metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,5-Diferrocenyl-1,2-di­thiole-3-thione

crossmark logo

aFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico
*Correspondence e-mail: eiklimova@yahoo.com.mx

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 25 September 2022; accepted 18 October 2022; online 25 October 2022)

The structure of 4,5-diferrocenyl-1,2-di­thiole-3-thione, [Fe2(C5H5)2(C13H8S3)] or C23H18Fe2S3, at 130 K has monoclinic (P21/c) symmetry. The molecule has two ferrocenyl units attached to a 1,2-di­thiole-3-thione moiety. It is of inter­est with respect to the question if the introduction of ferrocenyl substituents into biologically active mol­ecules offers the potential to obtain more efficacious therapeutic drugs. The crystal structure displays inter­molecular contacts of the C—H⋯S and S—π(C—C) types.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Ferrocene is known for its stable sandwich structure. The incorporation of ferrocene into biological mol­ecules offers the potential to develop better and more efficacious therapeutic drugs. 1,2-Di­thiole-3-thio­nes show significant biological activity, which include, amongst others, anti­tumour, anti­oxidant, chemotherapeutic, anti­thrombotic and radio-protective properties (Rakitin, 2021[Rakitin, O. A. (2021). Molecules, 26, 3595-3638.]). The 1,2-di­thiole-3-thione moiety can be found in commercial drugs, such as Oltipraz (Maxuitenko et al., 1998[Maxuitenko, Y., Libby, A. H., Joyner, H. H., Curphey, T. J., MacMillan, D. L., Kensler, T. W. & Roebuck, B. D. (1998). Carcinogenesis, 19, 1609-1615.]), anethole di­thiol­ethione ADT (Chen et al., 2010[Chen, P., Luo, Y., Hai, L., Qian, S. & Wu, Y. (2010). Eur. J. Med. Chem. 45, 3005-3010.]), S-Danshensu (Bian et al., 2012[Bian, J., Cai, Z. & Wu, H. (2012). CN Patent 102417501 A, 1.]) and NOSH-1 (Jia et al., 2013[Jia, J., Xiao, Y., Wang, W., Qing, L., Xu, Y., Song, H., Zhen, X., Ao, G., Alkayed, N. J. & Cheng, J. (2013). Neurochem. Int. 62, 1072-1078.]). The synthons can be useful for many sulfur heterocycles (Konstanti­nova et al., 2007[Konstantinova, L. S., Berezin, A. A., Lysov, K. A. & Rakitin, O. A. (2007). Tetrahedron Lett. 48, 5851-5854.]) and their optical properties have been employed for the creation of organic electronic conductors (Yamashita et al., 1998[Yamashita, Y., Tomura, M. & Badruz Zaman, M. (1998). Chem. Commun. pp. 1657-1658.]), photoconductive materials (Perepichka et al., 2001[Perepichka, D. F., Perepichka, I. F., Bryce, M. R., Moore, A. J. & Sokolov, N. I. (2001). Synth. Met. 121, 1487-1488.]) and semiconducting polymers (Hou et al., 2011[Hou, Y., Long, G., Sui, D., Cai, Y., Wan, X., Yu, A. & Chen, Y. (2011). Chem. Commun. 47, 10401-10403.]).

