metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

μ-Oxido-bis­­[(5,10,15,20-tetra­phenyl­porphyrinato-κ4N,N′,N′′,N′′′)manganese(III)]

crossmark logo

aCollege of Materials Science and Opto-electronic Technology, CAS Center for Excellence in Topological Quantum Computation & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing 101408, People's Republic of China
*Correspondence e-mail: jfli@ucas.ac.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 August 2022; accepted 30 August 2022; online 2 September 2022)

In the crystal structure of the title oxido-bridged binuclear complex, [MnIII(TPP)]2O (TPP = tetra­phenyl­porphyrinate, C44H28N4) or [Mn2(C44H28N4)2O], the two penta­coordinate manganese(III) ions are bridged by a single oxido ligand, with an Mn—O distance of 1.7600 (3) Å and an Mn—O—Mn bridging angle of 176.1 (2)°. The bridging O2− ligand is located on a twofold rotation axis, resulting in point group 2 for the entire complex. The MnIII atom is displaced out of the 24-atom mean plane of the porphyrine entity by 0.52 Å. C—H⋯π and ππ inter­actions help to stabilize the mol­ecular packing within the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Binuclear manganese species, including bridging oxido ligands, are an essential component in several metalloenzymes (Boal et al., 2012[Boal, A. K., Cotruvo, J. A. Jr, Stubbe, J. & Rosenzweig, A. C. (2012). Biochemistry, 51, 3861-3871.]; Teutloff et al., 2005[Teutloff, C., Schäfer, K. O., Sinnecker, S., Barynin, V., Bittl, R., Wieghardt, K., Lendzian, F. & Lubitz, W. (2005). Magn. Reson. Chem. 43, S51-S64.]; Wieghardt, 1989[Wieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28, 1153-1172.]). The protonation and deprotonation of the oxido bridge are thought to be important in the catalytic cycle of the redox enzymes (Chen & Yin, 2015[Chen, Z. & Yin, G. (2015). Chem. Soc. Rev. 44, 1083-1100.]; de Boer et al., 2007[Boer, J. W. de, Browne, W. R., Feringa, B. L. & Hage, R. (2007). C. R. Chim. 10, 341-354.]). Scheidt and co-workers previously reported that the manganese(III) μ-hydroxido derivatives {[Mn(OEP)]2(OH)}ClO4 (OEP = octa­ethyl­porphyrinate) and {[Mn(TPP)]2(OH)}ClO4 (TPP = tetra­phenyl­porphyrinate) can be prepared by controlled hydrolysis of corresponding monomeric precursor (Cheng et al., 1995[Cheng, B. S., Cukiernik, F., Fries, P. H., Marchon, J. C. & Scheidt, W. R. (1995). Inorg. Chem. 34, 4627-4639.], 1996[Cheng, B. S., Fries, P. H., Marchon, J. C. & Scheidt, W. R. (1996). Inorg. Chem. 35, 1024-1032.]). The {[Mn(OEP)]2(OH)}ClO4 and {[Mn(TPP)]2(OH)}ClO4 complexes exhibit an average Mn—O distance of 2.011 (18) and 2.026 (1) Å, and an Mn—O(H)—Mn bridging angle of 152.73 (11) and 160.4 (8)°, respectively. The two MnIII ions are displaced by 0.48 and 0.52 Å from their respective 24-atom mean plane. It is inter­esting to note that the μ-oxido species [Mn(OEP)]2O is very unstable in halocarbon solvents (Cheng et al., 1995[Cheng, B. S., Cukiernik, F., Fries, P. H., Marchon, J. C. & Scheidt, W. R. (1995). Inorg. Chem. 34, 4627-4639.]). In the current report, a new manganese(III) μ-oxido porphyrin derivative, [Mn(TPP)]2O, is characterized.

In the crystal structure of the title complex, the asymmetric unit contains one deprotoanted porphyrin mol­ecule located in general position and an oxygen atom on a twofold rotation axis (Wyckoff position 4a). Figs. 1[link] and 2[link] graphically represent the mol­ecular structure of the title μ-oxido complex. As can be seen, the two penta­coordinate manganese(III) ions in [Mn(TPP)]2O are bridged by a single oxido ligand with an Mn—O distance of 1.7600 (3) Å and an Mn—O—Mn bridging angle of 176.1 (2)°. The Mn1⋯Mn1′ separation [symmetry code: (') −x + 1, −y + 1, z) is 3.5180 (5) Å. More qu­anti­tative numerical information is given in Fig. 3[link], which contains the detailed displacement of each porphyrin core atom (in units of 0.01 Å) from the 24-atom mean plane. The average MnIII—Nporphyrin bond length in the porphinato core is 2.080 (1) Å. The manganese atom is displaced by 0.52 Å from its 24-atom mean plane toward the bridging oxido ligand. The average value for the O—Mn—Nporphyrin angle is 103 (2)°. The two porphyrin rings are found to be nearly parallel to each other with dihedral angles of 4.08 (8) and 3.68 (8)° between the mean planes of the 24-atom core and the core formed by the four coordinating nitro­gen atoms. In comparison with the reported structure of {[MnII(TPP)]2(OH)}ClO4, the title compound shows virtually the same metal displacement from the 24-atom mean plane (0.52 Å), while a larger Mn—O—Mn bridging angle [176.1 (2) versus. 160.4 (8)°] and a shorter Mn—O distance [1.7600 (3) versus. 2.026 (1) Å] is observed.

[Figure 1]
Figure 1
Edge-view of the dinuclear complex of the title compound with displacement elliposids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2]
Figure 2
Top-view of the of the dinuclear complex of the title compound with displacement elliposids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Primed atoms are generated by symmetry operation −x + 1, −y + 1, z.
[Figure 3]
Figure 3
A formal diagram of the porphyrin core of the title compound. Averaged values of the chemically unique bond lengths (Å) and angles (°) are shown. The numbers in parentheses are the e.s.d.s calculated on the assumption that the averaged values were all drawn from the same population. The perpendicular displacements (in units of 0.01 Å) of the porphyrin core atoms from the 24-atom mean plane are also displayed. Positive numbers indicate a displacement toward the central metal atom.

C—H⋯π and ππ inter­actions are found between the packed mol­ecules, which is illustrated in Fig. 4[link]. As can be seen, the inter­planar distance between the relevant centroids of the rings in the ππ stacking inter­actions is 4.3548 (19) Å, with a slippage of 2.139 Å. The distance between H18 and the relevant centroids of the rings in the C—H⋯π inter­actions is 2.89 Å with an angle of 161°. The mol­ecular packing of the title compound is shown in Fig. 5[link].

[Figure 4]
Figure 4
Relevant inter­molecular C—H⋯π and ππ inter­actions in the crystal structure of the title compound.
[Figure 5]
Figure 5
A view of the mol­ecular packing in the crystal structure of the title compound, as seen in a projection along [001]. H atoms are omitted for clarity.

Synthesis and crystallization

Unless otherwise noted, all experimental manipulations were performed under argon atmosphere using double-manifold vacuum lines, Schlenk ware and cannula techniques. Except for the solvent used in column chromatography, all solvents used in the experimental process were treated under anhydrous and anaerobic conditions with the pump–freeze–thaw method three times before use. Chloro­benzene and n-hexane were distilled over P2O5 and potassium-sodium alloy, respectively. H2TPP and [Mn(TPP)]Cl were prepared according to literature protocols (Adler et al., 1967[Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476.]; Fleischer et al., 1971[Fleischer, E. B., Palmer, J. M., Srivastava, T. S. & Chatterjee, A. (1971). J. Am. Chem. Soc. 93, 3162-3167.]).

The title compound was prepared following a reported procedure (He et al., 2016[He, M., Li, X., Liu, Y. & Li, J. (2016). Inorg. Chem. 55, 5871-5879.]). Solid [Mn(TPP)]Cl was dissolved in di­chloro­methane and then shaken vigorously three times with 3 M KOH solution. To remove the alkali, the above system was washed with water for an additional two times. To grow single crystals, [Mn(TPP)]2O (10 mg) was dissolved in 4 ml of chloro­benzene and cannula-transferred into 8 mm glass tubes, then carefully layered with hexa­nes before sealing the tubes. X-ray quality crystals were obtained several weeks later.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal studied was refined as an inversion twin.

Table 1
Experimental details

Crystal data
Chemical formula [Mn2(C44H28N4)2O]
Mr 1351.28
Crystal system, space group Orthorhombic, Aea2
Temperature (K) 100
a, b, c (Å) 17.7931 (6), 24.9494 (10), 15.0943 (6)
V3) 6700.8 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.43
Crystal size (mm) 0.41 × 0.23 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.678, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21252, 7046, 6344
Rint 0.032
(sin θ/λ)max−1) 0.633
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.062, 1.05
No. of reflections 7046
No. of parameters 449
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.25
Absolute structure Refined as an inversion twin
Absolute structure parameter −0.059 (15)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

µ-Oxido-bis[(5,10,15,20-tetraphenylporphyrinato-κ4N,N',N'',N''')manganese(III)] top
Crystal data top
[Mn2(C44H28N4)2O]Dx = 1.339 Mg m3
Mr = 1351.28Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Aea2Cell parameters from 9989 reflections
a = 17.7931 (6) Åθ = 2.7–26.7°
b = 24.9494 (10) ŵ = 0.43 mm1
c = 15.0943 (6) ÅT = 100 K
V = 6700.8 (4) Å3Block, black
Z = 40.41 × 0.23 × 0.17 mm
F(000) = 2792
Data collection top
Bruker APEXII CCD
diffractometer
6344 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.8°, θmin = 2.0°
Tmin = 0.678, Tmax = 0.745h = 1922
21252 measured reflectionsk = 3127
7046 independent reflectionsl = 1819
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0273P)2 + 0.6595P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max = 0.001
wR(F2) = 0.062Δρmax = 0.23 e Å3
S = 1.05Δρmin = 0.25 e Å3
7046 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
449 parametersExtinction coefficient: 0.00274 (19)
1 restraintAbsolute structure: Refined as an inversion twin
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.059 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.59854 (2)0.49435 (2)0.50101 (3)0.01028 (9)
O10.50000.50000.5050 (2)0.0183 (5)
N10.61443 (11)0.45594 (8)0.38016 (14)0.0163 (5)
N20.63778 (12)0.56330 (8)0.43879 (14)0.0166 (4)
N30.63396 (11)0.52824 (8)0.61960 (14)0.0160 (4)
N40.61553 (12)0.42032 (8)0.56135 (14)0.0169 (5)
C10.57883 (14)0.30639 (10)0.40144 (17)0.0200 (6)
C20.63612 (16)0.26904 (11)0.3961 (2)0.0341 (7)
H20.68620.27960.40950.041*
C30.62179 (19)0.21669 (13)0.3716 (2)0.0403 (8)
H30.66200.19170.36790.048*
C40.55011 (18)0.20063 (12)0.3525 (2)0.0349 (7)
H40.54040.16470.33510.042*
C50.49248 (19)0.23687 (14)0.3588 (3)0.0510 (10)
H50.44230.22570.34760.061*
C60.50693 (16)0.28986 (13)0.3815 (3)0.0426 (9)
H60.46680.31490.38330.051*
C70.63425 (14)0.55338 (10)0.18751 (18)0.0196 (6)
C80.68001 (14)0.52864 (11)0.12510 (16)0.0213 (6)
H80.71080.49930.14220.026*
C90.68110 (15)0.54645 (12)0.03763 (18)0.0259 (6)
H90.71190.52880.00470.031*
C100.63767 (15)0.58949 (11)0.0123 (2)0.0271 (6)
H100.63870.60160.04730.033*
C110.59247 (16)0.61507 (11)0.07395 (18)0.0264 (6)
H110.56290.64500.05680.032*
C120.59039 (14)0.59682 (10)0.16089 (17)0.0211 (6)
H120.55870.61410.20270.025*
C130.66755 (14)0.67787 (10)0.59981 (17)0.0192 (6)
C140.61128 (17)0.71615 (12)0.5948 (2)0.0371 (8)
H140.56290.70650.57350.045*
C150.6253 (2)0.76868 (12)0.6209 (3)0.0487 (10)
H150.58650.79470.61660.058*
C160.69473 (18)0.78319 (11)0.6529 (2)0.0357 (7)
H160.70390.81900.67140.043*
C170.75077 (17)0.74531 (10)0.6578 (2)0.0296 (6)
H170.79900.75500.67960.036*
C180.73730 (15)0.69298 (10)0.63100 (18)0.0252 (6)
H180.77660.66720.63420.030*
C190.63196 (15)0.43060 (10)0.81157 (17)0.0174 (5)
C200.57065 (16)0.43678 (11)0.86761 (18)0.0259 (6)
H200.52520.45140.84510.031*
C210.57487 (17)0.42202 (12)0.95577 (19)0.0305 (7)
H210.53280.42710.99360.037*
C220.64033 (16)0.39993 (11)0.9886 (2)0.0279 (6)
H220.64320.38911.04890.034*
C230.70126 (16)0.39374 (12)0.93393 (19)0.0326 (7)
H230.74650.37900.95670.039*
C240.69735 (15)0.40887 (12)0.84570 (18)0.0285 (6)
H240.73990.40430.80840.034*
C(A10.59878 (14)0.40270 (11)0.36534 (17)0.0169 (6)
C(A20.61536 (14)0.48008 (11)0.29787 (17)0.0175 (5)
C(A30.64614 (14)0.57202 (10)0.34861 (17)0.0172 (6)
C(A40.65444 (13)0.61138 (10)0.47894 (16)0.0178 (6)
C(A50.64461 (14)0.58203 (11)0.63499 (16)0.0175 (6)
C(A60.63481 (14)0.50402 (10)0.70127 (17)0.0163 (6)
C(A70.61839 (14)0.41017 (11)0.65087 (17)0.0173 (6)
C(A80.60215 (13)0.37132 (10)0.52147 (17)0.0177 (6)
C(B10.58917 (14)0.39337 (10)0.27237 (17)0.0206 (6)
H(B10.57870.35990.24500.025*
C(B20.59773 (14)0.44095 (11)0.23092 (18)0.0216 (6)
H(B20.59300.44740.16910.026*
C(B30.67141 (14)0.62609 (10)0.33387 (17)0.0205 (6)
H(B30.68300.64180.27820.025*
C(B40.67566 (13)0.65027 (10)0.41336 (17)0.0193 (5)
H(B40.69000.68640.42410.023*
C(B50.65163 (15)0.59149 (11)0.72899 (17)0.0214 (6)
H(B50.65880.62520.75710.026*
C(B60.64606 (15)0.54341 (10)0.76930 (18)0.0212 (6)
H(B60.64900.53680.83120.025*
C(B70.60762 (14)0.35390 (10)0.66730 (18)0.0219 (6)
H(B70.60770.33680.72350.026*
C(B80.59734 (15)0.33004 (11)0.58816 (18)0.0212 (6)
H(B80.58860.29300.57810.025*
C(M10.59397 (13)0.36267 (10)0.43050 (17)0.0181 (5)
C(M20.63186 (14)0.53413 (10)0.28190 (18)0.0171 (5)
C(M30.65360 (14)0.62145 (10)0.56998 (17)0.0176 (5)
C(M40.62837 (14)0.44908 (10)0.71700 (17)0.0171 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01042 (14)0.01132 (17)0.00910 (15)0.00002 (12)0.00037 (17)0.00131 (17)
O10.0170 (10)0.0199 (11)0.0180 (11)0.0008 (9)0.0000.000
N10.0180 (10)0.0171 (11)0.0137 (12)0.0010 (8)0.0005 (9)0.0010 (9)
N20.0175 (11)0.0181 (11)0.0142 (11)0.0016 (9)0.0006 (9)0.0026 (9)
N30.0174 (10)0.0150 (11)0.0156 (12)0.0016 (9)0.0009 (9)0.0011 (9)
N40.0172 (11)0.0193 (11)0.0142 (11)0.0015 (8)0.0007 (8)0.0015 (9)
C10.0250 (13)0.0190 (14)0.0160 (13)0.0013 (11)0.0002 (11)0.0011 (11)
C20.0252 (14)0.0251 (15)0.052 (2)0.0011 (12)0.0058 (15)0.0135 (14)
C30.0412 (19)0.0241 (16)0.056 (2)0.0065 (14)0.0102 (16)0.0148 (15)
C40.0436 (18)0.0206 (15)0.0406 (18)0.0059 (13)0.0022 (14)0.0093 (13)
C50.0302 (18)0.043 (2)0.080 (3)0.0106 (15)0.0043 (17)0.0316 (19)
C60.0236 (15)0.0313 (17)0.073 (3)0.0005 (12)0.0015 (16)0.0262 (17)
C70.0182 (13)0.0219 (14)0.0187 (15)0.0048 (11)0.0009 (11)0.0011 (11)
C80.0174 (12)0.0272 (14)0.0193 (14)0.0031 (11)0.0009 (11)0.0014 (11)
C90.0250 (14)0.0357 (16)0.0168 (13)0.0059 (12)0.0049 (11)0.0036 (11)
C100.0327 (15)0.0347 (15)0.0140 (15)0.0077 (11)0.0023 (13)0.0040 (13)
C110.0289 (15)0.0268 (15)0.0236 (15)0.0019 (12)0.0068 (12)0.0020 (12)
C120.0207 (13)0.0246 (14)0.0180 (14)0.0011 (10)0.0003 (11)0.0002 (11)
C130.0235 (13)0.0192 (14)0.0150 (12)0.0020 (11)0.0006 (10)0.0012 (10)
C140.0287 (16)0.0281 (17)0.054 (2)0.0050 (13)0.0121 (15)0.0153 (15)
C150.047 (2)0.0242 (17)0.075 (3)0.0119 (15)0.0185 (19)0.0161 (18)
C160.0488 (19)0.0177 (14)0.0405 (18)0.0043 (13)0.0099 (15)0.0064 (13)
C170.0316 (15)0.0279 (16)0.0294 (15)0.0100 (13)0.0027 (12)0.0039 (12)
C180.0265 (15)0.0236 (14)0.0255 (14)0.0024 (11)0.0008 (12)0.0022 (11)
C190.0198 (13)0.0182 (13)0.0142 (13)0.0024 (10)0.0005 (10)0.0017 (10)
C200.0201 (13)0.0352 (17)0.0224 (15)0.0035 (12)0.0018 (11)0.0039 (12)
C210.0295 (16)0.0397 (17)0.0224 (15)0.0003 (14)0.0100 (12)0.0039 (13)
C220.0382 (16)0.0288 (15)0.0168 (16)0.0017 (11)0.0005 (13)0.0035 (12)
C230.0291 (16)0.0488 (19)0.0199 (14)0.0099 (14)0.0055 (12)0.0044 (13)
C240.0232 (14)0.0415 (17)0.0207 (14)0.0047 (13)0.0017 (11)0.0021 (12)
C(A10.0164 (13)0.0188 (14)0.0156 (14)0.0014 (10)0.0002 (10)0.0030 (11)
C(A20.0174 (13)0.0204 (14)0.0146 (14)0.0022 (11)0.0010 (10)0.0024 (11)
C(A30.0152 (12)0.0221 (15)0.0143 (13)0.0001 (10)0.0015 (10)0.0002 (11)
C(A40.0147 (12)0.0181 (13)0.0205 (15)0.0006 (10)0.0002 (10)0.0023 (10)
C(A50.0187 (13)0.0202 (14)0.0137 (13)0.0002 (11)0.0010 (10)0.0033 (11)
C(A60.0168 (13)0.0197 (15)0.0125 (13)0.0003 (10)0.0004 (10)0.0030 (10)
C(A70.0186 (13)0.0182 (14)0.0151 (14)0.0039 (11)0.0014 (10)0.0001 (10)
C(A80.0174 (12)0.0139 (12)0.0217 (16)0.0021 (9)0.0014 (10)0.0036 (10)
C(B10.0233 (14)0.0209 (14)0.0177 (13)0.0017 (11)0.0015 (10)0.0053 (11)
C(B20.0226 (14)0.0270 (15)0.0151 (14)0.0004 (11)0.0005 (11)0.0030 (11)
C(B30.0202 (13)0.0215 (14)0.0198 (14)0.0008 (11)0.0014 (11)0.0035 (11)
C(B40.0193 (12)0.0176 (13)0.0209 (14)0.0031 (10)0.0003 (10)0.0009 (11)
C(B50.0254 (14)0.0205 (14)0.0184 (14)0.0016 (11)0.0002 (11)0.0066 (11)
C(B60.0274 (14)0.0220 (15)0.0141 (14)0.0008 (12)0.0000 (11)0.0019 (11)
C(B70.0261 (14)0.0193 (14)0.0205 (14)0.0021 (11)0.0017 (11)0.0003 (11)
C(B80.0267 (14)0.0151 (14)0.0217 (14)0.0004 (11)0.0020 (11)0.0005 (11)
C(M10.0167 (13)0.0197 (14)0.0179 (14)0.0021 (10)0.0007 (10)0.0040 (11)
C(M20.0150 (12)0.0210 (14)0.0152 (14)0.0004 (11)0.0002 (10)0.0011 (11)
C(M30.0138 (12)0.0181 (13)0.0211 (14)0.0002 (10)0.0005 (11)0.0033 (11)
C(M40.0152 (12)0.0198 (14)0.0162 (14)0.0006 (10)0.0007 (10)0.0002 (11)
Geometric parameters (Å, º) top
Mn1—O11.7600 (3)C16—H160.9500
Mn1—N12.080 (2)C16—C171.376 (4)
Mn1—N22.081 (2)C17—H170.9500
Mn1—N32.078 (2)C17—C181.388 (3)
Mn1—N42.081 (2)C18—H180.9500
O1—Mn1i1.7599 (3)C19—C201.389 (4)
N1—C(A11.375 (4)C19—C241.383 (4)
N1—C(A21.380 (3)C19—C(M41.502 (4)
N2—C(A31.386 (3)C20—H200.9500
N2—C(A41.376 (3)C20—C211.383 (4)
N3—C(A51.375 (3)C21—H210.9500
N3—C(A61.373 (3)C21—C221.381 (4)
N4—C(A71.376 (3)C22—H220.9500
N4—C(A81.383 (3)C22—C231.371 (4)
C1—C21.384 (4)C23—H230.9500
C1—C61.377 (4)C23—C241.386 (4)
C1—C(M11.495 (4)C24—H240.9500
C2—H20.9500C(A1—C(B11.433 (4)
C2—C31.381 (4)C(A1—C(M11.404 (4)
C3—H30.9500C(A2—C(B21.440 (4)
C3—C41.367 (4)C(A2—C(M21.401 (4)
C4—H40.9500C(A3—C(B31.439 (4)
C4—C51.370 (5)C(A3—C(M21.404 (4)
C5—H50.9500C(A4—C(B41.436 (3)
C5—C61.390 (4)C(A4—C(M31.397 (4)
C6—H60.9500C(A5—C(B51.444 (4)
C7—C81.390 (4)C(A5—C(M31.399 (4)
C7—C121.395 (4)C(A6—C(B61.435 (4)
C7—C(M21.504 (4)C(A6—C(M41.396 (3)
C8—H80.9500C(A7—C(B71.438 (4)
C8—C91.393 (4)C(A7—C(M41.404 (4)
C9—H90.9500C(A8—C(B81.443 (4)
C9—C101.377 (4)C(A8—C(M11.398 (4)
C10—H100.9500C(B1—H(B10.9500
C10—C111.385 (4)C(B1—C(B21.351 (4)
C11—H110.9500C(B2—H(B20.9500
C11—C121.390 (4)C(B3—H(B30.9500
C12—H120.9500C(B3—C(B41.345 (4)
C13—C141.386 (4)C(B4—H(B40.9500
C13—C181.380 (3)C(B5—H(B50.9500
C13—C(M31.499 (3)C(B5—C(B61.349 (4)
C14—H140.9500C(B6—H(B60.9500
C14—C151.391 (4)C(B7—H(B70.9500
C15—H150.9500C(B7—C(B81.347 (4)
C15—C161.375 (4)C(B8—H(B80.9500
O1—Mn1—N1101.66 (12)C24—C19—C20118.5 (2)
O1—Mn1—N2106.46 (8)C24—C19—C(M4120.7 (2)
O1—Mn1—N3103.90 (12)C19—C20—H20119.5
O1—Mn1—N4101.59 (8)C21—C20—C19120.9 (3)
N1—Mn1—N286.53 (8)C21—C20—H20119.5
N1—Mn1—N487.44 (8)C20—C21—H21120.1
N2—Mn1—N4151.94 (9)C22—C21—C20119.9 (3)
N3—Mn1—N1154.41 (8)C22—C21—H21120.1
N3—Mn1—N287.17 (8)C21—C22—H22120.1
N3—Mn1—N486.56 (8)C23—C22—C21119.7 (3)
Mn1i—O1—Mn1176.1 (2)C23—C22—H22120.1
C(A1—N1—Mn1124.06 (16)C22—C23—H23119.7
C(A1—N1—C(A2106.1 (2)C22—C23—C24120.5 (3)
C(A2—N1—Mn1126.14 (17)C24—C23—H23119.7
C(A3—N2—Mn1127.51 (17)C19—C24—C23120.5 (3)
C(A4—N2—Mn1126.46 (17)C19—C24—H24119.8
C(A4—N2—C(A3105.8 (2)C23—C24—H24119.8
C(A5—N3—Mn1125.77 (17)N1—C(A1—C(B1109.9 (2)
C(A6—N3—Mn1126.71 (16)N1—C(A1—C(M1125.8 (2)
C(A6—N3—C(A5106.0 (2)C(M1—C(A1—C(B1124.3 (2)
C(A7—N4—Mn1126.77 (17)N1—C(A2—C(B2109.5 (2)
C(A7—N4—C(A8105.7 (2)N1—C(A2—C(M2125.3 (2)
C(A8—N4—Mn1124.67 (16)C(M2—C(A2—C(B2125.3 (2)
C2—C1—C(M1121.1 (2)N2—C(A3—C(B3109.4 (2)
C6—C1—C2118.0 (3)N2—C(A3—C(M2125.4 (2)
C6—C1—C(M1120.8 (2)C(M2—C(A3—C(B3125.2 (2)
C1—C2—H2119.4N2—C(A4—C(B4110.0 (2)
C3—C2—C1121.1 (3)N2—C(A4—C(M3126.0 (2)
C3—C2—H2119.4C(M3—C(A4—C(B4124.0 (2)
C2—C3—H3119.8N3—C(A5—C(B5109.7 (2)
C4—C3—C2120.4 (3)N3—C(A5—C(M3125.7 (2)
C4—C3—H3119.8C(M3—C(A5—C(B5124.4 (2)
C3—C4—H4120.3N3—C(A6—C(B6110.0 (2)
C3—C4—C5119.3 (3)N3—C(A6—C(M4125.7 (2)
C5—C4—H4120.3C(M4—C(A6—C(B6124.2 (2)
C4—C5—H5119.8N4—C(A7—C(B7110.1 (2)
C4—C5—C6120.4 (3)N4—C(A7—C(M4125.2 (2)
C6—C5—H5119.8C(M4—C(A7—C(B7124.7 (2)
C1—C6—C5120.7 (3)N4—C(A8—C(B8109.7 (2)
C1—C6—H6119.6N4—C(A8—C(M1125.6 (2)
C5—C6—H6119.6C(M1—C(A8—C(B8124.7 (2)
C8—C7—C12118.5 (2)C(A1—C(B1—H(B1126.4
C8—C7—C(M2121.1 (2)C(B2—C(B1—C(A1107.3 (2)
C12—C7—C(M2120.4 (2)C(B2—C(B1—H(B1126.4
C7—C8—H8119.7C(A2—C(B2—H(B2126.4
C7—C8—C9120.6 (3)C(B1—C(B2—C(A2107.2 (2)
C9—C8—H8119.7C(B1—C(B2—H(B2126.4
C8—C9—H9119.9C(A3—C(B3—H(B3126.3
C10—C9—C8120.2 (3)C(B4—C(B3—C(A3107.5 (2)
C10—C9—H9119.9C(B4—C(B3—H(B3126.3
C9—C10—H10120.0C(A4—C(B4—H(B4126.4
C9—C10—C11119.9 (3)C(B3—C(B4—C(A4107.3 (2)
C11—C10—H10120.0C(B3—C(B4—H(B4126.4
C10—C11—H11120.1C(A5—C(B5—H(B5126.5
C10—C11—C12119.9 (3)C(B6—C(B5—C(A5107.0 (2)
C12—C11—H11120.1C(B6—C(B5—H(B5126.5
C7—C12—H12119.6C(A6—C(B6—H(B6126.4
C11—C12—C7120.8 (2)C(B5—C(B6—C(A6107.2 (2)
C11—C12—H12119.6C(B5—C(B6—H(B6126.4
C14—C13—C(M3120.8 (2)C(A7—C(B7—H(B7126.4
C18—C13—C14118.7 (3)C(B8—C(B7—C(A7107.3 (2)
C18—C13—C(M3120.5 (2)C(B8—C(B7—H(B7126.4
C13—C14—H14119.8C(A8—C(B8—H(B8126.4
C13—C14—C15120.3 (3)C(B7—C(B8—C(A8107.2 (2)
C15—C14—H14119.8C(B7—C(B8—H(B8126.4
C14—C15—H15119.7C(A1—C(M1—C1118.2 (2)
C16—C15—C14120.6 (3)C(A8—C(M1—C1116.9 (2)
C16—C15—H15119.7C(A8—C(M1—C(A1124.9 (2)
C15—C16—H16120.4C(A2—C(M2—C7118.4 (2)
C15—C16—C17119.3 (3)C(A2—C(M2—C(A3124.2 (2)
C17—C16—H16120.4C(A3—C(M2—C7117.3 (2)
C16—C17—H17119.8C(A4—C(M3—C13117.6 (2)
C16—C17—C18120.4 (3)C(A4—C(M3—C(A5124.4 (2)
C18—C17—H17119.8C(A5—C(M3—C13117.9 (2)
C13—C18—C17120.8 (3)C(A6—C(M4—C19117.4 (2)
C13—C18—H18119.6C(A6—C(M4—C(A7124.7 (2)
C17—C18—H18119.6C(A7—C(M4—C19118.0 (2)
C20—C19—C(M4120.8 (2)
Mn1—N1—C(A1—C(B1158.96 (17)C16—C17—C18—C130.6 (4)
Mn1—N1—C(A1—C(M122.0 (3)C18—C13—C14—C150.0 (5)
Mn1—N1—C(A2—C(B2157.21 (17)C18—C13—C(M3—C(A4100.6 (3)
Mn1—N1—C(A2—C(M223.5 (3)C18—C13—C(M3—C(A576.1 (3)
Mn1—N2—C(A3—C(B3177.13 (16)C19—C20—C21—C221.2 (5)
Mn1—N2—C(A3—C(M22.6 (4)C20—C19—C24—C230.1 (4)
Mn1—N2—C(A4—C(B4176.57 (16)C20—C19—C(M4—C(A676.7 (3)
Mn1—N2—C(A4—C(M35.3 (4)C20—C19—C(M4—C(A7103.0 (3)
Mn1—N3—C(A5—C(B5166.36 (17)C20—C21—C22—C231.3 (5)
Mn1—N3—C(A5—C(M318.5 (4)C21—C22—C23—C240.8 (5)
Mn1—N3—C(A6—C(B6166.57 (17)C22—C23—C24—C190.2 (5)
Mn1—N3—C(A6—C(M415.5 (4)C24—C19—C20—C210.5 (4)
Mn1—N4—C(A7—C(B7162.21 (17)C24—C19—C(M4—C(A6100.9 (3)
Mn1—N4—C(A7—C(M416.2 (4)C24—C19—C(M4—C(A779.4 (3)
Mn1—N4—C(A8—C(B8162.46 (16)C(A1—N1—C(A2—C(B21.7 (3)
Mn1—N4—C(A8—C(M117.2 (3)C(A1—N1—C(A2—C(M2177.6 (2)
N1—C(A1—C(B1—C(B21.0 (3)C(A1—C(B1—C(B2—C(A21.9 (3)
N1—C(A1—C(M1—C1178.0 (2)C(A2—N1—C(A1—C(B10.5 (3)
N1—C(A1—C(M1—C(A82.1 (4)C(A2—N1—C(A1—C(M1178.5 (2)
N1—C(A2—C(B2—C(B12.3 (3)C(A3—N2—C(A4—C(B41.7 (3)
N1—C(A2—C(M2—C7176.9 (2)C(A3—N2—C(A4—C(M3179.8 (2)
N1—C(A2—C(M2—C(A33.4 (4)C(A3—C(B3—C(B4—C(A41.0 (3)
N2—C(A3—C(B3—C(B42.2 (3)C(A4—N2—C(A3—C(B32.3 (3)
N2—C(A3—C(M2—C7172.0 (2)C(A4—N2—C(A3—C(M2177.4 (2)
N2—C(A3—C(M2—C(A27.7 (4)C(A5—N3—C(A6—C(B60.1 (3)
N2—C(A4—C(B4—C(B30.4 (3)C(A5—N3—C(A6—C(M4177.8 (2)
N2—C(A4—C(M3—C13175.2 (2)C(A5—C(B5—C(B6—C(A60.6 (3)
N2—C(A4—C(M3—C(A58.3 (4)C(A6—N3—C(A5—C(B50.5 (3)
N3—C(A5—C(B5—C(B60.7 (3)C(A6—N3—C(A5—C(M3174.6 (2)
N3—C(A5—C(M3—C13177.7 (2)C(A7—N4—C(A8—C(B80.5 (3)
N3—C(A5—C(M3—C(A41.3 (4)C(A7—N4—C(A8—C(M1179.1 (2)
N3—C(A6—C(B6—C(B50.3 (3)C(A7—C(B7—C(B8—C(A80.4 (3)
N3—C(A6—C(M4—C19179.0 (2)C(A8—N4—C(A7—C(B70.7 (3)
N3—C(A6—C(M4—C(A71.4 (4)C(A8—N4—C(A7—C(M4177.7 (2)
N4—C(A7—C(B7—C(B80.7 (3)C(B1—C(A1—C(M1—C10.8 (4)
N4—C(A7—C(M4—C19178.6 (2)C(B1—C(A1—C(M1—C(A8179.0 (2)
N4—C(A7—C(M4—C(A61.8 (4)C(B2—C(A2—C(M2—C72.2 (4)
N4—C(A8—C(B8—C(B70.1 (3)C(B2—C(A2—C(M2—C(A3177.5 (3)
N4—C(A8—C(M1—C1179.3 (2)C(B3—C(A3—C(M2—C77.7 (4)
N4—C(A8—C(M1—C(A10.6 (4)C(B3—C(A3—C(M2—C(A2172.6 (2)
C1—C2—C3—C40.4 (5)C(B4—C(A4—C(M3—C137.0 (4)
C2—C1—C6—C51.5 (5)C(B4—C(A4—C(M3—C(A5169.5 (2)
C2—C1—C(M1—C(A1101.4 (3)C(B5—C(A5—C(M3—C133.3 (4)
C2—C1—C(M1—C(A878.8 (3)C(B5—C(A5—C(M3—C(A4173.2 (3)
C2—C3—C4—C50.6 (5)C(B6—C(A6—C(M4—C191.3 (4)
C3—C4—C5—C62.1 (6)C(B6—C(A6—C(M4—C(A7179.1 (3)
C4—C5—C6—C12.5 (6)C(B7—C(A7—C(M4—C193.2 (4)
C6—C1—C2—C30.1 (5)C(B7—C(A7—C(M4—C(A6176.4 (2)
C6—C1—C(M1—C(A180.4 (4)C(B8—C(A8—C(M1—C10.3 (4)
C6—C1—C(M1—C(A899.5 (3)C(B8—C(A8—C(M1—C(A1179.8 (2)
C7—C8—C9—C101.1 (4)C(M1—C1—C2—C3178.2 (3)
C8—C7—C12—C110.1 (4)C(M1—C1—C6—C5176.8 (3)
C8—C7—C(M2—C(A254.8 (3)C(M1—C(A1—C(B1—C(B2180.0 (2)
C8—C7—C(M2—C(A3125.5 (3)C(M1—C(A8—C(B8—C(B7179.6 (2)
C8—C9—C10—C110.3 (4)C(M2—C7—C8—C9179.3 (2)
C9—C10—C11—C120.8 (4)C(M2—C7—C12—C11179.7 (2)
C10—C11—C12—C71.0 (4)C(M2—C(A2—C(B2—C(B1176.9 (2)
C12—C7—C8—C90.9 (4)C(M2—C(A3—C(B3—C(B4177.6 (2)
C12—C7—C(M2—C(A2125.4 (3)C(M3—C13—C14—C15178.6 (3)
C12—C7—C(M2—C(A354.3 (3)C(M3—C13—C18—C17179.3 (3)
C13—C14—C15—C160.7 (6)C(M3—C(A4—C(B4—C(B3178.6 (2)
C14—C13—C18—C170.7 (4)C(M3—C(A5—C(B5—C(B6174.5 (2)
C14—C13—C(M3—C(A478.0 (3)C(M4—C19—C20—C21177.1 (3)
C14—C13—C(M3—C(A5105.3 (3)C(M4—C19—C24—C23177.5 (3)
C14—C15—C16—C170.9 (6)C(M4—C(A6—C(B6—C(B5178.3 (2)
C15—C16—C17—C180.2 (5)C(M4—C(A7—C(B7—C(B8177.7 (2)
Symmetry code: (i) x+1, y+1, z.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (grant No. 21977093); The Strategic Priority Research Program of Chinese Academy of Sciences (grant No. XDB28000000).

References

First citationAdler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476.  CrossRef Web of Science Google Scholar
First citationBoal, A. K., Cotruvo, J. A. Jr, Stubbe, J. & Rosenzweig, A. C. (2012). Biochemistry, 51, 3861–3871.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoer, J. W. de, Browne, W. R., Feringa, B. L. & Hage, R. (2007). C. R. Chim. 10, 341–354.  Google Scholar
First citationBruker (2013). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z. & Yin, G. (2015). Chem. Soc. Rev. 44, 1083–1100.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCheng, B. S., Cukiernik, F., Fries, P. H., Marchon, J. C. & Scheidt, W. R. (1995). Inorg. Chem. 34, 4627–4639.  CSD CrossRef CAS Web of Science Google Scholar
First citationCheng, B. S., Fries, P. H., Marchon, J. C. & Scheidt, W. R. (1996). Inorg. Chem. 35, 1024–1032.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFleischer, E. B., Palmer, J. M., Srivastava, T. S. & Chatterjee, A. (1971). J. Am. Chem. Soc. 93, 3162–3167.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHe, M., Li, X., Liu, Y. & Li, J. (2016). Inorg. Chem. 55, 5871–5879.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTeutloff, C., Schäfer, K. O., Sinnecker, S., Barynin, V., Bittl, R., Wieghardt, K., Lendzian, F. & Lubitz, W. (2005). Magn. Reson. Chem. 43, S51–S64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieghardt, K. (1989). Angew. Chem. Int. Ed. Engl. 28, 1153–1172.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds