organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(4-hy­dr­oxy­phen­yl) 1,4-phenyl­enebiscarbamate

crossmark logo

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico, bInstituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Mexico, and cCentro Universitario de Vinculación, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 14 September 2022; accepted 15 September 2022; online 27 September 2022)

The title compound, C20H16N2O6 (systematic name: 4-hy­droxy­phenyl N-{4-[(4-hy­droxy­phen­oxy­carbon­yl)amino]­phen­yl}carbamate), contains two urethane groups substituting the central benzene ring in para positions. The mol­ecule is centrosymmetric, and displays a twisted conformation for the three aromatic rings [the dihedral angle between central benzene ring and the urethane group is 33.4 (6)°, and that between the latter and the terminal ring is 65.1 (1)°]. In the crystal, a three-dimensional framework is formed through O—H⋯O and N—H⋯O hydrogen bonds involving the hy­droxy and urethane functional groups, respectively.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was obtained by reacting hydro­quinone, 1,4-phenyl­ene diiso­cyanate and tri­ethyl­amine in dioxane. The resulting bis-urethane derivative crystallizes in the centrosymmetric space group P21/c, with the mol­ecule having crystallographic inversion symmetry (Fig. 1[link]). The urethane group displays the expected nearly planar geometry. This functional group is well represented in the CSD: 5700 hits are retrieved for organic compounds including an acyclic C—NH—(COO)—C fragment (CSD v. 5.43 with two updates, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). However, most of these urethane derivatives originate from boc-protected amines, using the tert-but­oxy­carbonyl (boc) protecting group. In contrast, benzene rings substituted by two urethane groups are less studied by X-ray diffraction. For para-substituted benzene, only five structures have been deposited to date in the CSD. These occurrences include dimethyl 1,4-phenyl­enebiscarbamate (Stapf et al., 2015[Stapf, M., Seichter, W. & Weber, E. (2015). Z. Naturforsch. Teil B, 70, 409-419.]), intended for anion complexation, and a dicholesterol derivative (Alegre-Requena et al., 2020[Alegre-Requena, J. V., Herrera, R. P. & Díaz Díaz, D. (2020). ChemPlusChem, 85, 2372-2375.]), intended for the preparation of supra­molecular gels.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level. Non-labelled atoms are generated by symmetry operation 1 − x, −y, 1 − z.

As for dimethyl 1,4-phenyl­enebiscarbamate, the title mol­ecule is not planar. The dihedral angle between the central benzene ring and the urethane group is 33.4 (6)°, hindering the formation of an intra­molecular hydrogen bond C3—H3A⋯O6, although this could potentially stabilize the mol­ecule through the formation of an S(6) ring motif. The peripheral hy­droxy­benzene group is also rotated with respect to the urethane group, forming a dihedral angle of 65.1 (1)°.

This twisted mol­ecular conformation helps in the formation of two kinds of hydrogen bonds, leading to a three-dimensional supra­molecular architecture. First, hy­droxy groups behave both as donor and acceptor, linking mol­ecules through O—H⋯O hydrogen bonds. The resulting two-dimensional structure is nearly parallel to the (102) plane in the crystal (Table 1[link], entry 1; Fig. 2[link]). These layers are further inter­connected by urethane N—H⋯O hydrogen bonds oriented nearly perpendicular to the layers (Table 1[link], entry 2; Fig. 3[link]). The three-dimensional framework is thermodynamically stable, although no inter­molecular ππ inter­actions are present in the crystal.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14⋯O14i 0.85 (4) 1.91 (5) 2.754 (2) 172 (4)
N4—H4⋯O6ii 0.84 (3) 2.13 (4) 2.945 (3) 163 (3)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Supra­molecular layers formed by O—H⋯O hydrogen bonds (see entry 1 in Table 1[link]). Hydrogen bonds are shown as purple dashed lines, and the projection is nearly normal to [001]. Note the hanging contacts (orange dashed lines), corresponding to the hydrogen bonds described in Fig. 3[link]. Benzene-H atoms are omitted for clarity.
[Figure 3]
Figure 3
The two-dimensional supra­molecular motif formed by N—H⋯O hydrogen bonds (see entry 2 in Table 1[link]). Two neighbouring mol­ecules are related by the glide plane of space group P21/c. The projection is nearly normal to [010]. Benzene-H atoms are omitted for clarity.

The synthesized mol­ecule is a potential useful inter­mediate for obtaining other monomers, or cross-linking agents (Kothandaraman & Sultan Nasar, 1995[Kothandaraman, H. & Nasar, A. S. (1995). J. Macromol. Sci. Part A, 32, 1009-1016.]; Lamba et al., 1998[Lamba, N. M. K., Woodhouse, K. A. & Cooper, S. L. (1998). Editors. Polyurethanes in Biomedical Applications. Routledge: CRC Press.]): such diols are used for polycondensation reactions affording polymeric materials. On the other hand, some classes of urethane derivatives show diverse biological activity and have been used as fungicides, bactericides or analgesics, among other applications (Lamba et al., 1998[Lamba, N. M. K., Woodhouse, K. A. & Cooper, S. L. (1998). Editors. Polyurethanes in Biomedical Applications. Routledge: CRC Press.]; Yagci et al., 2011[Yagci, M. B., Bolca, S., Heuts, J. P. A., Ming, W. & de With, G. (2011). Prog. Org. Coat. 72, 305-314.]; Wang et al., 2022[Wang, Y., Du, J., Guo, H., Liu, R., Li, Z., Yang, T., Ai, J. & Liu, C. (2022). J. Polym. Res. 29, 47.]).

Synthesis and crystallization

The synthesis was performed in a 100 ml three-mouth flask, sealed with silicone grease and evacuated with argon. In 5 ml of dry dioxane, hydro­quinone (0.316 g), tri­ethyl­amine (0.207 ml) and 1,4-phenyl­ene diiso­cyanate (0.222 g) were added. The reaction was carried out at 353–363 K, under constant stirring. After a few minutes, it was observed that the reaction medium turned white. After 6 h, the reaction product was purified by column chromatography, using ethyl acetate:hexane (60:40) as the eluant. Once the purified monomer was obtained, it was dried in a furnace at 313 K for 24 h. Single crystals were obtained by evaporation of a saturated solution of the compound in an ethanol/di­chloro­methane mixture (4:1, v:v).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H16N2O6
Mr 380.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 19.0804 (17), 4.6758 (3), 10.1189 (8)
β (°) 101.169 (7)
V3) 885.67 (12)
Z 2
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.07
Crystal size (mm) 0.26 × 0.20 × 0.03
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2019[Stoe & Cie (2019). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.450, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15028, 1678, 984
Rint 0.074
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.165, 1.06
No. of reflections 1678
No. of parameters 133
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.20
Computer programs: X-AREA (Stoe & Cie, 2019[Stoe & Cie (2019). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2019); cell refinement: X-AREA (Stoe & Cie, 2019); data reduction: X-AREA (Stoe & Cie, 2019); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

4-Hydroxyphenyl N-{4-[(4-hydroxyphenoxycarbonyl)amino]phenyl}carbamate top
Crystal data top
C20H16N2O6F(000) = 396
Mr = 380.35Dx = 1.426 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56083 Å
a = 19.0804 (17) ÅCell parameters from 8468 reflections
b = 4.6758 (3) Åθ = 2.6–25.0°
c = 10.1189 (8) ŵ = 0.07 mm1
β = 101.169 (7)°T = 295 K
V = 885.67 (12) Å3Plate, colourless
Z = 20.26 × 0.20 × 0.03 mm
Data collection top
Stoe Stadivari
diffractometer
1678 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source984 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.074
Detector resolution: 5.81 pixels mm-1θmax = 20.0°, θmin = 2.6°
ω scansh = 2323
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2019)
k = 55
Tmin = 0.450, Tmax = 1.000l = 1211
15028 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0826P)2]
where P = (Fo2 + 2Fc2)/3
1678 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
0 constraints
Special details top

Refinement. H atoms bonded to heteroatoms were refined freely, while H atoms of aromatic CH groups were placed in calculated positions and refined as riding to their carrier C atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47748 (17)0.1997 (8)0.4010 (3)0.0515 (9)
H1A0.4623500.3351660.3343320.062*
C20.42963 (15)0.0948 (7)0.4754 (3)0.0429 (8)
C30.45239 (16)0.1062 (8)0.5758 (3)0.0476 (8)
H3A0.4207230.1772510.6269690.057*
N40.35804 (14)0.1974 (7)0.4457 (3)0.0519 (8)
H40.3413 (19)0.235 (8)0.365 (4)0.062*
C50.31708 (16)0.2435 (7)0.5367 (3)0.0431 (8)
O60.33018 (11)0.1848 (5)0.65433 (18)0.0521 (7)
O70.25538 (11)0.3727 (6)0.47506 (19)0.0613 (8)
C80.20244 (17)0.4238 (8)0.5511 (3)0.0462 (8)
C90.13914 (17)0.2829 (8)0.5162 (3)0.0487 (8)
H9A0.1336640.1449480.4487480.058*
C100.08313 (17)0.3420 (7)0.5796 (3)0.0461 (8)
H10A0.0397140.2474970.5542200.055*
C110.09221 (16)0.5420 (7)0.6806 (3)0.0398 (7)
C120.15670 (17)0.6839 (7)0.7167 (3)0.0479 (8)
H12A0.1626450.8193640.7852540.058*
C130.21180 (17)0.6259 (8)0.6520 (3)0.0507 (9)
H13A0.2550940.7218900.6759830.061*
O140.03802 (12)0.6086 (5)0.7487 (2)0.0505 (6)
H140.011 (2)0.464 (10)0.749 (4)0.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (19)0.073 (3)0.0396 (15)0.0162 (17)0.0118 (14)0.0108 (15)
C20.0348 (17)0.060 (2)0.0349 (14)0.0080 (15)0.0093 (13)0.0035 (14)
C30.0380 (18)0.066 (2)0.0420 (16)0.0044 (16)0.0162 (14)0.0038 (15)
N40.0366 (16)0.086 (2)0.0351 (12)0.0135 (14)0.0118 (12)0.0053 (14)
C50.0351 (17)0.058 (2)0.0359 (15)0.0054 (15)0.0059 (13)0.0010 (15)
O60.0419 (13)0.0833 (19)0.0320 (11)0.0149 (12)0.0097 (9)0.0029 (10)
O70.0401 (13)0.105 (2)0.0415 (11)0.0267 (13)0.0142 (10)0.0150 (12)
C80.0367 (18)0.067 (2)0.0364 (15)0.0132 (16)0.0117 (13)0.0128 (15)
C90.0443 (19)0.062 (2)0.0386 (15)0.0063 (16)0.0056 (14)0.0052 (15)
C100.0347 (17)0.054 (2)0.0502 (17)0.0009 (15)0.0100 (14)0.0042 (15)
C110.0373 (17)0.0401 (19)0.0446 (15)0.0056 (14)0.0145 (13)0.0050 (14)
C120.047 (2)0.047 (2)0.0518 (18)0.0047 (16)0.0141 (15)0.0109 (15)
C130.0343 (17)0.064 (2)0.0541 (18)0.0046 (16)0.0092 (15)0.0063 (17)
O140.0458 (13)0.0474 (15)0.0659 (14)0.0011 (11)0.0294 (11)0.0022 (11)
Geometric parameters (Å, º) top
C1—C21.381 (4)C8—C131.377 (5)
C1—C3i1.384 (4)C9—C101.377 (4)
C1—H1A0.9300C9—H9A0.9300
C2—C31.390 (5)C10—C111.371 (4)
C2—N41.424 (4)C10—H10A0.9300
C3—H3A0.9300C11—C121.383 (4)
N4—C51.336 (4)C11—O141.385 (3)
N4—H40.84 (3)C12—C131.369 (4)
C5—O61.199 (3)C12—H12A0.9300
C5—O71.362 (4)C13—H13A0.9300
O7—C81.404 (3)O14—H140.85 (4)
C8—C91.361 (5)
C2—C1—C3i121.0 (3)C13—C8—O7121.3 (3)
C2—C1—H1A119.5C8—C9—C10120.8 (3)
C3i—C1—H1A119.5C8—C9—H9A119.6
C1—C2—C3119.5 (3)C10—C9—H9A119.6
C1—C2—N4118.3 (3)C11—C10—C9119.1 (3)
C3—C2—N4122.2 (3)C11—C10—H10A120.4
C1i—C3—C2119.5 (3)C9—C10—H10A120.4
C1i—C3—H3A120.3C10—C11—C12120.1 (3)
C2—C3—H3A120.3C10—C11—O14121.7 (3)
C5—N4—C2125.1 (3)C12—C11—O14118.2 (3)
C5—N4—H4118 (2)C13—C12—C11120.3 (3)
C2—N4—H4117 (2)C13—C12—H12A119.8
O6—C5—N4127.6 (3)C11—C12—H12A119.8
O6—C5—O7123.5 (3)C12—C13—C8119.3 (3)
N4—C5—O7109.0 (2)C12—C13—H13A120.4
C5—O7—C8118.3 (2)C8—C13—H13A120.4
C9—C8—C13120.4 (3)C11—O14—H14110 (3)
C9—C8—O7118.2 (3)
C3i—C1—C2—C30.5 (6)C5—O7—C8—C1369.9 (4)
C3i—C1—C2—N4179.3 (3)C13—C8—C9—C100.9 (5)
C1—C2—C3—C1i0.5 (6)O7—C8—C9—C10174.5 (3)
N4—C2—C3—C1i179.3 (3)C8—C9—C10—C111.2 (5)
C1—C2—N4—C5144.0 (3)C9—C10—C11—C120.7 (5)
C3—C2—N4—C536.2 (5)C9—C10—C11—O14179.4 (3)
C2—N4—C5—O67.1 (6)C10—C11—C12—C130.0 (5)
C2—N4—C5—O7172.8 (3)O14—C11—C12—C13179.8 (3)
O6—C5—O7—C84.1 (5)C11—C12—C13—C80.3 (5)
N4—C5—O7—C8175.9 (3)C9—C8—C13—C120.2 (5)
C5—O7—C8—C9114.7 (4)O7—C8—C13—C12175.1 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···O60.932.472.939 (4)111
C13—H13A···O6ii0.932.633.451 (4)148
O14—H14···O14iii0.85 (4)1.91 (5)2.754 (2)172 (4)
N4—H4···O6iv0.84 (3)2.13 (4)2.945 (3)163 (3)
Symmetry codes: (ii) x, y+1, z; (iii) x, y1/2, z+3/2; (iv) x, y+1/2, z1/2.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (scholarship No. 820488 to I. Martínez-de la Luz; grant No. 268178).

References

First citationAlegre-Requena, J. V., Herrera, R. P. & Díaz Díaz, D. (2020). ChemPlusChem, 85, 2372–2375.  CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKothandaraman, H. & Nasar, A. S. (1995). J. Macromol. Sci. Part A, 32, 1009–1016.  CrossRef Google Scholar
First citationLamba, N. M. K., Woodhouse, K. A. & Cooper, S. L. (1998). Editors. Polyurethanes in Biomedical Applications. Routledge: CRC Press.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStapf, M., Seichter, W. & Weber, E. (2015). Z. Naturforsch. Teil B, 70, 409–419.  CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2019). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, Y., Du, J., Guo, H., Liu, R., Li, Z., Yang, T., Ai, J. & Liu, C. (2022). J. Polym. Res. 29, 47.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYagci, M. B., Bolca, S., Heuts, J. P. A., Ming, W. & de With, G. (2011). Prog. Org. Coat. 72, 305–314.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds