organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,2′-{(1E,1′E)-[Ethane-1,2-diylbis(aza­nylyl­­idene)]bis­­(methanylyl­­idene)}bis­­(4-iodo­phenol)

crossmark logo

aDepartment of Chemistry, US Air Force Academy, CO, 80840, USA
*Correspondence e-mail: latisha.jefferies@afacademy.af.edu

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 29 June 2022; accepted 6 September 2022; online 13 September 2022)

The title compound, C20H14I2N2O2, a di­iodo-Schiff base, crystallizes in space group Pbca with one mol­ecule per asymmetric unit. The mol­ecular structure reveals two intra­molecular O—H⋯N hydrogen bonds that give the mol­ecule a twisted structure with non-coplanar rings. In the crystal structure, the mol­ecular packing is stabilized by ππ stacking, hydrogen- and halogen-bonding (C—H⋯I; O⋯I) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2,2′-{(1E,1′E)-[Ethane-1,2-diylbis(aza­nylyl­idene)]bis­(methanylyl­idene)}bis­(4-iodo­phen­ol) (I) (C20H14I2N2O2, Fig. 1[link]) is a salen-type ligand under investigation in our laboratory for possible anti­microbial effects (Ceramella et al., 2022[Ceramella, J., Iacopetta, D., Catalano, A., Cirillo, F., Lappano, R. & Sinicropi, M. S. (2022). Antibiotics 11, 191. doi. org/10.3390/antibiotics11020191]) and the ability to bind to lanthanide metals, which could have other important medicinal properties (Kaczmarek et al., 2018[Kaczmarek, M. T., Zabiszak, M., Nowak, M. & Jastrzab, R. (2018). Coord. Chem. Rev. 370, 42-54.]). As a result of the wide range of medical applications for such compounds, and in a continuation of our work in this area (Reimann et al., 2019[Reimann, M. J., Salmon, D. R., Horton, J. T., Gier, E. C. & Jefferies, L. R. (2019). ACS Omega, 4, 2874-2882.]), the title compound (I) was prepared and its crystal structure is reported here.

[Figure 1]
Figure 1
Molecular structure of (I) depicting the two intramolecular hydrogen bonds (O1—H1⋯N1 and O2—H2⋯N2). Displacement ellipsoids are shown at the 50% probability level

Each mol­ecule of (I) consists of a central ring (C8–C13) with ortho imine nitro­gen atoms (N1 and N2) covalently bound through the imine C atoms, C7 and C14 respectively, to I1—Ar(O1—H1) and I2—Ar(O2—H2) rings (Fig. 1[link]). Two intra­molecular hydrogen bonds (Table 1[link]), O1—H1⋯N1 [1.842 (15) Å, 152 (3)°] and O2—H2⋯N2 [1.806 (15) Å, 153 (3)°], result in an overall non-planar mol­ecule with the I—Ar(OH) ring planes twisted with respect to the central ring (C8–13) plane [24.97 (7)° versus I1—Ar(O1—H1), and 39.37 (5)° versus I2—Ar(O2—H2)] (Fig. 1[link]). The intra­molecular hydrogen bonds of (I) show similarity to those of the dichlorinated Schiff base 3,5-di­chloro-N-[2-(methyl­thio)­phen­yl]salicylaldimine (Hamaker et al., 2010[Hamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34-39.]). Halogen bonding (I1⋯O2) and slipped ππ stacking inter­actions stabilize the packing pattern. Along the a-axis direction, adjacent mol­ecules related by 21 screw-axis symmetry form 2-stacks/mol­ecule of non-coplanar and alternating central ring (C8–C13) to I2—Ar(O2—H2) ring inter­actions (Fig. 2[link]). This results in alternating longer [3.821 (13) Å] and shorter [3.734 (13) Å] central ring (C8–C13) centroid to I2—Ar(O2—H2) ring centroid distances with the corresponding alternating centroids slipped by 1.583 (4) and 1.548 (3) Å with respect to each other (Fig. 2[link]). The additional hydrogen bonding provides three shorter and one longer C—H⋯I type inter­actions in which I2 has a larger displacement ellipsoid than I1 [C18—H18⋯I1 = 3.16 Å (159°), C5—H5⋯I2 = 3.17 Å (156°), C7—H7⋯I2 = 3.23 Å (152°), and C2—H2⋯I2 3.32 Å (131°)]. The two C—I bond lengths of (I) are similar to the C—I bond of 2,3,5,6-tetra­fluoro-1,4-di­iodo­benzene (Tan & Tiekink, 2019[Tan, S. L. & Tiekink, E. R. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1117-1119.]). Along the b-axis direction, adjacent mol­ecules appear to be arranged in a H (head, central C8–C13 ring) to T [tail, I1—Ar(O1—H1) and I2—Ar(O2—H2) rings] repeating pattern with the I1 and I2 atoms of the I1—Ar(O1—H1) and I2—Ar(O2—H2) rings inter­digitated along the c-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯I2i 0.95 3.32 4.009 (2) 131
C5—H5⋯I2ii 0.95 3.17 4.061 (2) 156
C7—H7⋯I2ii 0.95 3.23 4.094 (2) 152
C18—H18⋯I1iii 0.95 3.16 4.066 (2) 159
O1—H1⋯N1 0.84 (1) 1.84 (2) 2.609 (3) 152 (3)
O2—H2⋯N2 0.84 (1) 1.81 (2) 2.580 (3) 153 (3)
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Diagram of the basic packing motif along the a-axis direction depicting the slipped ring ππ inter­actions.
[Figure 3]
Figure 3
Mol­ecular packing view of (I) along the a-axis direction. Displacement ellipsoids are shown at the 50% probability level.

Synthesis and crystallization

To a solution of 2-hy­droxy-5-iodo­benzaldehyde (4.60 g, 18.5 mmol) in ethanol (200 ml) was added an ethanol (10 ml) solution of o-phenyl­enedi­amine (1.00 g, 9.20 mmol), and the reaction mixture brought to reflux with vigorous stirring for 2 h. Upon cooling, the title compound (I) precipitated as an orange solid, and was filtered, washed with ethanol and dried under vacuum. Crystals of (I) suitable for single-crystal X-ray diffraction were grown from acetone layered with hexane. Yield: 4.37 g (83%), m.p. 212–214°C. 1H NMR (500 MHz, CDCl3) δ 8.54 (s, 2H), 7.73–7.54 (m, 4H), 7.37 (q, J = 3.2 Hz, 2H), 7.22 (q, J = 3.2 Hz, 2H), 6.84 (d, J = 9.0 Hz, 2H). [Note: phenolic H atoms (2Hs) undergo rapid exchange thus their NMR signals are broadened into the baseline beyond recognition as reported (Charisiadis et al., 2014[Charisiadis, P., Kontogianni, V. G., Tsiafoulis, C. G., Tzakos, A. G., Siskos, M. & Gerothanassis, I. P. (2014). Molecules, 19, 13643-13682.]).] 13C NMR (500 MHz, CDCl3) δ 162.30, 161.11, 142.25, 141.81, 140.46, 128.32, 121.46, 120.15, 119.63, 79.69. MALDI–TOF MS: monoisotopic m/z calculated for [M + H]+: 568.9; observed: 568.8.

Refinement

Crystal data, data collection and structure refinement details of (I) are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H14I2N2O2
Mr 568.13
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 112
a, b, c (Å) 7.4776 (1), 19.1040 (2), 26.0919 (3)
V3) 3727.28 (8)
Z 8
Radiation type Mo Kα
μ (mm−1) 3.39
Crystal size (mm) 0.30 × 0.26 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Single source at offset/far, HyPix3000
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.300, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 34066, 4062, 3774
Rint 0.033
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.044, 1.09
No. of reflections 4062
No. of parameters 242
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.66, −0.92
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) top
Crystal data top
C20H14I2N2O2Dx = 2.025 Mg m3
Mr = 568.13Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 25879 reflections
a = 7.4776 (1) Åθ = 1.5–27.4°
b = 19.1040 (2) ŵ = 3.39 mm1
c = 26.0919 (3) ÅT = 112 K
V = 3727.28 (8) Å3Rect. Prism, orange
Z = 80.30 × 0.26 × 0.12 mm
F(000) = 2160
Data collection top
XtaLAB Synergy, Single source at offset/far, HyPix3000
diffractometer
4062 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source3774 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.0000 pixels mm-1θmax = 27.4°, θmin = 1.6°
ω scansh = 99
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2019)
k = 2324
Tmin = 0.300, Tmax = 1.000l = 3232
34066 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0133P)2 + 5.3948P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044(Δ/σ)max = 0.002
S = 1.09Δρmax = 0.66 e Å3
4062 reflectionsΔρmin = 0.92 e Å3
242 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2015b, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.000120 (17)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.48524 (2)0.12444 (2)0.85138 (2)0.01709 (5)
I20.28304 (3)0.11138 (2)0.30070 (2)0.03584 (7)
O10.4758 (2)0.15083 (9)0.61326 (6)0.0205 (4)
O20.1200 (2)0.13607 (9)0.53361 (6)0.0233 (4)
N10.3343 (3)0.27475 (10)0.62428 (7)0.0162 (4)
N20.1963 (3)0.26760 (10)0.52825 (7)0.0163 (4)
C10.4718 (3)0.14643 (12)0.66467 (9)0.0159 (5)
C20.5299 (3)0.08468 (12)0.68798 (9)0.0183 (5)
H2A0.5691840.0466660.6673870.022*
C30.5307 (3)0.07839 (12)0.74077 (9)0.0181 (5)
H30.5715390.0363240.7562750.022*
C40.4721 (3)0.13336 (12)0.77109 (9)0.0158 (5)
C50.4097 (3)0.19424 (12)0.74922 (9)0.0162 (5)
H50.3672380.2311840.7703470.019*
C60.4087 (3)0.20174 (12)0.69545 (8)0.0154 (5)
C70.3358 (3)0.26551 (12)0.67317 (8)0.0167 (5)
H70.2886250.3007860.6949950.020*
C80.2667 (3)0.33732 (12)0.60266 (8)0.0152 (5)
C90.2710 (3)0.40210 (13)0.62775 (9)0.0190 (5)
H90.3164880.4050510.6616830.023*
C100.2096 (3)0.46185 (12)0.60350 (9)0.0201 (5)
H100.2125210.5055330.6208720.024*
C110.1437 (3)0.45812 (12)0.55393 (9)0.0199 (5)
H110.1004150.4991650.5375400.024*
C120.1408 (3)0.39464 (12)0.52821 (9)0.0192 (5)
H120.0955970.3923680.4942310.023*
C130.2040 (3)0.33413 (12)0.55195 (8)0.0154 (5)
C140.2275 (3)0.26073 (12)0.47991 (8)0.0161 (5)
H140.2603110.3004770.4601440.019*
C150.2129 (3)0.19260 (12)0.45542 (8)0.0156 (5)
C160.1605 (3)0.13285 (12)0.48342 (9)0.0165 (5)
C170.1499 (3)0.06804 (12)0.45880 (9)0.0180 (5)
H170.1159670.0276580.4776920.022*
C180.1884 (3)0.06224 (12)0.40725 (9)0.0186 (5)
H180.1813710.0180570.3906630.022*
C190.2375 (3)0.12147 (12)0.37979 (9)0.0183 (5)
C200.2510 (3)0.18604 (12)0.40303 (8)0.0168 (5)
H200.2858890.2258660.3836540.020*
H10.428 (3)0.1892 (8)0.6061 (10)0.020*
H20.139 (3)0.1776 (7)0.5419 (9)0.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01938 (8)0.01833 (8)0.01356 (8)0.00151 (6)0.00173 (6)0.00283 (5)
I20.07494 (16)0.01979 (9)0.01279 (9)0.00557 (9)0.00604 (8)0.00114 (6)
O10.0249 (9)0.0219 (9)0.0145 (8)0.0034 (7)0.0003 (7)0.0015 (7)
O20.0358 (10)0.0204 (9)0.0136 (8)0.0054 (8)0.0043 (7)0.0029 (7)
N10.0167 (10)0.0177 (10)0.0142 (9)0.0021 (8)0.0008 (8)0.0004 (8)
N20.0172 (10)0.0182 (10)0.0135 (9)0.0003 (8)0.0012 (8)0.0005 (8)
C10.0121 (11)0.0218 (12)0.0138 (11)0.0023 (9)0.0012 (9)0.0008 (9)
C20.0162 (11)0.0177 (12)0.0211 (12)0.0006 (9)0.0006 (9)0.0046 (9)
C30.0149 (11)0.0180 (12)0.0215 (12)0.0000 (9)0.0022 (9)0.0022 (10)
C40.0161 (11)0.0187 (11)0.0127 (11)0.0035 (9)0.0009 (9)0.0001 (9)
C50.0167 (11)0.0181 (11)0.0138 (10)0.0004 (10)0.0006 (9)0.0010 (9)
C60.0145 (11)0.0170 (11)0.0148 (11)0.0020 (9)0.0013 (9)0.0004 (9)
C70.0180 (11)0.0171 (11)0.0150 (11)0.0018 (9)0.0005 (9)0.0033 (9)
C80.0152 (11)0.0155 (11)0.0149 (11)0.0001 (9)0.0018 (9)0.0008 (9)
C90.0203 (12)0.0209 (12)0.0157 (11)0.0029 (10)0.0003 (9)0.0025 (10)
C100.0192 (12)0.0163 (11)0.0248 (12)0.0009 (10)0.0035 (10)0.0042 (10)
C110.0195 (12)0.0161 (11)0.0241 (12)0.0030 (10)0.0025 (10)0.0041 (10)
C120.0205 (12)0.0206 (12)0.0165 (11)0.0016 (10)0.0017 (10)0.0020 (9)
C130.0148 (11)0.0165 (11)0.0149 (11)0.0004 (9)0.0020 (9)0.0010 (9)
C140.0163 (11)0.0170 (11)0.0150 (11)0.0010 (9)0.0016 (9)0.0023 (9)
C150.0147 (11)0.0186 (11)0.0135 (11)0.0010 (9)0.0017 (9)0.0006 (9)
C160.0165 (11)0.0193 (12)0.0136 (11)0.0004 (9)0.0006 (9)0.0029 (9)
C170.0196 (12)0.0165 (11)0.0179 (11)0.0027 (10)0.0009 (10)0.0036 (9)
C180.0202 (12)0.0157 (11)0.0199 (12)0.0005 (9)0.0027 (10)0.0017 (9)
C190.0244 (12)0.0188 (12)0.0117 (11)0.0023 (10)0.0005 (9)0.0001 (9)
C200.0215 (12)0.0151 (11)0.0138 (11)0.0014 (9)0.0009 (9)0.0015 (9)
Geometric parameters (Å, º) top
I1—C42.104 (2)C8—C91.401 (3)
I2—C192.100 (2)C8—C131.405 (3)
O1—C11.344 (3)C9—H90.9500
O1—H10.835 (10)C9—C101.384 (3)
O2—C161.345 (3)C10—H100.9500
O2—H20.836 (10)C10—C111.386 (3)
N1—C71.288 (3)C11—H110.9500
N1—C81.415 (3)C11—C121.386 (3)
N2—C131.415 (3)C12—H120.9500
N2—C141.290 (3)C12—C131.394 (3)
C1—C21.397 (3)C14—H140.9500
C1—C61.409 (3)C14—C151.454 (3)
C2—H2A0.9500C15—C161.411 (3)
C2—C31.383 (3)C15—C201.402 (3)
C3—H30.9500C16—C171.397 (3)
C3—C41.386 (3)C17—H170.9500
C4—C51.377 (3)C17—C181.380 (3)
C5—H50.9500C18—H180.9500
C5—C61.410 (3)C18—C191.389 (3)
C6—C71.456 (3)C19—C201.378 (3)
C7—H70.9500C20—H200.9500
C1—O1—H1105.6 (18)C9—C10—C11120.2 (2)
C16—O2—H2104.9 (18)C11—C10—H10119.9
C7—N1—C8120.9 (2)C10—C11—H11119.9
C14—N2—C13120.8 (2)C10—C11—C12120.1 (2)
O1—C1—C2118.7 (2)C12—C11—H11119.9
O1—C1—C6122.0 (2)C11—C12—H12119.8
C2—C1—C6119.3 (2)C11—C12—C13120.3 (2)
C1—C2—H2A119.7C13—C12—H12119.8
C3—C2—C1120.6 (2)C8—C13—N2117.7 (2)
C3—C2—H2A119.7C12—C13—N2122.5 (2)
C2—C3—H3120.0C12—C13—C8119.7 (2)
C2—C3—C4120.1 (2)N2—C14—H14119.8
C4—C3—H3120.0N2—C14—C15120.5 (2)
C3—C4—I1119.49 (17)C15—C14—H14119.8
C5—C4—I1119.79 (17)C16—C15—C14121.2 (2)
C5—C4—C3120.7 (2)C20—C15—C14119.6 (2)
C4—C5—H5120.0C20—C15—C16119.3 (2)
C4—C5—C6120.0 (2)O2—C16—C15122.0 (2)
C6—C5—H5120.0O2—C16—C17118.4 (2)
C1—C6—C5119.3 (2)C17—C16—C15119.6 (2)
C1—C6—C7121.7 (2)C16—C17—H17119.8
C5—C6—C7119.0 (2)C18—C17—C16120.5 (2)
N1—C7—C6120.9 (2)C18—C17—H17119.8
N1—C7—H7119.6C17—C18—H18120.2
C6—C7—H7119.6C17—C18—C19119.5 (2)
C9—C8—N1123.5 (2)C19—C18—H18120.2
C9—C8—C13119.1 (2)C18—C19—I2118.35 (17)
C13—C8—N1117.3 (2)C20—C19—I2120.16 (17)
C8—C9—H9119.7C20—C19—C18121.5 (2)
C10—C9—C8120.5 (2)C15—C20—H20120.2
C10—C9—H9119.7C19—C20—C15119.6 (2)
C9—C10—H10119.9C19—C20—H20120.2
I1—C4—C5—C6176.96 (17)C8—N1—C7—C6178.7 (2)
I2—C19—C20—C15177.30 (17)C8—C9—C10—C110.3 (4)
O1—C1—C2—C3178.9 (2)C9—C8—C13—N2178.1 (2)
O1—C1—C6—C5179.3 (2)C9—C8—C13—C122.5 (3)
O1—C1—C6—C73.2 (3)C9—C10—C11—C120.7 (4)
O2—C16—C17—C18179.4 (2)C10—C11—C12—C130.0 (4)
N1—C8—C9—C10177.2 (2)C11—C12—C13—N2177.0 (2)
N1—C8—C13—N26.2 (3)C11—C12—C13—C81.6 (3)
N1—C8—C13—C12178.1 (2)C13—N2—C14—C15177.7 (2)
N2—C14—C15—C161.5 (3)C13—C8—C9—C101.8 (3)
N2—C14—C15—C20178.7 (2)C14—N2—C13—C8145.5 (2)
C1—C2—C3—C40.6 (4)C14—N2—C13—C1238.9 (3)
C1—C6—C7—N13.3 (3)C14—C15—C16—O20.7 (4)
C2—C1—C6—C51.6 (3)C14—C15—C16—C17179.2 (2)
C2—C1—C6—C7176.0 (2)C14—C15—C20—C19179.9 (2)
C2—C3—C4—I1177.29 (17)C15—C16—C17—C180.7 (4)
C2—C3—C4—C51.1 (3)C16—C15—C20—C190.3 (3)
C3—C4—C5—C61.5 (3)C16—C17—C18—C190.2 (4)
C4—C5—C6—C10.1 (3)C17—C18—C19—I2177.10 (17)
C4—C5—C6—C7177.7 (2)C17—C18—C19—C200.8 (4)
C5—C6—C7—N1179.2 (2)C18—C19—C20—C150.6 (4)
C6—C1—C2—C31.9 (3)C20—C15—C16—O2179.1 (2)
C7—N1—C8—C929.0 (3)C20—C15—C16—C171.0 (3)
C7—N1—C8—C13155.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···I2i0.953.324.009 (2)131
C5—H5···I2ii0.953.174.061 (2)156
C7—H7···I2ii0.953.234.094 (2)152
C18—H18···I1iii0.953.164.066 (2)159
O1—H1···N10.84 (1)1.84 (2)2.609 (3)152 (3)
O2—H2···N20.84 (1)1.81 (2)2.580 (3)153 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1/2, y, z1/2.
 

Funding information

Funding for this research was provided by: Defense Threat Reduction Agency; Air Force Office of Scientific Research.

References

First citationCeramella, J., Iacopetta, D., Catalano, A., Cirillo, F., Lappano, R. & Sinicropi, M. S. (2022). Antibiotics 11, 191. doi. org/10.3390/antibiotics11020191  Web of Science CrossRef Google Scholar
First citationCharisiadis, P., Kontogianni, V. G., Tsiafoulis, C. G., Tzakos, A. G., Siskos, M. & Gerothanassis, I. P. (2014). Molecules, 19, 13643–13682.  Web of Science CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHamaker, C. G., Maryashina, O. S., Daley, D. K. & Wadler, A. L. (2010). J. Chem. Crystallogr. 40, 34–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaczmarek, M. T., Zabiszak, M., Nowak, M. & Jastrzab, R. (2018). Coord. Chem. Rev. 370, 42–54.  Web of Science CrossRef CAS Google Scholar
First citationReimann, M. J., Salmon, D. R., Horton, J. T., Gier, E. C. & Jefferies, L. R. (2019). ACS Omega, 4, 2874–2882.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L. & Tiekink, E. R. (2019). Z. Kristallogr. New Cryst. Struct. 234, 1117–1119.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds