organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(2-Hy­dr­oxy-4,6-di­meth­­oxy­phen­yl)-3-(naph­thalen-1-yl)prop-2-en-1-one

crossmark logo

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul, 02748, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 19 September 2022; accepted 22 September 2022; online 27 September 2022)

In the title compound, C21H18O4, the relative conformation of the C=C and C=O double bonds in the central enone group is s-cisoid; there is a trans configuration about the C=C bond. The dihedral angle formed by the naphthalene ring system and the benzene ring is 16.80 (2)°. The meth­oxy groups at the ortho and para positions of the benzene ring are tilted to the ring by 169.8 (1) and 174.5 (1)°, respectively. The hy­droxy group in the benzene ring participates in an intra­molecular O—H⋯O hydrogen bond. In the crystal, C—H⋯O inter­actions link mol­ecules into linear chains along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Reactive oxygen species (ROS) damage DNA, RNA, and proteins when present in excess. There is growing evidence that flavonoids can suppress carcinogenesis by inhibiting ROS levels (Rodríguez-García et al., 2019[Rodríguez-García, C., Sánchez-Quesada, C. & Gaforio, J. J. (2019). Antioxidants, 8, 137.]). Surprisingly, flavonoids can also induce excessive oxidative stress, leading to cancer cell death (Slika et al., 2022[Slika, H., Mansour, H., Wehbe, N., Nasser, S. A., Iratni, R., Nasrallah, G., Shaito, A., Ghaddar, T., Kobeissy, F. & Eid, A. H. (2022). Biomed. Pharmacother. 146, 112442.]). Flavones (Hostetler et al., 2017[Hostetler, G. L., Ralston, R. A. & Schwartz, S. J. (2017). Adv. Nutr. 8, 423-435.]), aurones (Sui et al., 2021[Sui, G., Li, T., Zhang, B., Wang, R., Hao, H. & Zhou, W. (2021). Bioorg. Med. Chem. 29, 115895.]), and chalcones (Elkanzi et al., 2022[Elkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769-27786.]), which belong to the sub-group of flavonoids, have in common an α,β-unsaturated carbonyl group in the mol­ecule. The α,β-unsaturated carbonyl group reacts with the thiol group of gluta­thione (GSH) as a Michael acceptor to reduce the intra­cellular GSH concentration (Adams et al., 2012[Adams, D. J., Dai, M., Pellegrino, G., Wagner, B. K., Stern, A. M., Shamji, A. F. & Schreiber, S. L. (2012). Proc. Natl Acad. Sci. USA, 109, 15115-15120.]). Since cancer cells have a higher ROS concentration than normal cells (Kumari et al., 2018[Kumari, S., Badana, A. K. & Malla, R. (2018). Biomark. 13, 1177271918755391.]), α,β-unsaturated carbonyl groups rapidly increase ROS levels due to decreased GSH, thereby killing cancer cells (Raj et al., 2011[Raj, L., Ide, T., Gurkar, A., Foley, M., Schenone, M., Li, X., Tolliday, N. J., Golub, T. R., Carr, S. A., Shamji, A. F., Stern, A. M., Mandinova, A., Schreiber, S. L. & Lee, S. W. (2011). Nature, 475, 231-234.]). As an extension of the search for ROS-generating compounds in cancer cells (Shin et al., 2022[Shin, S. Y., Jung, E., Lim, Y., Lee, H. J., Rhee, J. H., Yoo, M., Ahn, S. & Koh, D. (2022). Crystals, 12, 108.]; Lee et al., 2016[Lee, K., Lee, D. H., Kim, J.-H., Jung, Y. J., Shin, S. Y., Koh, D. & Lee, Y. H. (2016). Appl. Biol. Chem. 59, 391-396.]), the title chalcone compound was synthesized.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. In the central α,β-unsaturated carbonyl group, the carbonyl O1=C1 and C2=C3 double bonds are twisted at an angle of −22.9 (2)° for the C3—C2—C1—O1 torsion angle. A trans-configuration is noted for the C2=C3 double bond, which has a torsion angle of −178.3 (1)° for C1—C2—C3—C4. The meth­oxy group at the para position (C-17) of the benzene ring is nearly coplanar with the ring [C18—C17—O3—C20 = 174.5 (1)°], while the other meth­oxy group at the ortho position (C-19) is more twisted out of the ring [C14—C19—O4—C21 = 169.8 (1)°]. The naphthalene ring system (C4–C13; r.m.s. deviation of 0.003 Å) is tilted at an angle of 16.80 (2)° with respect to the benzene ring (C14–C19; r.m.s. deviation of 0.011 Å). The hy­droxy group attached to the benzene ring is involved in an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into linear chains propagating along the a-axis direction (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1 0.94 (2) 1.60 (2) 2.4869 (12) 155.5 (18)
C21—H21C⋯O2i 0.98 2.58 3.3393 (17) 135
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. The dashed bond represents the intra­molecular O—H⋯O hydrogen bond.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound with weak inter­molecular C—H⋯O inter­actions shown as green dashed lines.

Synthesis and crystallization

1-(2-Hy­droxy-4,6-di­meth­oxy­phen­yl)ethanone (196 mg, 1 mmol) and 1-naphthaldehyde (156 mg, 1 mmol) were dissolved in ethanol (25 ml) and the temperature was cooled to around 276–277 K in an ice bath. To the cooled reaction mixture were added 1.0 ml of 40% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 20 h. This mixture was poured into iced water (40 ml) and acidified with 6 N HCl solution. The mixture was extracted with ethyl acetate (2 × 30 ml) and the combined organic layers were dried over MgSO4. Filtration and evaporation of the filtrate gave a residue which was purified by flash chromatography to give the title compound (260 mg, 78%). Recrystallization in ethanol gave the crystals used in this X-ray diffraction study.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H18O4
Mr 334.35
Crystal system, space group Monoclinic, C2/c
Temperature (K) 147
a, b, c (Å) 15.8594 (7), 5.0437 (2), 40.6908 (17)
β (°) 90.507 (2)
V3) 3254.7 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.77
Crystal size (mm) 0.65 × 0.11 × 0.03
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.655, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 10590, 2743, 2555
Rint 0.027
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.03
No. of reflections 2743
No. of parameters 232
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-1-(2-Hydroxy-4,6-dimethoxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one top
Crystal data top
C21H18O4F(000) = 1408
Mr = 334.35Dx = 1.365 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 6156 reflections
a = 15.8594 (7) Åθ = 6.5–66.5°
b = 5.0437 (2) ŵ = 0.77 mm1
c = 40.6908 (17) ÅT = 147 K
β = 90.507 (2)°Needle, yellow
V = 3254.7 (2) Å30.65 × 0.11 × 0.03 mm
Z = 8
Data collection top
Bruker Kappa APEX DUO CCD
diffractometer
2743 independent reflections
Radiation source: Bruker ImuS2555 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.027
φ and ω scansθmax = 66.5°, θmin = 6.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1818
Tmin = 0.655, Tmax = 0.753k = 51
10590 measured reflectionsl = 4847
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0514P)2 + 2.058P]
where P = (Fo2 + 2Fc2)/3
2743 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.83835 (5)0.92735 (19)0.40390 (2)0.0331 (2)
O20.82944 (5)1.26680 (18)0.44807 (2)0.0286 (2)
O30.56231 (5)1.62372 (18)0.47470 (2)0.0289 (2)
O40.57849 (5)0.93109 (17)0.39751 (2)0.0277 (2)
C10.75984 (8)0.9014 (2)0.40286 (3)0.0233 (3)
C20.72497 (8)0.6836 (3)0.38301 (3)0.0278 (3)
H2A0.67020.61950.38800.033*
C30.76623 (8)0.5731 (2)0.35859 (3)0.0267 (3)
H3A0.82150.63650.35430.032*
C40.73370 (8)0.3599 (2)0.33742 (3)0.0239 (3)
C50.64822 (8)0.3106 (3)0.33554 (3)0.0284 (3)
H5A0.61090.41540.34830.034*
C60.61469 (9)0.1099 (3)0.31536 (3)0.0309 (3)
H6A0.55550.08020.31470.037*
C70.66664 (9)0.0425 (3)0.29668 (3)0.0294 (3)
H7A0.64350.17790.28310.035*
C80.75456 (8)0.0002 (2)0.29737 (3)0.0250 (3)
C90.80929 (9)0.1570 (3)0.27802 (3)0.0319 (3)
H9A0.78630.29300.26450.038*
C100.89410 (10)0.1162 (3)0.27848 (3)0.0371 (3)
H10A0.92980.22260.26530.045*
C110.92890 (9)0.0833 (3)0.29851 (4)0.0363 (3)
H11A0.98820.11110.29880.044*
C120.87801 (8)0.2379 (3)0.31759 (3)0.0294 (3)
H12A0.90260.37160.33100.035*
C130.78924 (8)0.2026 (2)0.31770 (3)0.0232 (3)
C140.70640 (8)1.0824 (2)0.42166 (3)0.0212 (3)
C150.74516 (7)1.2624 (2)0.44389 (3)0.0220 (3)
C160.69958 (8)1.4415 (2)0.46266 (3)0.0230 (3)
H16A0.72731.55360.47810.028*
C170.61307 (8)1.4532 (2)0.45848 (3)0.0232 (3)
C180.57152 (8)1.2849 (2)0.43638 (3)0.0240 (3)
H18A0.51211.29760.43350.029*
C190.61656 (8)1.1008 (2)0.41876 (3)0.0216 (3)
C200.60019 (9)1.7843 (3)0.49980 (3)0.0298 (3)
H20A0.55631.88450.51120.045*
H20B0.64021.90790.48980.045*
H20C0.63001.67050.51560.045*
C210.48877 (9)0.9150 (3)0.39821 (4)0.0405 (4)
H21A0.46990.76380.38490.061*
H21B0.46451.07870.38930.061*
H21C0.47030.89140.42090.061*
H2O0.8485 (12)1.142 (4)0.4325 (5)0.064 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (5)0.0357 (5)0.0409 (5)0.0010 (4)0.0022 (4)0.0128 (4)
O20.0200 (5)0.0321 (5)0.0336 (5)0.0005 (4)0.0009 (4)0.0081 (4)
O30.0249 (5)0.0318 (5)0.0300 (5)0.0043 (4)0.0027 (4)0.0074 (4)
O40.0236 (5)0.0297 (5)0.0297 (5)0.0045 (4)0.0016 (4)0.0066 (4)
C10.0257 (6)0.0215 (6)0.0226 (6)0.0003 (5)0.0024 (5)0.0037 (5)
C20.0258 (7)0.0260 (7)0.0318 (7)0.0011 (5)0.0024 (5)0.0035 (5)
C30.0247 (6)0.0260 (7)0.0294 (6)0.0011 (5)0.0008 (5)0.0029 (5)
C40.0280 (7)0.0229 (6)0.0208 (6)0.0006 (5)0.0006 (5)0.0020 (5)
C50.0289 (7)0.0280 (7)0.0283 (6)0.0008 (5)0.0018 (5)0.0009 (5)
C60.0278 (7)0.0334 (7)0.0313 (7)0.0060 (6)0.0026 (5)0.0016 (6)
C70.0385 (8)0.0259 (7)0.0238 (6)0.0061 (6)0.0059 (5)0.0001 (5)
C80.0352 (7)0.0216 (6)0.0182 (6)0.0002 (5)0.0021 (5)0.0035 (5)
C90.0446 (8)0.0268 (7)0.0243 (6)0.0008 (6)0.0007 (6)0.0043 (5)
C100.0420 (8)0.0352 (8)0.0342 (7)0.0078 (6)0.0074 (6)0.0073 (6)
C110.0303 (7)0.0374 (8)0.0414 (8)0.0035 (6)0.0042 (6)0.0048 (6)
C120.0298 (7)0.0275 (7)0.0310 (7)0.0000 (5)0.0001 (5)0.0041 (5)
C130.0293 (7)0.0209 (6)0.0194 (6)0.0013 (5)0.0011 (5)0.0030 (5)
C140.0236 (6)0.0195 (6)0.0206 (6)0.0016 (5)0.0017 (5)0.0024 (5)
C150.0215 (6)0.0224 (6)0.0219 (6)0.0017 (5)0.0004 (5)0.0040 (5)
C160.0257 (6)0.0225 (6)0.0208 (6)0.0020 (5)0.0002 (5)0.0015 (5)
C170.0261 (6)0.0220 (6)0.0217 (6)0.0018 (5)0.0044 (5)0.0019 (5)
C180.0200 (6)0.0264 (7)0.0257 (6)0.0005 (5)0.0007 (5)0.0020 (5)
C190.0243 (6)0.0210 (6)0.0195 (6)0.0037 (5)0.0003 (5)0.0026 (5)
C200.0331 (7)0.0314 (7)0.0249 (6)0.0060 (6)0.0009 (5)0.0055 (5)
C210.0231 (7)0.0492 (9)0.0490 (9)0.0054 (6)0.0050 (6)0.0144 (7)
Geometric parameters (Å, º) top
O1—C11.2523 (15)C9—C101.361 (2)
O2—C151.3461 (15)C9—H9A0.9500
O2—H2O0.94 (2)C10—C111.405 (2)
O3—C171.3538 (15)C10—H10A0.9500
O3—C201.4316 (15)C11—C121.3688 (19)
O4—C191.3549 (15)C11—H11A0.9500
O4—C211.4258 (16)C12—C131.4190 (18)
C1—C141.4656 (17)C12—H12A0.9500
C1—C21.4688 (18)C14—C151.4181 (17)
C2—C31.3182 (19)C14—C191.4316 (17)
C2—H2A0.9500C15—C161.3896 (17)
C3—C41.4685 (18)C16—C171.3823 (17)
C3—H3A0.9500C16—H16A0.9500
C4—C51.3797 (18)C17—C181.3974 (18)
C4—C131.4360 (17)C18—C191.3769 (17)
C5—C61.4051 (19)C18—H18A0.9500
C5—H5A0.9500C20—H20A0.9800
C6—C71.363 (2)C20—H20B0.9800
C6—H6A0.9500C20—H20C0.9800
C7—C81.4105 (19)C21—H21A0.9800
C7—H7A0.9500C21—H21B0.9800
C8—C91.4178 (18)C21—H21C0.9800
C8—C131.4232 (18)
C15—O2—H2O103.2 (12)C11—C12—C13121.35 (12)
C17—O3—C20117.37 (10)C11—C12—H12A119.3
C19—O4—C21117.53 (10)C13—C12—H12A119.3
O1—C1—C14119.78 (11)C12—C13—C8117.82 (11)
O1—C1—C2117.78 (11)C12—C13—C4123.08 (11)
C14—C1—C2122.42 (11)C8—C13—C4119.09 (11)
C3—C2—C1122.95 (12)C15—C14—C19115.88 (11)
C3—C2—H2A118.5C15—C14—C1118.83 (11)
C1—C2—H2A118.5C19—C14—C1125.25 (11)
C2—C3—C4125.29 (12)O2—C15—C16116.16 (11)
C2—C3—H3A117.4O2—C15—C14121.02 (11)
C4—C3—H3A117.4C16—C15—C14122.82 (11)
C5—C4—C13118.47 (11)C17—C16—C15118.74 (11)
C5—C4—C3120.29 (11)C17—C16—H16A120.6
C13—C4—C3121.22 (11)C15—C16—H16A120.6
C4—C5—C6121.93 (12)O3—C17—C16124.13 (11)
C4—C5—H5A119.0O3—C17—C18114.87 (11)
C6—C5—H5A119.0C16—C17—C18121.00 (11)
C7—C6—C5120.30 (12)C19—C18—C17120.06 (11)
C7—C6—H6A119.8C19—C18—H18A120.0
C5—C6—H6A119.8C17—C18—H18A120.0
C6—C7—C8120.41 (12)O4—C19—C18121.88 (11)
C6—C7—H7A119.8O4—C19—C14116.69 (10)
C8—C7—H7A119.8C18—C19—C14121.43 (11)
C7—C8—C9120.98 (12)O3—C20—H20A109.5
C7—C8—C13119.80 (11)O3—C20—H20B109.5
C9—C8—C13119.22 (12)H20A—C20—H20B109.5
C10—C9—C8121.20 (12)O3—C20—H20C109.5
C10—C9—H9A119.4H20A—C20—H20C109.5
C8—C9—H9A119.4H20B—C20—H20C109.5
C9—C10—C11119.97 (13)O4—C21—H21A109.5
C9—C10—H10A120.0O4—C21—H21B109.5
C11—C10—H10A120.0H21A—C21—H21B109.5
C12—C11—C10120.43 (13)O4—C21—H21C109.5
C12—C11—H11A119.8H21A—C21—H21C109.5
C10—C11—H11A119.8H21B—C21—H21C109.5
O1—C1—C2—C322.91 (19)C3—C4—C13—C8179.47 (11)
C14—C1—C2—C3158.34 (12)O1—C1—C14—C157.79 (17)
C1—C2—C3—C4178.35 (11)C2—C1—C14—C15170.93 (11)
C2—C3—C4—C518.8 (2)O1—C1—C14—C19169.92 (11)
C2—C3—C4—C13162.71 (13)C2—C1—C14—C1911.36 (18)
C13—C4—C5—C60.90 (18)C19—C14—C15—O2178.57 (10)
C3—C4—C5—C6179.46 (12)C1—C14—C15—O20.65 (16)
C4—C5—C6—C70.4 (2)C19—C14—C15—C161.93 (17)
C5—C6—C7—C80.08 (19)C1—C14—C15—C16179.84 (11)
C6—C7—C8—C9179.90 (12)O2—C15—C16—C17177.50 (10)
C6—C7—C8—C130.03 (18)C14—C15—C16—C172.97 (18)
C7—C8—C9—C10179.69 (12)C20—O3—C17—C165.82 (17)
C13—C8—C9—C100.25 (19)C20—O3—C17—C18174.47 (10)
C8—C9—C10—C110.3 (2)C15—C16—C17—O3178.27 (11)
C9—C10—C11—C120.1 (2)C15—C16—C17—C181.42 (17)
C10—C11—C12—C130.2 (2)O3—C17—C18—C19179.20 (10)
C11—C12—C13—C80.25 (19)C16—C17—C18—C191.08 (18)
C11—C12—C13—C4179.78 (12)C21—O4—C19—C1811.21 (17)
C7—C8—C13—C12179.98 (11)C21—O4—C19—C14169.78 (11)
C9—C8—C13—C120.05 (17)C17—C18—C19—O4178.90 (10)
C7—C8—C13—C40.46 (17)C17—C18—C19—C142.14 (18)
C9—C8—C13—C4179.60 (11)C15—C14—C19—O4179.68 (10)
C5—C4—C13—C12179.56 (11)C1—C14—C19—O41.91 (17)
C3—C4—C13—C121.01 (18)C15—C14—C19—C180.67 (16)
C5—C4—C13—C80.91 (17)C1—C14—C19—C18177.10 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.94 (2)1.60 (2)2.4869 (12)155.5 (18)
C21—H21C···O2i0.982.583.3393 (17)135
Symmetry code: (i) x1/2, y1/2, z.
 

Acknowledgements

This work was supported by a Dongduk Women's University grant.

References

First citationAdams, D. J., Dai, M., Pellegrino, G., Wagner, B. K., Stern, A. M., Shamji, A. F. & Schreiber, S. L. (2012). Proc. Natl Acad. Sci. USA, 109, 15115–15120.  CrossRef CAS PubMed Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationElkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769–27786.  CrossRef CAS PubMed Google Scholar
First citationHostetler, G. L., Ralston, R. A. & Schwartz, S. J. (2017). Adv. Nutr. 8, 423–435.  CrossRef CAS PubMed Google Scholar
First citationKumari, S., Badana, A. K. & Malla, R. (2018). Biomark. 13, 1177271918755391.  Google Scholar
First citationLee, K., Lee, D. H., Kim, J.-H., Jung, Y. J., Shin, S. Y., Koh, D. & Lee, Y. H. (2016). Appl. Biol. Chem. 59, 391–396.  CrossRef CAS Google Scholar
First citationRaj, L., Ide, T., Gurkar, A., Foley, M., Schenone, M., Li, X., Tolliday, N. J., Golub, T. R., Carr, S. A., Shamji, A. F., Stern, A. M., Mandinova, A., Schreiber, S. L. & Lee, S. W. (2011). Nature, 475, 231–234.  CrossRef CAS PubMed Google Scholar
First citationRodríguez-García, C., Sánchez-Quesada, C. & Gaforio, J. J. (2019). Antioxidants, 8, 137.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, S. Y., Jung, E., Lim, Y., Lee, H. J., Rhee, J. H., Yoo, M., Ahn, S. & Koh, D. (2022). Crystals, 12, 108.  CrossRef Google Scholar
First citationSlika, H., Mansour, H., Wehbe, N., Nasser, S. A., Iratni, R., Nasrallah, G., Shaito, A., Ghaddar, T., Kobeissy, F. & Eid, A. H. (2022). Biomed. Pharmacother. 146, 112442.  CrossRef PubMed Google Scholar
First citationSui, G., Li, T., Zhang, B., Wang, R., Hao, H. & Zhou, W. (2021). Bioorg. Med. Chem. 29, 115895.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds