0.0478 (10) | 0.0447 (10) | 0.0307 (9) | 0.0008 (8) | 0.0082 (8) | 0.0005 (7) |
C16 | 0.0458 (10) | 0.0290 (8) | 0.0298 (8) | 0.0060 (7) | 0.0140 (7) | 0.0003 (6) |
C17 | 0.0495 (10) | 0.0309 (8) | 0.0349 (9) | 0.0077 (7) | 0.0183 (8) | −0.0010 (7) |
C18 | 0.0612 (12) | 0.0335 (9) | 0.0317 (9) | 0.0058 (8) | 0.0172 (8) | 0.0009 (7) |
C19 | 0.0586 (11) | 0.0349 (9) | 0.0308 (8) | 0.0107 (8) | 0.0166 (8) | 0.0004 (7) |
Cu1—N1 | 2.0196 (13) | C4—C5 | 1.367 (3) |
Cu1—N1i | 2.0196 (13) | C4—H4 | 0.93 |
Cu1—N3i | 2.0196 (13) | C5—H5 | 0.93 |
Cu1—N3 | 2.0196 (13) | C6—C10 | 1.400 (2) |
Cu1—N6i | 2.4828 (16) | C7—C8 | 1.363 (3) |
Cu1—N6 | 2.4828 (16) | C7—H7 | 0.93 |
N1—C1 | 1.3374 (19) | C8—C9 | 1.383 (3) |
N1—C5 | 1.359 (2) | C8—H8 | 0.93 |
N2—C6 | 1.386 (2) | C9—C10 | 1.372 (3) |
N2—C1 | 1.386 (2) | C9—H9 | 0.93 |
N2—H2 | 0.85 (2) | C10—H10 | 0.93 |
N3—C6 | 1.339 (2) | C11—C12 | 1.484 (3) |
N3—C7 | 1.358 (2) | C11—H11A | 0.96 |
O1—C13 | 1.335 (2) | C11—H11B | 0.96 |
O1—C12 | 1.436 (2) | C11—H11C | 0.96 |
N5—C15 | 1.142 (2) | C12—H12A | 0.97 |
N6—C17 | 1.149 (2) | C12—H12B | 0.97 |
N7—C18 | 1.140 (3) | C13—C14 | 1.389 (2) |
N8—C19 | 1.145 (2) | C13—C16 | 1.416 (2) |
C1—C2 | 1.400 (2) | C14—C18 | 1.422 (2) |
C2—C3 | 1.366 (3) | C14—C15 | 1.423 (2) |
C2—H2A | 0.93 | C16—C19 | 1.413 (2) |
C3—C4 | 1.385 (3) | C16—C17 | 1.413 (2) |
C3—H3 | 0.93 | ||
N1—Cu1—N1i | 180.0 | N3—C6—N2 | 119.59 (14) |
N1—Cu1—N3i | 94.54 (5) | N3—C6—C10 | 121.57 (16) |
N1i—Cu1—N3i | 85.46 (5) | N2—C6—C10 | 118.82 (15) |
N1—Cu1—N3 | 85.46 (5) | N3—C7—C8 | 123.29 (17) |
N1i—Cu1—N3 | 94.54 (5) | N3—C7—H7 | 118.4 |
N3i—Cu1—N3 | 180.00 (7) | C8—C7—H7 | 118.4 |
N1—Cu1—N6i | 88.19 (6) | C7—C8—C9 | 118.40 (18) |
N1i—Cu1—N6i | 91.82 (6) | C7—C8—H8 | 120.8 |
N3i—Cu1—N6i | 92.15 (6) | C9—C8—H8 | 120.8 |
N3—Cu1—N6i | 87.85 (6) | C10—C9—C8 | 119.61 (18) |
N1—Cu1—N6 | 91.81 (6) | C10—C9—H9 | 120.2 |
N1i—Cu1—N6 | 88.18 (6) | C8—C9—H9 | 120.2 |
N3i—Cu1—N6 | 87.85 (6) | C9—C10—C6 | 119.00 (18) |
N3—Cu1—N6 | 92.15 (6) | C9—C10—H10 | 120.5 |
N6i—Cu1—N6 | 180.0 | C6—C10—H10 | 120.5 |
C1—N1—C5 | 117.73 (14) | C12—C11—H11A | 109.5 |
C1—N1—Cu1 | 120.69 (11) | C12—C11—H11B | 109.5 |
C5—N1—Cu1 | 120.93 (11) | H11A—C11—H11B | 109.5 |
C6—N2—C1 | 124.60 (14) | C12—C11—H11C | 109.5 |
C6—N2—H2 | 113.2 (14) | H11A—C11—H11C | 109.5 |
C1—N2—H2 | 113.6 (14) | H11B—C11—H11C | 109.5 |
C6—N3—C7 | 117.92 (14) | O1—C12—C11 | 107.53 (18) |
C6—N3—Cu1 | 121.18 (11) | O1—C12—H12A | 110.2 |
C7—N3—Cu1 | 120.73 (11) | C11—C12—H12A | 110.2 |
C13—O1—C12 | 122.75 (14) | O1—C12—H12B | 110.2 |
C17—N6—Cu1 | 141.76 (15) | C11—C12—H12B | 110.2 |
N1—C1—N2 | 119.24 (14) | H12A—C12—H12B | 108.5 |
N1—C1—C2 | 121.84 (16) | O1—C13—C14 | 124.44 (14) |
N2—C1—C2 | 118.89 (14) | O1—C13—C16 | 112.14 (15) |
C3—C2—C1 | 119.08 (17) | C14—C13—C16 | 123.42 (15) |
C3—C2—H2A | 120.5 | C13—C14—C18 | 120.00 (15) |
C1—C2—H2A | 120.5 | C13—C14—C15 | 125.50 (16) |
C2—C3—C4 | 119.39 (17) | C18—C14—C15 | 114.42 (16) |
C2—C3—H3 | 120.3 | N5—C15—C14 | 176.1 (2) |
C4—C3—H3 | 120.3 | C19—C16—C17 | 115.91 (14) |
C5—C4—C3 | 118.66 (18) | C19—C16—C13 | 123.65 (16) |
C5—C4—H4 | 120.7 | C17—C16—C13 | 120.29 (15) |
C3—C4—H4 | 120.7 | N6—C17—C16 | 177.3 (2) |
N1—C5—C4 | 122.93 (17) | N7—C18—C14 | 176.8 (2) |
N1—C5—H5 | 118.5 | N8—C19—C16 | 176.7 (2) |
C4—C5—H5 | 118.5 | ||
C5—N1—C1—N2 | 170.75 (15) | C6—N3—C7—C8 | −3.4 (3) |
Cu1—N1—C1—N2 | −18.4 (2) | Cu1—N3—C7—C8 | 172.08 (16) |
C5—N1—C1—C2 | −7.2 (2) | N3—C7—C8—C9 | −0.4 (3) |
Cu1—N1—C1—C2 | 163.65 (13) | C7—C8—C9—C10 | 2.5 (4) |
C6—N2—C1—N1 | −33.7 (2) | C8—C9—C10—C6 | −0.8 (3) |
C6—N2—C1—C2 | 144.31 (17) | N3—C6—C10—C9 | −3.1 (3) |
N1—C1—C2—C3 | 4.7 (3) | N2—C6—C10—C9 | 175.5 (2) |
N2—C1—C2—C3 | −173.20 (18) | C13—O1—C12—C11 | −174.33 (19) |
C1—C2—C3—C4 | 0.8 (3) | C12—O1—C13—C14 | −25.1 (3) |
C2—C3—C4—C5 | −3.5 (3) | C12—O1—C13—C16 | 155.17 (18) |
C1—N1—C5—C4 | 4.4 (3) | O1—C13—C14—C18 | 162.61 (17) |
Cu1—N1—C5—C4 | −166.43 (16) | C16—C13—C14—C18 | −17.7 (3) |
C3—C4—C5—N1 | 0.9 (3) | O1—C13—C14—C15 | −14.0 (3) |
C7—N3—C6—N2 | −173.51 (16) | C16—C13—C14—C15 | 165.63 (18) |
Cu1—N3—C6—N2 | 11.1 (2) | O1—C13—C16—C19 | 153.95 (18) |
C7—N3—C6—C10 | 5.1 (3) | C14—C13—C16—C19 | −25.7 (3) |
Cu1—N3—C6—C10 | −170.32 (15) | O1—C13—C16—C17 | −21.4 (2) |
C1—N2—C6—N3 | 37.9 (2) | C14—C13—C16—C17 | 158.95 (18) |
C1—N2—C6—C10 | −140.78 (18) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···N8ii | 0.85 (2) | 2.18 (2) | 3.020 (2) | 171.2 (19) |
C7—H7···N5iii | 0.93 | 2.43 | 3.234 (2) | 145 |
C10—H10···N8ii | 0.93 | 2.62 | 3.385 (3) | 140 |
C12—H12A···N5 | 0.97 | 2.64 | 3.404 (3) | 136 |
Symmetry codes: (ii) x, y+1, z; (iii) x, y, z−1. |
Footnotes
‡Additional correspondence author, e-mail: fatima.setifi@univ-setif.dz.
Acknowledgements
Author contributions are as follows. Conceptualization, ZS and MHAD; methodology, ZS and MHAD; investigation, YS and AS; writing (original draft), DKG and ZS; writing (review and editing of the manuscript), DKG, FS and ZS; visualization, ZS and DKG; funding acquisition, ZS and MHAD; resources, FS; supervision, FS.
Funding information
Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique); the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique; PRFU project (grant No. B00L01UN190120230003).
References
Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S. & Coronado, E. (2008). Inorg. Chim. Acta, 361, 3856–3862. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271. Web of Science CSD CrossRef PubMed CAS Google Scholar
Setifi, F., Benmansour, S., Triki, S., Gómez-García, C. J., Marchivie, M., Salaün, J.-Y. & Mustapha, M. (2007). Inorg. Chim. Acta, 360, 3879–3886. CrossRef CAS Google Scholar
Setifi, F., Bouchama, A., Sala-Pala, J., Salaün, J.-Y. & Triki, S. (2006). Inorg. Chim. Acta, 359, 3269–3274. Web of Science CSD CrossRef CAS Google Scholar
Setifi, F., Charles, C., Houille, S., Thétiot, F., Triki, S., Gómez-García, C. J. & Pillet, S. (2013). Polyhedron, 61, 242–247. Web of Science CSD CrossRef CAS Google Scholar
Setifi, Z., Setifi, F., El Ammari, L., El-Ghozzi, M., Sopková-de Oliveira Santos, J., Merazig, H. & Glidewell, C. (2014). Acta Cryst. C70, 19–22. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Thétiot, F., Triki, S. & Sala Pala, J. (2003). Polyhedron, 22, 1837–1843. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.