The asymmetric unit of the title compound is constituted by one mol­ecule showing two ferrocenyl units attached to a 1,2-di­thiole-3-thione ring (Fig. 1[link]). The cyclo­penta­dienyl (Cp) rings bonded to the same Fe atom are almost parallel, with angles of 4.06 (2) and 4.24 (2)° between the Cp planes for the ferrocenyl groups of Fe1 and Fe2, respectively. In addition, the Cp rings of each ferrocenyl moiety adopt an eclipsed conformation. The 1,2-di­thiole-3-thione ring is planar, with an r.m.s. deviation of 0.0295 for the plane of the equation −3.79 (2)x + 9.17 (1)y + 10.04 (1)z = 4.21 (1). The angles between the 1,2-di­thiole-3-thione ring and the directly bonded Cp rings (C4–C8 and C14–C18) are 33.31 (3) and 48.16 (2)°. There is an inter­molecular C—H⋯S inter­action (C21—H21⋯S3) of 2.88 Å, with an angle of 139°. Moreover, another inter­molecular inter­action of the S⋯π(C—C) type between the S—S bond and an aromatic C—C bond of one of the Cp rings is observed (S1⋯C6 = 3.22 Å and S2⋯C7 = 3.45 Å) is observed. Fig. 2[link] shows a projection of the crystal structure approximately along [001]. In summary, the packing of the mol­ecules is assumed to be mainly dictated by van der Waals forces.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 70% probability level.
[Figure 2]
Figure 2
The crystal structure of the title compound along the base vector [010], showing the inter­molecular contacts of the S⋯π(C—C) type as dotted turquoise lines.

Synthesis and crystallization

To a mixture of sodium sulfide (10 mmol) and S8 (10 mmol) in ethanol (80 ml) was added 1,2-diferrocenyl­cyclo­propenone (5 mmol) and the solution was stirred at 353 K for 8 h. After the solvent had been removed in vacuo, the resulting residue was purified by column chromatography with alumina using a mixture of hexane and diethyl ether (1:1 v/v). Black crystals of 4,5-diferrocenyl-1,2-di­thiole-3-thione suitable for single-crystal diffraction analysis were obtained by slow evaporation of a saturated di­chloro­methane/hexane (1:1 v/v) solution (yield 50%; m.p. 498–500 K).

1H NMR (400 MHz, CDCl3): δ 4.12 (5H, s, C5H5), 4.18 (5H, s, C5H5), 4.19 (2H, m, C5H4), 4.35 (2H, m, C5H4), 4.38 (2H, m, C5H4), 4.40 (2H, m, C5H4). 13C NMR (75 MHz, CDCl3): δ 67.45 (CH C5H4), 69.71 (C5H5), 69.74 (CH C5H4), 70.14 (CH C5H4), 70.92 (C5H5), 71.45 (CH C5H4), 79.60 (Cipso C5H4), 80.05 (Cipso C5H4), 141.37 (=C), 169.18 (=C), 214.00 (C=S). MS: m/z 502, [M]+ 40. Analysis calculated (%) for C23H18Fe2S3: C 55.02, H 3.61, S 19.15; found: C 55.10, H 3.71, S 19.22.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [Fe2(C5H5)2(C13H8S3)]
Mr 502.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 130
a, b, c (Å) 11.0149 (12), 14.0459 (12), 13.3983 (13)
β (°) 109.205 (12)
V3) 1957.5 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.81
Crystal size (mm) 0.57 × 0.46 × 0.11
 
Data collection
Diffractometer Agilent Xcalibur Atlas Gemini
Absorption correction Analytical (CrysAlis RED; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.486, 0.852
No. of measured, independent and observed [I > 2σ(I)] reflections 10068, 4559, 3445
Rint 0.039
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.079, 1.04
No. of reflections 4559
No. of parameters 253
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.41
Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]), SHELXS2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; Agilent, 2013; data reduction: CrysAlis RED (Agilent, 2013); program(s) used to solve structure: SHELXS2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Mercury (Macrae et al., 2020).

4,5-Diferrocenyl-1,2-dithiole-3-thione top
Crystal data top
[Fe2(C5H5)2(C13H8S3)]F(000) = 1024
Mr = 502.25Dx = 1.704 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2429 reflections
a = 11.0149 (12) Åθ = 3.5–29.5°
b = 14.0459 (12) ŵ = 1.81 mm1
c = 13.3983 (13) ÅT = 130 K
β = 109.205 (12)°Plate, black
V = 1957.5 (4) Å30.57 × 0.46 × 0.11 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini
diffractometer
4559 independent reflections
Graphite monochromator3445 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.039
ω scansθmax = 29.5°, θmin = 3.5°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2013)
h = 1513
Tmin = 0.486, Tmax = 0.852k = 1914
10068 measured reflectionsl = 1618
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.023P)2 + 0.8521P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4559 reflectionsΔρmax = 0.43 e Å3
253 parametersΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4091 (3)0.39934 (18)0.2096 (2)0.0128 (6)
C20.5328 (3)0.38193 (18)0.2754 (2)0.0128 (6)
C30.6322 (3)0.4379 (2)0.2544 (2)0.0173 (6)
C40.5612 (2)0.31407 (19)0.3639 (2)0.0124 (6)
C50.6716 (3)0.25355 (18)0.4048 (2)0.0144 (6)
H50.743280.251350.3802550.017*
C60.6561 (3)0.1977 (2)0.4878 (2)0.0181 (6)
H60.7153440.1518570.5283420.022*
C70.5366 (3)0.22197 (19)0.5000 (2)0.0179 (6)
H70.501790.1951380.5498180.021*
C80.4783 (3)0.29337 (19)0.4246 (2)0.0147 (6)
H80.3977260.3227230.4156830.018*
C90.7111 (3)0.4770 (2)0.5497 (2)0.0194 (7)
H90.6996570.5248670.4973160.023*
C100.6239 (3)0.4545 (2)0.6037 (2)0.0177 (6)
H100.5436270.4848210.5937970.021*
C110.6767 (3)0.3790 (2)0.6750 (2)0.0213 (7)
H110.6380540.3497340.721020.026*
C120.7972 (3)0.3551 (2)0.6656 (2)0.0244 (7)
H120.8537320.3069780.7044880.029*
C130.8192 (3)0.4150 (2)0.5880 (2)0.0238 (7)
H130.8926090.4141170.5656430.029*
C140.2895 (3)0.35130 (19)0.2068 (2)0.0140 (6)
C150.1742 (3)0.3995 (2)0.2065 (2)0.0156 (6)
H150.1626180.4663910.208340.019*
C160.0809 (3)0.3289 (2)0.2032 (2)0.0209 (7)
H160.0039880.3404580.2033190.025*
C170.1353 (3)0.2384 (2)0.1995 (2)0.0209 (7)
H170.0928770.179040.1961540.025*
C180.2636 (3)0.2511 (2)0.2016 (2)0.0176 (6)
H180.3221910.2019260.1999560.021*
C190.1889 (3)0.3340 (2)0.0603 (2)0.0208 (7)
H190.272490.3474470.0624940.025*
C200.1376 (3)0.2426 (2)0.0567 (2)0.0197 (7)
H200.1807140.1839460.0559110.024*
C210.0111 (3)0.2533 (2)0.0543 (2)0.0201 (7)
H210.045850.2031530.0519760.024*
C220.0160 (3)0.3527 (2)0.0560 (2)0.0205 (7)
H220.0941070.3804480.0547270.025*
C230.0941 (3)0.4027 (2)0.0601 (2)0.0201 (7)
H230.1029550.4698850.0622450.024*
Fe10.65338 (4)0.33776 (3)0.52362 (3)0.01289 (11)
Fe20.13851 (4)0.31869 (3)0.07340 (3)0.01267 (11)
S10.38303 (7)0.48864 (5)0.11639 (6)0.01651 (16)
S20.57355 (7)0.52584 (5)0.15958 (6)0.01945 (17)
S30.79134 (7)0.43455 (6)0.30660 (7)0.0298 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0184 (14)0.0122 (13)0.0083 (13)0.0008 (11)0.0049 (12)0.0026 (11)
C20.0153 (14)0.0121 (13)0.0112 (13)0.0026 (11)0.0048 (12)0.0021 (11)
C30.0166 (14)0.0213 (15)0.0137 (14)0.0011 (12)0.0044 (12)0.0015 (13)
C40.0112 (13)0.0131 (13)0.0116 (13)0.0025 (11)0.0020 (11)0.0033 (12)
C50.0159 (14)0.0118 (14)0.0142 (14)0.0005 (11)0.0033 (12)0.0049 (12)
C60.0222 (16)0.0124 (14)0.0139 (14)0.0024 (12)0.0019 (13)0.0014 (12)
C70.0227 (16)0.0153 (14)0.0143 (14)0.0074 (13)0.0042 (13)0.0004 (12)
C80.0121 (14)0.0176 (15)0.0123 (14)0.0036 (12)0.0014 (12)0.0007 (12)
C90.0273 (16)0.0136 (14)0.0138 (14)0.0035 (13)0.0018 (13)0.0043 (12)
C100.0209 (15)0.0171 (15)0.0135 (14)0.0040 (12)0.0033 (12)0.0076 (12)
C110.0293 (17)0.0231 (16)0.0090 (14)0.0015 (14)0.0029 (13)0.0036 (13)
C120.0226 (16)0.0236 (17)0.0182 (16)0.0058 (14)0.0052 (13)0.0077 (14)
C130.0171 (16)0.0279 (17)0.0228 (16)0.0058 (13)0.0016 (13)0.0127 (15)
C140.0145 (14)0.0160 (14)0.0083 (13)0.0002 (12)0.0005 (11)0.0012 (12)
C150.0150 (14)0.0217 (15)0.0082 (13)0.0019 (12)0.0010 (12)0.0047 (12)
C160.0170 (15)0.0377 (19)0.0094 (13)0.0040 (14)0.0061 (12)0.0037 (14)
C170.0213 (16)0.0284 (17)0.0104 (14)0.0082 (14)0.0015 (13)0.0049 (13)
C180.0206 (15)0.0150 (15)0.0137 (14)0.0014 (12)0.0010 (12)0.0012 (12)
C190.0207 (16)0.0318 (18)0.0088 (13)0.0042 (14)0.0033 (12)0.0029 (13)
C200.0248 (16)0.0210 (16)0.0125 (14)0.0025 (13)0.0051 (13)0.0048 (13)
C210.0200 (15)0.0247 (16)0.0105 (14)0.0069 (13)0.0020 (12)0.0014 (13)
C220.0156 (15)0.0280 (17)0.0132 (14)0.0013 (13)0.0016 (12)0.0006 (13)
C230.0244 (17)0.0195 (15)0.0112 (14)0.0047 (13)0.0011 (13)0.0032 (13)
Fe10.0142 (2)0.0121 (2)0.0100 (2)0.00071 (16)0.00085 (17)0.00160 (16)
Fe20.0116 (2)0.0164 (2)0.00860 (19)0.00166 (16)0.00152 (16)0.00006 (17)
S10.0167 (4)0.0158 (4)0.0143 (3)0.0020 (3)0.0014 (3)0.0036 (3)
S20.0181 (4)0.0207 (4)0.0178 (4)0.0060 (3)0.0035 (3)0.0045 (3)
S30.0138 (4)0.0402 (5)0.0334 (5)0.0021 (4)0.0051 (4)0.0137 (4)
Geometric parameters (Å, º) top
C1—C21.379 (4)C12—H120.95
C1—C141.470 (4)C13—Fe12.055 (3)
C1—S11.726 (3)C13—H130.95
C2—C31.449 (4)C14—C181.433 (4)
C2—C41.472 (4)C14—C151.438 (4)
C3—S31.661 (3)C14—Fe22.053 (3)
C3—S21.736 (3)C15—C161.418 (4)
C4—C51.436 (4)C15—Fe22.040 (3)
C4—C81.439 (4)C15—H150.95
C4—Fe12.072 (3)C16—C171.412 (4)
C5—C61.417 (4)C16—Fe22.042 (3)
C5—Fe12.046 (3)C16—H160.95
C5—H50.95C17—C181.416 (4)
C6—C71.420 (4)C17—Fe22.041 (3)
C6—Fe12.028 (3)C17—H170.95
C6—H60.95C18—Fe22.048 (3)
C7—C81.418 (4)C18—H180.95
C7—Fe12.033 (3)C19—C201.410 (4)
C7—H70.95C19—C231.422 (4)
C8—Fe12.045 (3)C19—Fe22.053 (3)
C8—H80.95C19—H190.95
C9—C101.415 (4)C20—C211.412 (4)
C9—C131.428 (4)C20—Fe22.041 (3)
C9—Fe12.051 (3)C20—H200.95
C9—H90.95C21—C221.426 (4)
C10—C111.418 (4)C21—Fe22.040 (3)
C10—Fe12.043 (3)C21—H210.95
C10—H100.95C22—C231.418 (4)
C11—C121.415 (4)C22—Fe22.047 (3)
C11—Fe12.043 (3)C22—H220.95
C11—H110.95C23—Fe22.063 (3)
C12—C131.419 (5)C23—H230.95
C12—Fe12.050 (3)S1—S22.0525 (10)
C2—C1—C14128.6 (2)C20—C21—C22107.8 (3)
C2—C1—S1119.1 (2)C20—C21—Fe269.79 (16)
C14—C1—S1112.35 (19)C22—C21—Fe269.84 (16)
C1—C2—C3115.4 (2)C20—C21—H21126.1
C1—C2—C4122.2 (2)C22—C21—H21126.1
C3—C2—C4122.3 (2)Fe2—C21—H21125.9
C2—C3—S3131.5 (2)C23—C22—C21108.0 (3)
C2—C3—S2113.9 (2)C23—C22—Fe270.40 (16)
S3—C3—S2114.56 (17)C21—C22—Fe269.32 (15)
C5—C4—C8106.3 (2)C23—C22—H22126
C5—C4—C2128.3 (3)C21—C22—H22126
C8—C4—C2125.4 (2)Fe2—C22—H22125.8
C5—C4—Fe168.61 (15)C22—C23—C19107.5 (3)
C8—C4—Fe168.57 (15)C22—C23—Fe269.22 (17)
C2—C4—Fe1129.04 (19)C19—C23—Fe269.44 (16)
C6—C5—C4108.7 (3)C22—C23—H23126.2
C6—C5—Fe168.97 (16)C19—C23—H23126.2
C4—C5—Fe170.56 (15)Fe2—C23—H23126.7
C6—C5—H5125.6C6—Fe1—C740.94 (12)
C4—C5—H5125.6C6—Fe1—C11120.22 (12)
Fe1—C5—H5126.4C7—Fe1—C11104.35 (13)
C5—C6—C7108.3 (2)C6—Fe1—C10156.95 (13)
C5—C6—Fe170.32 (16)C7—Fe1—C10121.46 (12)
C7—C6—Fe169.73 (16)C11—Fe1—C1040.62 (11)
C5—C6—H6125.9C6—Fe1—C868.57 (11)
C7—C6—H6125.9C7—Fe1—C840.69 (11)
Fe1—C6—H6125.7C11—Fe1—C8120.94 (12)
C8—C7—C6107.9 (3)C10—Fe1—C8107.83 (11)
C8—C7—Fe170.12 (15)C6—Fe1—C540.71 (11)
C6—C7—Fe169.33 (16)C7—Fe1—C568.62 (12)
C8—C7—H7126.1C11—Fe1—C5157.56 (11)
C6—C7—H7126.1C10—Fe1—C5161.08 (11)
Fe1—C7—H7126.1C8—Fe1—C568.41 (11)
C7—C8—C4108.9 (2)C6—Fe1—C12105.52 (12)
C7—C8—Fe169.19 (15)C7—Fe1—C12119.71 (12)
C4—C8—Fe170.53 (15)C11—Fe1—C1240.44 (12)
C7—C8—H8125.6C10—Fe1—C1268.02 (12)
C4—C8—H8125.6C8—Fe1—C12156.00 (13)
Fe1—C8—H8126.3C5—Fe1—C12123.14 (12)
C10—C9—C13107.9 (3)C6—Fe1—C9159.73 (13)
C10—C9—Fe169.51 (16)C7—Fe1—C9159.11 (12)
C13—C9—Fe169.81 (16)C11—Fe1—C968.25 (12)
C10—C9—H9126.1C10—Fe1—C940.44 (12)
C13—C9—H9126.1C8—Fe1—C9125.06 (11)
Fe1—C9—H9126.2C5—Fe1—C9125.45 (12)
C9—C10—C11108.3 (3)C12—Fe1—C968.12 (12)
C9—C10—Fe170.06 (16)C6—Fe1—C13122.13 (12)
C11—C10—Fe169.68 (16)C7—Fe1—C13156.59 (12)
C9—C10—H10125.8C11—Fe1—C1368.25 (13)
C11—C10—H10125.8C10—Fe1—C1368.21 (12)
Fe1—C10—H10126C8—Fe1—C13162.09 (12)
C12—C11—C10107.8 (3)C5—Fe1—C13109.31 (12)
C12—C11—Fe170.04 (18)C12—Fe1—C1340.45 (13)
C10—C11—Fe169.70 (16)C9—Fe1—C1340.70 (12)
C12—C11—H11126.1C6—Fe1—C468.90 (11)
C10—C11—H11126.1C7—Fe1—C468.94 (11)
Fe1—C11—H11125.8C11—Fe1—C4158.45 (12)
C11—C12—C13108.4 (3)C10—Fe1—C4124.24 (11)
C11—C12—Fe169.52 (16)C8—Fe1—C440.90 (11)
C13—C12—Fe169.96 (17)C5—Fe1—C440.83 (10)
C11—C12—H12125.8C12—Fe1—C4160.70 (12)
C13—C12—H12125.8C9—Fe1—C4110.39 (11)
Fe1—C12—H12126.3C13—Fe1—C4125.76 (12)
C12—C13—C9107.5 (3)C21—Fe2—C15149.91 (12)
C12—C13—Fe169.59 (17)C21—Fe2—C2040.48 (12)
C9—C13—Fe169.49 (16)C15—Fe2—C20169.40 (12)
C12—C13—H13126.2C21—Fe2—C17104.53 (12)
C9—C13—H13126.2C15—Fe2—C1768.54 (12)
Fe1—C13—H13126.3C20—Fe2—C17114.90 (12)
C18—C14—C15107.5 (2)C21—Fe2—C16115.13 (12)
C18—C14—C1127.9 (3)C15—Fe2—C1640.64 (11)
C15—C14—C1124.6 (2)C20—Fe2—C16147.95 (12)
C18—C14—Fe269.38 (15)C17—Fe2—C1640.47 (12)
C15—C14—Fe268.97 (15)C21—Fe2—C2240.84 (11)
C1—C14—Fe2126.0 (2)C15—Fe2—C22118.59 (12)
C16—C15—C14107.5 (3)C20—Fe2—C2268.24 (12)
C16—C15—Fe269.75 (16)C17—Fe2—C22126.44 (12)
C14—C15—Fe269.89 (16)C16—Fe2—C22107.48 (12)
C16—C15—H15126.2C21—Fe2—C18125.60 (11)
C14—C15—H15126.2C15—Fe2—C1868.99 (12)
Fe2—C15—H15125.7C20—Fe2—C18106.65 (12)
C17—C16—C15108.6 (3)C17—Fe2—C1840.51 (11)
C17—C16—Fe269.72 (17)C16—Fe2—C1868.30 (12)
C15—C16—Fe269.60 (16)C22—Fe2—C18163.99 (11)
C17—C16—H16125.7C21—Fe2—C14165.36 (11)
C15—C16—H16125.7C15—Fe2—C1441.13 (11)
Fe2—C16—H16126.6C20—Fe2—C14129.44 (12)
C16—C17—C18108.6 (3)C17—Fe2—C1468.42 (11)
C16—C17—Fe269.82 (17)C16—Fe2—C1468.46 (11)
C18—C17—Fe270.02 (17)C22—Fe2—C14153.54 (11)
C16—C17—H17125.7C18—Fe2—C1440.92 (11)
C18—C17—H17125.7C21—Fe2—C1967.94 (12)
Fe2—C17—H17126C15—Fe2—C19132.43 (12)
C17—C18—C14107.8 (3)C20—Fe2—C1940.29 (12)
C17—C18—Fe269.47 (16)C17—Fe2—C19149.68 (12)
C14—C18—Fe269.70 (15)C16—Fe2—C19169.72 (12)
C17—C18—H18126.1C22—Fe2—C1967.94 (12)
C14—C18—H18126.1C18—Fe2—C19118.68 (12)
Fe2—C18—H18126.3C14—Fe2—C19111.23 (12)
C20—C19—C23108.3 (3)C21—Fe2—C2368.23 (12)
C20—C19—Fe269.38 (17)C15—Fe2—C23111.25 (12)
C23—C19—Fe270.14 (17)C20—Fe2—C2368.04 (12)
C20—C19—H19125.8C17—Fe2—C23165.92 (12)
C23—C19—H19125.8C16—Fe2—C23130.29 (12)
Fe2—C19—H19126.2C22—Fe2—C2340.38 (12)
C19—C20—C21108.3 (3)C18—Fe2—C23153.47 (12)
C19—C20—Fe270.33 (17)C14—Fe2—C23121.35 (11)
C21—C20—Fe269.73 (17)C19—Fe2—C2340.42 (12)
C19—C20—H20125.8C1—S1—S293.98 (10)
C21—C20—H20125.8C3—S2—S197.18 (10)
Fe2—C20—H20125.7
C14—C1—C2—C3176.4 (3)Fe1—C9—C13—C1259.4 (2)
S1—C1—C2—C34.0 (3)C10—C9—C13—Fe159.30 (19)
C14—C1—C2—C46.1 (4)C2—C1—C14—C1851.1 (4)
S1—C1—C2—C4173.5 (2)S1—C1—C14—C18129.3 (3)
C1—C2—C3—S3174.6 (2)C2—C1—C14—C15130.3 (3)
C4—C2—C3—S37.9 (4)S1—C1—C14—C1549.3 (3)
C1—C2—C3—S27.0 (3)C2—C1—C14—Fe2141.9 (2)
C4—C2—C3—S2170.5 (2)S1—C1—C14—Fe238.5 (3)
C1—C2—C4—C5146.3 (3)C18—C14—C15—C161.0 (3)
C3—C2—C4—C536.4 (4)C1—C14—C15—C16179.8 (2)
C1—C2—C4—C831.3 (4)Fe2—C14—C15—C1659.86 (19)
C3—C2—C4—C8146.0 (3)C18—C14—C15—Fe258.88 (19)
C1—C2—C4—Fe1121.3 (3)C1—C14—C15—Fe2120.0 (3)
C3—C2—C4—Fe156.0 (4)C14—C15—C16—C171.0 (3)
C8—C4—C5—C60.1 (3)Fe2—C15—C16—C1759.0 (2)
C2—C4—C5—C6177.9 (3)C14—C15—C16—Fe259.95 (19)
Fe1—C4—C5—C658.56 (19)C15—C16—C17—C180.6 (3)
C8—C4—C5—Fe158.48 (18)Fe2—C16—C17—C1859.5 (2)
C2—C4—C5—Fe1123.5 (3)C15—C16—C17—Fe258.91 (19)
C4—C5—C6—C70.1 (3)C16—C17—C18—C140.0 (3)
Fe1—C5—C6—C759.64 (19)Fe2—C17—C18—C1459.40 (19)
C4—C5—C6—Fe159.53 (18)C16—C17—C18—Fe259.4 (2)
C5—C6—C7—C80.3 (3)C15—C14—C18—C170.6 (3)
Fe1—C6—C7—C859.76 (19)C1—C14—C18—C17179.4 (3)
C5—C6—C7—Fe160.01 (19)Fe2—C14—C18—C1759.3 (2)
C6—C7—C8—C40.3 (3)C15—C14—C18—Fe258.62 (19)
Fe1—C7—C8—C459.56 (19)C1—C14—C18—Fe2120.2 (3)
C6—C7—C8—Fe159.26 (19)C23—C19—C20—C210.1 (3)
C5—C4—C8—C70.2 (3)Fe2—C19—C20—C2159.6 (2)
C2—C4—C8—C7177.8 (2)C23—C19—C20—Fe259.53 (19)
Fe1—C4—C8—C758.74 (19)C19—C20—C21—C220.3 (3)
C5—C4—C8—Fe158.50 (17)Fe2—C20—C21—C2259.7 (2)
C2—C4—C8—Fe1123.5 (3)C19—C20—C21—Fe259.99 (19)
C13—C9—C10—C110.1 (3)C20—C21—C22—C230.3 (3)
Fe1—C9—C10—C1159.39 (19)Fe2—C21—C22—C2360.0 (2)
C13—C9—C10—Fe159.49 (19)C20—C21—C22—Fe259.7 (2)
C9—C10—C11—C120.3 (3)C21—C22—C23—C190.3 (3)
Fe1—C10—C11—C1259.9 (2)Fe2—C22—C23—C1959.07 (19)
C9—C10—C11—Fe159.62 (19)C21—C22—C23—Fe259.4 (2)
C10—C11—C12—C130.4 (3)C20—C19—C23—C220.1 (3)
Fe1—C11—C12—C1359.3 (2)Fe2—C19—C23—C2258.9 (2)
C10—C11—C12—Fe159.69 (19)C20—C19—C23—Fe259.06 (19)
C11—C12—C13—C90.3 (3)C2—C1—S1—S20.3 (2)
Fe1—C12—C13—C959.36 (19)C14—C1—S1—S2179.37 (19)
C11—C12—C13—Fe159.1 (2)C2—C3—S2—S16.2 (2)
C10—C9—C13—C120.1 (3)S3—C3—S2—S1175.17 (15)
 

Acknowledgements

The authors thank PAPIIT–DGAPA–UNAM for financial support of this work.

Funding information

Funding for this research was provided by: PAPIIT-DGAPA-UNAM (award No. IN 217421).

References

First citationAgilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationBian, J., Cai, Z. & Wu, H. (2012). CN Patent 102417501 A, 1.  Google Scholar
First citationChen, P., Luo, Y., Hai, L., Qian, S. & Wu, Y. (2010). Eur. J. Med. Chem. 45, 3005–3010.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHou, Y., Long, G., Sui, D., Cai, Y., Wan, X., Yu, A. & Chen, Y. (2011). Chem. Commun. 47, 10401–10403.  CrossRef CAS Google Scholar
First citationJia, J., Xiao, Y., Wang, W., Qing, L., Xu, Y., Song, H., Zhen, X., Ao, G., Alkayed, N. J. & Cheng, J. (2013). Neurochem. Int. 62, 1072–1078.  CrossRef CAS PubMed Google Scholar
First citationKonstantinova, L. S., Berezin, A. A., Lysov, K. A. & Rakitin, O. A. (2007). Tetrahedron Lett. 48, 5851–5854.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaxuitenko, Y., Libby, A. H., Joyner, H. H., Curphey, T. J., MacMillan, D. L., Kensler, T. W. & Roebuck, B. D. (1998). Carcinogenesis, 19, 1609–1615.  CrossRef CAS PubMed Google Scholar
First citationPerepichka, D. F., Perepichka, I. F., Bryce, M. R., Moore, A. J. & Sokolov, N. I. (2001). Synth. Met. 121, 1487–1488.  CrossRef CAS Google Scholar
First citationRakitin, O. A. (2021). Molecules, 26, 3595–3638.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYamashita, Y., Tomura, M. & Badruz Zaman, M. (1998). Chem. Commun. pp. 1657–1658.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146