organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(3-Nitro­phen­yl)-1-[4-(prop-2-yn­yl­oxy)phen­yl]prop-2-en-1-one

crossmark logo

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, cThomas Jefferson High School for Science and Technology, 6560 Braddock Rd, Alexandria VA 22312, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 19 September 2022; accepted 29 September 2022; online 4 October 2022)

The structure of the title compound, C18H13NO4, shows that the whole mol­ecule is almost planar but with a dihedral angle between the two phenyl rings of 19.22 (5)°. The mol­ecules are linked by C—H⋯O inter­actions, forming sheets in the (21[\overline{1}]) plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones are among the leading bioactive flavonoids, with a therapeutic potential implicated to an array of bioactivities that have been investigated by a series of pre­clinical and clinical studies. They contain an α-β unsaturated carbonyl system, which is present in open-chain form, and two aromatic rings are joined through three-carbon atoms (Kozlowski et al., 2007[Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R. & Duroux, J. L. (2007). J. Phys. Chem. A, 111, 1138-1145.]; Raghav & Garg, 2014[Raghav, N. & Garg, S. (2014). Eur. J. Pharm. Sci. 60, 55-63.]). Studies depicting the biological activities of chalcones and their derivatives describe their immense significance as anti­diabetic, anti­cancer, anti-inflammatory, anti­microbial, anti­oxidant, anti­parasitic, psychoactive and neuroprotective agents, and their anti­oxidant and enzyme inhibitory activities (Lin et al., 2002[Lin, Y.-M., Zhou, Y., Flavin, M. T., Zhou, L.-M., Nie, W. & Chen, F.-C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]; Bhat et al., 2005[Bhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177-3180.]; Trivedi et al., 2007[Trivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472-8474.]; Lahtchev et al., 2008[Lahtchev, K. L., Batovska, D. I., Parushev, P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220-2228.]; Aneja et al., 2018[Aneja, B., Arif, R., Perwez, A., Napoleon, J. V., Hassan, P., Rizvi, M. M. A., Azam, A., Rahisuddin & Abid, M. (2018). ChemistrySelect, 2018, 3, 2638-2645.]).

Chalcone as a privileged structure in medicinal chemistry has been reviewed by Zhuang et al. (2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]). A comprehensive review of chalcone derivatives as anti­leishmanial agents has also been published (de Mello et al., 2018[Mello, M. V. P. de, Abrahim-Vieira, B. A., Domingos, T. F. S., de Jesus, J. B., de Sousa, A. C. C., Rodrigues, C. R. & Souza, A. M. T. (2018). Eur. J. Med. Chem. 150, 920-929.]). The crystal structures of (2E)-1-(4-meth­ylphen­yl)-3-(4-nitro­phen­yl)prop-2-en-1-one (Butcher et al., 2007[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007). Acta Cryst. E63, o3680.]), (2E)-1-(3-bromo­phen­yl)-3-(4,5-dimeth­oxy-2-nitro­phen­yl)prop-2-en-1-one (Jasinski et al., 2010[Jasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2936-o2937.]), (2E)-3-(3-nitro­phen­yl)-1-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one (Fun et al., 2012[Fun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o974.]) and 4′-di­meth­ylamino-3-nitro­chalcone, 3-di­meth­ylamino-3′-nitro­chalcone and 3′-nitro­chalcone (Hall et al., 2020[Hall, C. L., Hamilton, V., Potticary, J., Cremeens, M. E., Pridmore, N. E., Sparkes, H. A., D'ambruoso, G. D., Warren, S. D., Matsumoto, M. & Hall, S. R. (2020). Acta Cryst. E76, 1599-1604.]) have been reported.

The present work describes the synthesis and crystal structure of the title compound 3-(3-nitro­phen­yl)-1-[4-(prop-2-yn­yloxy)phen­yl]prop-2-en-1-one (Fig. 1[link]), which crystallizes in the triclinic space group P[\overline{1}] with one mol­ecule in the asymmetric unit. It consists both a 3-nitro­phenyl group and a (prop-2-yn-1-yl­oxy)benzene group linked to a central chalcone moiety. Even though the C—N bond length is 1.4706 (17) Å and thus single, the nitro group is almost coplanar with its phenyl ring [dihedral angle of 18.94 (6)°] as a result of the steric clash between O1 and H4 and between O2 and H2, respectively. The chalcone group is planar (average deviation from plane of 0.004 Å) and makes dihedral angles of 7.69 (8) and 10.96 (6)° with the 3-nitro­phenyl ring and the phenyl ring of the (prop-2-yn-1-yl­oxy)benzene group, respectively. Lastly, the twist between the two phenyl rings which are linked by the chalcone is 19.22 (5)°.

[Figure 1]
Figure 1
Diagram of mol­ecules showing the atom-labelling scheme. Atomic displacement parameters are at the 30% probability level.

The mol­ecules are linked by C–H⋯O inter­actions (Table 1[link]), which form sheets in the (21[\overline{1}]) plane as shown in Fig. 2[link]. There are no ππ inter­actions between the phenyl rings.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O2i 0.901 (18) 2.519 (18) 3.3927 (18) 163.6 (15)
Symmetry code: (i) [x-1, y+2, z].
[Figure 2]
Figure 2
Packing diagram for the title compound showing the C–H⋯O inter­actions linking the mol­ecules into sheets in the (21[\overline{1}]) plane.

Synthesis and crystallization

A well-stirred solution of 1-[4-(prop-2-yn­yloxy)phen­yl]ethan­one (1 g, 1 mmol) in 20 ml of ethanol was added slowly to alcoholic potassium hydroxide (0.48 g, 1.5 mmol). To this solution, m-nitro benzaldehyde (1.03 g, 1.2 mmol) was added. The resulting mixture was stirred at room temperature for 30 min. Then, the separated solid from the reaction mixture was filtered, washed with cold water, dried and recrystallized from ethanol:di­methyl­formamide mixture (9:1). Golden yellow crystals (yield: 86%, m.p. 453–454 K). The reaction scheme is shown in Fig. 3[link]. FT–IR: νmax, cm−1 (KBr): 2987 (C—H aliphatic), 2117 (C≡C str), 1650 (C=O), 1518 (asym NO2 stretch),1444 (sym NO2 stretch), 1252 (C—O stretch); 1H NMR (400 MHz, CDCl3, δ p.p.m.): 7.55 (d, 1H, J = 15.7 Hz, olefinic-β), 7.36 (d, 2H, J = 8.8 Hz, Ar—H), 7.28 (d, 2H, J = 8.6 Hz, Ar—H), 7.16 (d, 2H, J = 8.8 Hz, Ar—H), 7.09 (d, 2H, J = 8.3 Hz, Ar—H), 6.73 (d, 1H, J = 15.7 Hz, olefinic-α), 4.46 (s, 2H, O—CH2), 2.79 (s, 1H, acetyl­ene proton).

[Figure 3]
Figure 3
Reaction scheme for the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H13NO4
Mr 307.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.6534 (16), 8.6079 (15), 11.369 (2)
α, β, γ (°) 94.433 (7), 97.953 (8), 97.019 (7)
V3) 732.8 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.33 × 0.19 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.634, 0.729
No. of measured, independent and observed [I > 2σ(I)] reflections 47166, 3638, 2700
Rint 0.089
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.08
No. of reflections 3638
No. of parameters 212
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-(3-Nitrophenyl)-1-[4-(prop-2-ynyloxy)phenyl]prop-2-en-1-one top
Crystal data top
C18H13NO4Z = 2
Mr = 307.29F(000) = 320
Triclinic, P1Dx = 1.393 Mg m3
a = 7.6534 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.6079 (15) ÅCell parameters from 9976 reflections
c = 11.369 (2) Åθ = 2.7–32.9°
α = 94.433 (7)°µ = 0.10 mm1
β = 97.953 (8)°T = 100 K
γ = 97.019 (7)°Prism, yellow
V = 732.8 (3) Å30.33 × 0.19 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
2700 reflections with I > 2σ(I)
φ and ω scansRint = 0.089
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.3°, θmin = 2.4°
Tmin = 0.634, Tmax = 0.729h = 1010
47166 measured reflectionsk = 1110
3638 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.1082P]
where P = (Fo2 + 2Fc2)/3
3638 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The acetylenic H atom was freely refined. All remaining hydrogen atoms were placed geometrically and refined as riding atoms with their Uiso values 1.2 times that of their attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8224 (2)0.53179 (13)0.40582 (11)0.0732 (4)
O20.78869 (16)0.48667 (12)0.22192 (10)0.0557 (3)
O30.38666 (16)0.19330 (12)0.03294 (9)0.0557 (3)
O40.12863 (14)0.82184 (10)0.22678 (8)0.0419 (3)
N10.79204 (16)0.44535 (13)0.32710 (11)0.0436 (3)
C10.63484 (18)0.05300 (15)0.30785 (12)0.0358 (3)
C20.67213 (17)0.20372 (14)0.27518 (11)0.0342 (3)
H2A0.6397840.2496150.1951970.041*
C30.75705 (18)0.28509 (15)0.36138 (12)0.0362 (3)
C40.8101 (2)0.22355 (17)0.47820 (12)0.0446 (3)
H4A0.8689610.2824140.5350110.054*
C50.7751 (2)0.07331 (18)0.51018 (13)0.0518 (4)
H5A0.8110260.0272520.5898740.062*
C60.6882 (2)0.00972 (17)0.42650 (13)0.0469 (4)
H6A0.6638920.1122330.4500780.056*
C70.54529 (18)0.03375 (15)0.21647 (12)0.0378 (3)
H7A0.5249320.0138830.1367070.045*
C80.49007 (19)0.17290 (15)0.23512 (12)0.0402 (3)
H8A0.5051670.2224440.3141550.048*
C90.40553 (19)0.25253 (15)0.13558 (12)0.0386 (3)
C100.34071 (18)0.40617 (14)0.16303 (11)0.0345 (3)
C110.32576 (18)0.46816 (15)0.27815 (11)0.0366 (3)
H11A0.3658270.4147620.3447420.044*
C120.25357 (19)0.60589 (15)0.29624 (11)0.0382 (3)
H12A0.2424770.6457570.3747490.046*
C130.19719 (17)0.68610 (14)0.19960 (11)0.0343 (3)
C140.2132 (2)0.62771 (16)0.08447 (12)0.0418 (3)
H14A0.1760330.6826470.0181010.050*
C150.2840 (2)0.48861 (16)0.06802 (12)0.0418 (3)
H15A0.2939850.4484100.0106170.050*
C160.0652 (2)0.90385 (15)0.12751 (12)0.0412 (3)
H16A0.0372440.8383770.0769850.049*
H16B0.1606400.9261810.0781940.049*
C170.01114 (18)1.05106 (15)0.17380 (12)0.0397 (3)
C180.0334 (2)1.17155 (17)0.20482 (14)0.0466 (4)
H18A0.067 (2)1.266 (2)0.2248 (15)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1189 (11)0.0461 (6)0.0560 (7)0.0324 (7)0.0072 (7)0.0173 (5)
O20.0791 (8)0.0448 (6)0.0449 (6)0.0280 (5)0.0012 (5)0.0014 (5)
O30.0887 (9)0.0452 (6)0.0366 (6)0.0323 (6)0.0041 (5)0.0009 (4)
O40.0605 (6)0.0339 (5)0.0339 (5)0.0210 (4)0.0040 (4)0.0022 (4)
N10.0506 (7)0.0363 (6)0.0440 (7)0.0146 (5)0.0018 (5)0.0069 (5)
C10.0395 (7)0.0333 (6)0.0357 (7)0.0103 (5)0.0049 (5)0.0040 (5)
C20.0384 (7)0.0328 (6)0.0316 (6)0.0087 (5)0.0027 (5)0.0026 (5)
C30.0397 (7)0.0333 (6)0.0372 (7)0.0102 (5)0.0052 (5)0.0063 (5)
C40.0535 (8)0.0465 (8)0.0352 (7)0.0153 (6)0.0012 (6)0.0090 (6)
C50.0691 (10)0.0530 (9)0.0320 (7)0.0183 (7)0.0018 (7)0.0026 (6)
C60.0633 (9)0.0391 (7)0.0388 (7)0.0179 (7)0.0032 (6)0.0021 (6)
C70.0457 (7)0.0333 (6)0.0353 (7)0.0121 (5)0.0040 (5)0.0016 (5)
C80.0514 (8)0.0340 (7)0.0359 (7)0.0148 (6)0.0025 (6)0.0014 (5)
C90.0484 (8)0.0324 (6)0.0366 (7)0.0130 (5)0.0061 (6)0.0021 (5)
C100.0406 (7)0.0296 (6)0.0339 (6)0.0096 (5)0.0038 (5)0.0025 (5)
C110.0472 (7)0.0324 (6)0.0317 (6)0.0115 (5)0.0037 (5)0.0066 (5)
C120.0514 (8)0.0343 (6)0.0299 (6)0.0109 (6)0.0064 (5)0.0014 (5)
C130.0396 (7)0.0281 (6)0.0352 (6)0.0090 (5)0.0033 (5)0.0007 (5)
C140.0596 (9)0.0371 (7)0.0307 (6)0.0188 (6)0.0018 (6)0.0047 (5)
C150.0603 (9)0.0365 (7)0.0305 (6)0.0177 (6)0.0044 (6)0.0011 (5)
C160.0526 (8)0.0343 (7)0.0368 (7)0.0160 (6)0.0016 (6)0.0028 (5)
C170.0429 (7)0.0361 (7)0.0408 (7)0.0107 (6)0.0019 (6)0.0062 (5)
C180.0518 (9)0.0378 (7)0.0527 (9)0.0170 (6)0.0063 (7)0.0052 (6)
Geometric parameters (Å, º) top
O1—N11.2232 (15)C8—C91.4815 (18)
O2—N11.2168 (16)C8—H8A0.9500
O3—C91.2189 (16)C9—C101.4940 (17)
O4—C131.3693 (14)C10—C151.3866 (17)
O4—C161.4362 (15)C10—C111.3997 (18)
N1—C31.4706 (17)C11—C121.3809 (17)
C1—C21.3957 (17)C11—H11A0.9500
C1—C61.3996 (19)C12—C131.3888 (17)
C1—C71.4680 (18)C12—H12A0.9500
C2—C31.3838 (17)C13—C141.3924 (18)
C2—H2A0.9500C14—C151.3835 (18)
C3—C41.3780 (19)C14—H14A0.9500
C4—C51.384 (2)C15—H15A0.9500
C4—H4A0.9500C16—C171.4627 (18)
C5—C61.380 (2)C16—H16A0.9900
C5—H5A0.9500C16—H16B0.9900
C6—H6A0.9500C17—C181.1746 (19)
C7—C81.3295 (17)C18—H18A0.901 (18)
C7—H7A0.9500
C13—O4—C16116.23 (10)O3—C9—C10120.22 (12)
O2—N1—O1122.80 (12)C8—C9—C10118.90 (11)
O2—N1—C3118.79 (11)C15—C10—C11118.06 (11)
O1—N1—C3118.40 (12)C15—C10—C9117.85 (11)
C2—C1—C6118.12 (12)C11—C10—C9124.01 (11)
C2—C1—C7118.90 (11)C12—C11—C10120.89 (11)
C6—C1—C7122.97 (12)C12—C11—H11A119.6
C3—C2—C1118.80 (12)C10—C11—H11A119.6
C3—C2—H2A120.6C11—C12—C13119.98 (12)
C1—C2—H2A120.6C11—C12—H12A120.0
C4—C3—C2123.22 (12)C13—C12—H12A120.0
C4—C3—N1118.22 (11)O4—C13—C12115.58 (11)
C2—C3—N1118.56 (11)O4—C13—C14124.35 (11)
C3—C4—C5117.94 (12)C12—C13—C14120.07 (11)
C3—C4—H4A121.0C15—C14—C13119.11 (12)
C5—C4—H4A121.0C15—C14—H14A120.4
C6—C5—C4120.11 (13)C13—C14—H14A120.4
C6—C5—H5A119.9C14—C15—C10121.89 (12)
C4—C5—H5A119.9C14—C15—H15A119.1
C5—C6—C1121.80 (13)C10—C15—H15A119.1
C5—C6—H6A119.1O4—C16—C17108.45 (11)
C1—C6—H6A119.1O4—C16—H16A110.0
C8—C7—C1125.96 (12)C17—C16—H16A110.0
C8—C7—H7A117.0O4—C16—H16B110.0
C1—C7—H7A117.0C17—C16—H16B110.0
C7—C8—C9121.55 (12)H16A—C16—H16B108.4
C7—C8—H8A119.2C18—C17—C16176.40 (14)
C9—C8—H8A119.2C17—C18—H18A177.0 (11)
O3—C9—C8120.87 (12)
C6—C1—C2—C31.0 (2)C7—C8—C9—C10177.91 (13)
C7—C1—C2—C3179.80 (12)O3—C9—C10—C159.4 (2)
C1—C2—C3—C41.3 (2)C8—C9—C10—C15171.57 (13)
C1—C2—C3—N1178.51 (11)O3—C9—C10—C11167.42 (14)
O2—N1—C3—C4161.56 (14)C8—C9—C10—C1111.6 (2)
O1—N1—C3—C418.8 (2)C15—C10—C11—C121.2 (2)
O2—N1—C3—C218.64 (19)C9—C10—C11—C12175.62 (13)
O1—N1—C3—C2160.96 (13)C10—C11—C12—C131.0 (2)
C2—C3—C4—C50.5 (2)C16—O4—C13—C12178.35 (11)
N1—C3—C4—C5179.33 (13)C16—O4—C13—C142.0 (2)
C3—C4—C5—C60.6 (2)C11—C12—C13—O4179.60 (12)
C4—C5—C6—C10.7 (3)C11—C12—C13—C140.1 (2)
C2—C1—C6—C50.1 (2)O4—C13—C14—C15179.70 (13)
C7—C1—C6—C5178.78 (15)C12—C13—C14—C150.7 (2)
C2—C1—C7—C8175.05 (13)C13—C14—C15—C100.5 (2)
C6—C1—C7—C86.3 (2)C11—C10—C15—C140.4 (2)
C1—C7—C8—C9178.18 (13)C9—C10—C15—C14176.58 (13)
C7—C8—C9—O31.1 (2)C13—O4—C16—C17175.40 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O2i0.901 (18)2.519 (18)3.3927 (18)163.6 (15)
Symmetry code: (i) x1, y+2, z.
 

Acknowledgements

V is grateful to the DST–PURSE Project, Vignan Bhavana, UOM, for providing research facilities.

Funding information

HSY and BK are grateful to UGC, New Delhi, for the award of BSR Faculty Fellowship.

References

First citationAneja, B., Arif, R., Perwez, A., Napoleon, J. V., Hassan, P., Rizvi, M. M. A., Azam, A., Rahisuddin & Abid, M. (2018). ChemistrySelect, 2018, 3, 2638-2645.  Google Scholar
First citationBhat, B. A., Dhar, K. L., Puri, S. C., Saxena, A. K., Shanmugavel, M. & Qazi, G. N. (2005). Bioorg. Med. Chem. Lett. 15, 3177–3180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Veena, K. & Narayana, B. (2007). Acta Cryst. E63, o3680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o974.  CSD CrossRef IUCr Journals Google Scholar
First citationHall, C. L., Hamilton, V., Potticary, J., Cremeens, M. E., Pridmore, N. E., Sparkes, H. A., D'ambruoso, G. D., Warren, S. D., Matsumoto, M. & Hall, S. R. (2020). Acta Cryst. E76, 1599–1604.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Chidan Kumar, C. S., Yathirajan, H. S. & Mayekar, A. N. (2010). Acta Cryst. E66, o2936–o2937.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R. & Duroux, J. L. (2007). J. Phys. Chem. A, 111, 1138–1145.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLahtchev, K. L., Batovska, D. I., Parushev, P., Ubiyvovk, V. M. & Sibirny, A. A. (2008). Eur. J. Med. Chem. 43, 2220–2228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLin, Y.-M., Zhou, Y., Flavin, M. T., Zhou, L.-M., Nie, W. & Chen, F.-C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMello, M. V. P. de, Abrahim-Vieira, B. A., Domingos, T. F. S., de Jesus, J. B., de Sousa, A. C. C., Rodrigues, C. R. & Souza, A. M. T. (2018). Eur. J. Med. Chem. 150, 920–929.  Web of Science PubMed Google Scholar
First citationRaghav, N. & Garg, S. (2014). Eur. J. Pharm. Sci. 60, 55–63.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrivedi, J. C., Bariwal, J. B., Upadhyay, K. D., Naliapara, Y. T., Joshi, S. K., Pannecouque, C. C., De Clercq, E. & Shah, A. K. (2007). Tetrahedron Lett. 48, 8472–8474.  Web of Science CrossRef CAS Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146