organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Methyl-5-nitro­imidazolium chloride

crossmark logo

aAve Maria University, Department of Chemistry and Physics, 5050 Ave Maria Blvd, Ave Maria, Florida 34142, USA, bDepartment of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. South, Fort Myers, Florida 33965, USA, cPurdue University, Department of Chemistry, 560 Oval Drive, West Lafayette, Indiana 47907, USA, and dDepartment of Chemistry, State University of New York at Oswego, Oswego, New York 13126, USA
*Correspondence e-mail: Patrick.Hillesheim@avemaria.edu

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 31 August 2022; accepted 2 September 2022; online 8 September 2022)

The title salt, C4H6N3O2+·Cl, exhibits multiple hydrogen-bonding inter­actions involving the nitro­imidazolium cation and the chloride anion. Strong hydrogen bonds between the amine hydrogen atom and the chloride anion link the ionic moieties. Of note, with respect to H⋯Cl inter­actions, the central aromatic hydrogen atom displays a shorter inter­action than the other aromatic hydrogen atom. Finally, inter­actions are observed between the nitro moiety and methyl H atoms. While no ππ stacking is observed, anion-π inter­actions are present. The crystal was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The study of nitro­imidazole-based compounds remains of inter­est due to their appearance on the World Health Organization's list of essential drugs (Purgato & Barbui, 2012[Purgato, M. & Barbui, C. (2012). Epidemiol. Psychiatr. Sci. 21, 343-345.]). Among the numerous functionalized derivatives of imidazoles, 5-nitro­imidazoles have long been known to be effective anti­biotics (Leiros et al., 2004[Leiros, H. S., Kozielski-Stuhrmann, S., Kapp, U., Terradot, L., Leonard, G. A. & McSweeney, S. M. (2004). J. Biol. Chem. 279, 55840-55849.]). Recently, however, 5-nitro­imidazole-based compounds have received renewed attention for the potential treatment of a slew of infectious diseases such as leishmaniasis and tuberculosis (Ang et al., 2017[Ang, C. W., Jarrad, A. M., Cooper, M. A. & Blaskovich, M. A. T. (2017). J. Med. Chem. 60, 7636-7657.]). A previous report by Bowden & Izadi (1998[Bowden, K. & Izadi, J. (1998). Farmaco, 53, 58-61.]) analyzed the anti­bacterial activities of various derivatives of metronidazole, a compound bearing a 5-nitro­imidazole core. In their work, several derivatives of metronidazole were chemically modified and studied with the intent of overcoming some of the disadvantages of 5-nitro­imidazole-based pharmaceuticals (Bowden & Izadi, 1998[Bowden, K. & Izadi, J. (1998). Farmaco, 53, 58-61.]). Furthermore, Miyamoto and coworkers reported the synthesis of a new class of nitro­imidazole derivatives to combat drug-resistant strains of infections (Miyamoto et al., 2013[Miyamoto, Y., Kalisiak, J., Korthals, K., Lauwaet, T., Cheung, D. Y., Lozano, R., Cobo, E. R., Upcroft, P., Upcroft, J. A., Berg, D. E., Gillin, F. D., Fokin, V. V., Sharpless, K. B. & Eckmann, L. (2013). PNAS, 110, 17564-17569.]). Hence, with the renewed inter­est in these compounds, fundamental structural analysis of nitro­imidazoles is of importance to the advancement of drug development.

Herein we report the crystal structure of 1-methyl-5-nitro­imidazolium chloride (Fig. 1[link]). While the overall crystalline forces are dominated by the Coulombic inter­actions between ion pairs, non-covalent inter­actions will still play a role in the formation of the crystal (Gavezzotti, 2010[Gavezzotti, A. (2010). Acta Cryst. B66, 396-406.]). The amine hydrogen atom, H3, exhibits the shortest hydrogen bond with the chloride anion with a distance of 2.160 (19) Å (Table 1[link]). The 2-position of imidazolium cations is known to be relatively acidic (Noack et al., 2010[Noack, K., Schulz, P. S., Paape, N., Kiefer, J., Wasserscheid, P. & Leipertz, A. (2010). Phys. Chem. Chem. Phys. 12, 14153-14161.]). As such, the central aromatic hydrogen (H2) tends to form shorter inter­actions with anions when compared with the other aromatic H atoms on the heterocyclic cores (Dupont, 2004[Dupont, J. (2004). J. Braz. Chem. Soc. 15, 341-350.]). This trend is observed within this structure as well with H2 displaying a shorter inter­action with the anion (2.62 Å) than the other aromatic hydrogen H4 (2.78 Å). As has been observed in related systems, the halide anions surround the cation in distinctive locations facilitating inter­actions with nearly all atoms of the heterocyclic core (Hunt et al., 2006[Hunt, P. A., Kirchner, B. & Welton, T. (2006). Chem. Eur. J. 12, 6762-6775.]; Sanchora et al., 2019[Sanchora, P., Pandey, D. K., Rana, D., Materny, A. & Singh, D. K. (2019). J. Phys. Chem. A, 123, 4948-4963.]; Matthews et al., 2015[Matthews, R. P., Welton, T. & Hunt, P. A. (2015). Phys. Chem. Chem. Phys. 17, 14437-14453.]). For example, the chloride anion inter­acts with the methyl H atoms (H6A, H6B, and H6C) at distances of 3.14, 2.85, and 2.84 Å, respectively.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Cl1 0.856 (19) 2.160 (19) 3.0141 (11) 175.4 (15)
C4—H4⋯Cl1i 0.95 2.78 3.6161 (12) 147
C2—H2⋯Cl1ii 0.95 2.62 3.4723 (12) 150
C6—H6B⋯Cl1ii 0.98 2.85 3.7519 (13) 154
C6—H6C⋯Cl1iii 0.98 2.84 3.6617 (13) 142
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Constituents of the title salt showing the atom-labeling scheme and 50% probability ellipsoids.

Nitro moieties are capable of exhibiting a diverse set of non-covalent inter­actions (Bauzá et al., 2019[Bauzá, A., Frontera, A. & Mooibroek, T. J. (2019). Chem. Eur. J. 25, 13436-13443.]; Sikorski & Trzybiński, 2013[Sikorski, A. & Trzybiński, D. (2013). J. Mol. Struct. 1049, 90-98.]). Within the title structure, both nitro O atoms (O1 and O2) participate in inter­actions with methyl H atoms H6A and H6B at distances of 2.56 and 2.90 Å, respectively. No short inter­actions with the aromatic H atoms are observed with the nitro group. The nitro moiety is nearly coplanar to the imidazole ring, with an N4—C5—C4—N3 torsion angle of 6.71 (10)o. As demonstrated by Bauzá et al., π-holes are present in nitro­aromatics, forming an important set of potential inter­actions (Bauzá et al., 2015[Bauzá, A., Mooibroek, T. J. & Frontera, A. (2015). Chem. Commun. 51, 1491-1493.]). For the title compound, the chloride anion is inter­acting with both faces of the π-hole of the nitro moiety at distances of 3.33 (10) and 3.37 (10) Å. The packing is shown in Fig. 2[link].

[Figure 2]
Figure 2
Packing diagram of the title salt.

Synthesis and crystallization

The title compound is a hydrolysis product from the synthetic procedure described below, analogous to our previously reported synthesis of 2,3-dimethyl-1H-imidazol-3-ium chloride (Anderson et al., 2020[Anderson, G., Mirjafari, A., Zeller, M. & Hillesheim, P. C. (2020). IUCrData, 5, x200660.]).

In brief, 5-nitro­imidazole and trityl chloride were dissolved in separate 50 ml beakers with toluene. The reactants were then combined in a single-necked 100 ml round-bottom flask equipped with a magnetic stir bar and left to stir for 2 days at room temperature. The solvent was removed under vacuum leaving a white solid residue. This solid was washed twice with tetra­hydro­furan and recovered via vacuum filtration. Crystals were grown at room temperature by vapor diffusion with aceto­nitrile as the solvent and tetra­hydro­furan as the anti-solvent. Colorless crystals of the hydrolyzed byproduct reported herein were observed within one week.

Refinement

For full experimental details including crystal data, data collection and structure refinement details, refer to Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C4H6N3O2+·Cl
Mr 163.57
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 6.3498 (5), 9.8991 (9), 11.5969 (10)
β (°) 105.817 (3)
V3) 701.35 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.35 × 0.15 × 0.12
 
Data collection
Diffractometer Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.659, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 12789, 2681, 2556
Rint 0.037
(sin θ/λ)max−1) 0.771
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.072, 1.08
No. of reflections 2681
No. of parameters 97
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.24
Computer programs: APEX3 (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]), and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]). For the Cambridge Structural Database (CSD), see Groom et al. (2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

The structure emulates a double the volume ortho­rhom­bic C-centered cell and is twinned by this symmetry (180° rotation around the real space a axis or around the reciprocal direction [[\overline2]01]). Refinement with the transformation matrix 1 0 0, 0 −1 0, −1 0 −1 yielded a 0.555 (1) to 0.445 (1) twinning ratio.

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015) ShelXle (Hübschle et al., 2011); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010), CSD (Groom et al., 2016), enCIFer (Allen et al., 2004).

1-Methyl-5-nitroimidazolium chloride top
Crystal data top
C4H6N3O2+·ClF(000) = 336
Mr = 163.57Dx = 1.549 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.3498 (5) ÅCell parameters from 9893 reflections
b = 9.8991 (9) Åθ = 2.8–33.2°
c = 11.5969 (10) ŵ = 0.49 mm1
β = 105.817 (3)°T = 150 K
V = 701.35 (10) Å3Rod, colourless
Z = 40.35 × 0.15 × 0.12 mm
Data collection top
Bruker AXS D8 Quest
diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
2556 reflections with I > 2σ(I)
Detector resolution: 7.4074 pixels mm-1Rint = 0.037
ω and phi scansθmax = 33.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 89
Tmin = 0.659, Tmax = 0.747k = 1514
12789 measured reflectionsl = 1617
2681 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: mixed
wR(F2) = 0.072H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.039P)2 + 0.1001P]
where P = (Fo2 + 2Fc2)/3
2681 reflections(Δ/σ)max = 0.001
97 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms. C—H bond distances were constrained to 0.95 Å for aromatic C—H moieties with Uiso(H) = 1.2 × Ueq(C), and to 0.98 Å for CH3 moieties with Uiso(H) = 1.5 × Ueq(C). The N—H proton on N3 was located as residual electron density and allowed to refine freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75167 (5)0.72586 (3)0.07499 (2)0.02027 (7)
O10.1250 (2)0.37864 (11)0.13424 (9)0.0313 (2)
O20.14844 (16)0.45993 (11)0.30478 (8)0.02609 (19)
N30.42357 (17)0.61303 (11)0.19454 (9)0.02019 (19)
H30.512 (3)0.6439 (18)0.1567 (14)0.019 (4)*
N10.25774 (17)0.58619 (10)0.33532 (8)0.01734 (17)
N40.05494 (18)0.44564 (10)0.22517 (8)0.01998 (18)
C50.14730 (19)0.51334 (11)0.23575 (9)0.01723 (18)
C40.2514 (2)0.53027 (13)0.14779 (10)0.0202 (2)
H40.2111850.4918150.0697850.024*
C20.4252 (2)0.64545 (12)0.30717 (10)0.0202 (2)
H20.5301670.7021840.3589990.024*
C60.2176 (2)0.59302 (13)0.45524 (10)0.0224 (2)
H6A0.0811780.6422220.4494550.034*
H6B0.3394560.6400520.5109430.034*
H6C0.2055960.5012900.4846040.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02085 (12)0.01942 (11)0.02158 (11)0.00029 (9)0.00752 (10)0.00269 (9)
O10.0386 (6)0.0293 (5)0.0243 (4)0.0130 (4)0.0060 (4)0.0054 (3)
O20.0224 (4)0.0351 (5)0.0225 (4)0.0009 (4)0.0090 (3)0.0033 (3)
N30.0207 (4)0.0232 (5)0.0186 (4)0.0012 (4)0.0086 (4)0.0026 (3)
N10.0206 (4)0.0166 (4)0.0161 (4)0.0004 (3)0.0071 (3)0.0011 (3)
N40.0217 (4)0.0195 (4)0.0182 (4)0.0011 (4)0.0045 (3)0.0033 (3)
C50.0194 (5)0.0169 (4)0.0152 (4)0.0010 (4)0.0044 (4)0.0010 (3)
C40.0223 (5)0.0229 (5)0.0160 (4)0.0016 (4)0.0060 (4)0.0014 (4)
C20.0214 (5)0.0200 (5)0.0199 (5)0.0011 (4)0.0068 (4)0.0001 (4)
C60.0306 (6)0.0232 (5)0.0162 (4)0.0047 (4)0.0110 (4)0.0038 (4)
Geometric parameters (Å, º) top
O1—N41.2223 (14)N4—C51.4239 (16)
O2—N41.2343 (13)C5—C41.3687 (16)
N3—H30.856 (19)C4—H40.9500
N3—C41.3553 (16)C2—H20.9500
N3—C21.3423 (15)C6—H6A0.9800
N1—C51.3797 (14)C6—H6B0.9800
N1—C21.3307 (16)C6—H6C0.9800
N1—C61.4822 (14)
C4—N3—H3125.4 (11)N3—C4—C5106.06 (10)
C2—N3—H3125.5 (11)N3—C4—H4127.0
C2—N3—C4108.98 (10)C5—C4—H4127.0
C5—N1—C6129.12 (10)N3—C2—H2125.1
C2—N1—C5106.44 (10)N1—C2—N3109.79 (11)
C2—N1—C6124.29 (10)N1—C2—H2125.1
O1—N4—O2124.85 (12)N1—C6—H6A109.5
O1—N4—C5115.92 (10)N1—C6—H6B109.5
O2—N4—C5119.21 (10)N1—C6—H6C109.5
N1—C5—N4123.97 (10)H6A—C6—H6B109.5
C4—C5—N1108.73 (10)H6A—C6—H6C109.5
C4—C5—N4126.94 (10)H6B—C6—H6C109.5
O1—N4—C5—N1175.66 (11)C4—N3—C2—N10.17 (14)
O1—N4—C5—C411.97 (18)C2—N3—C4—C50.12 (14)
O2—N4—C5—N15.77 (16)C2—N1—C5—N4173.64 (11)
O2—N4—C5—C4166.59 (12)C2—N1—C5—C40.08 (13)
N1—C5—C4—N30.02 (13)C6—N1—C5—N410.81 (18)
N4—C5—C4—N3173.29 (11)C6—N1—C5—C4175.63 (11)
C5—N1—C2—N30.15 (13)C6—N1—C2—N3175.98 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Cl10.856 (19)2.160 (19)3.0141 (11)175.4 (15)
C4—H4···Cl1i0.952.783.6161 (12)147
C2—H2···Cl1ii0.952.623.4723 (12)150
C6—H6B···Cl1ii0.982.853.7519 (13)154
C6—H6C···Cl1iii0.982.843.6617 (13)142
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

AM thanks the National Institute of Health for the financial support (grant No. 1R21GM142011–01 A1). PCH would like to thank Florida Gulf Coast University Department of Chemistry and Physics for the use of their instruments in supporting this work. SB and PCH would like to thank Michael & Lisa Schwartz for their generous financial support of undergraduate research at AMU.

Funding information

Funding for this research was provided by: National Institutes of Health (grant No. 1R21GM142011-01A1); National Science Foundation (grant No. CHE-1625543; grant No. CHE–1952846); Ave Maria University Department of Chemistry and Physics.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnderson, G., Mirjafari, A., Zeller, M. & Hillesheim, P. C. (2020). IUCrData, 5, x200660.  Google Scholar
First citationAng, C. W., Jarrad, A. M., Cooper, M. A. & Blaskovich, M. A. T. (2017). J. Med. Chem. 60, 7636–7657.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBauzá, A., Frontera, A. & Mooibroek, T. J. (2019). Chem. Eur. J. 25, 13436–13443.  Web of Science PubMed Google Scholar
First citationBauzá, A., Mooibroek, T. J. & Frontera, A. (2015). Chem. Commun. 51, 1491–1493.  Google Scholar
First citationBowden, K. & Izadi, J. (1998). Farmaco, 53, 58–61.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDupont, J. (2004). J. Braz. Chem. Soc. 15, 341–350.  Web of Science CrossRef CAS Google Scholar
First citationGavezzotti, A. (2010). Acta Cryst. B66, 396–406.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHunt, P. A., Kirchner, B. & Welton, T. (2006). Chem. Eur. J. 12, 6762–6775.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLeiros, H. S., Kozielski-Stuhrmann, S., Kapp, U., Terradot, L., Leonard, G. A. & McSweeney, S. M. (2004). J. Biol. Chem. 279, 55840–55849.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatthews, R. P., Welton, T. & Hunt, P. A. (2015). Phys. Chem. Chem. Phys. 17, 14437–14453.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMiyamoto, Y., Kalisiak, J., Korthals, K., Lauwaet, T., Cheung, D. Y., Lozano, R., Cobo, E. R., Upcroft, P., Upcroft, J. A., Berg, D. E., Gillin, F. D., Fokin, V. V., Sharpless, K. B. & Eckmann, L. (2013). PNAS, 110, 17564–17569.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNoack, K., Schulz, P. S., Paape, N., Kiefer, J., Wasserscheid, P. & Leipertz, A. (2010). Phys. Chem. Chem. Phys. 12, 14153–14161.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPurgato, M. & Barbui, C. (2012). Epidemiol. Psychiatr. Sci. 21, 343–345.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSanchora, P., Pandey, D. K., Rana, D., Materny, A. & Singh, D. K. (2019). J. Phys. Chem. A, 123, 4948–4963.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSikorski, A. & Trzybiński, D. (2013). J. Mol. Struct. 1049, 90–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds