organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

10-[(4-Nitro­phen­yl)ethyn­yl]-10H-pheno­thia­zine

crossmark logo

aDepartment of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 13 September 2022; accepted 26 September 2022; online 27 October 2022)

The title compound, C20H12N2OS, is a 10-ethynyl-10H-pheno­thia­zine derivative. The pheno­thia­zine unit has a butterfly shape, where the folding angle between the two benzene rings is 153.87 (7)°, which is almost as in other reported pheno­thia­zine derivatives. The dihedral angle between the mean plane including the C atoms bonded to the pheno­thia­zine N atom and the benzene ring of the nitro­benzene group is 10.34 (5)°. The near planar geometry of the mol­ecule is reasonably explained by intra­molecular charge-transfer inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pheno­thia­zines are known to be good electron donors and have attracted inter­est from the point of view of photo-induced electron transfer or magnetism (Sun et al., 2004[Sun, D., Rosokha, S. V. & Kochi, J. K. (2004). J. Am. Chem. Soc. 126, 1388-1401.]; Okamoto et al., 2004[Okamoto, T., Kuratsu, M., Kozaki, M., Hirotsu, K., Ichimura, A., Matsushita, T. & Okada, K. (2004). Org. Lett. 6, 3493-3496.]; Okada et al., 1996[Okada, K., Imakura, T., Oda, M., Murai, H. & Baumgarten, M. (1996). J. Am. Chem. Soc. 118, 3047-3048.]). A pheno­thia­zine derivative, 10-(prop-1-yn-1-yl)-10H-pheno­thia­zine, which incorporates an ynamine moiety, is well known as the first reported ynamine compound (Zaugg et al., 1958[Zaugg, H. E., Swett, L. & Stone, G. R. (1958). J. Org. Chem. 23, 1389-1390.]), and its structure has already been studied (Umezono & Okuno, 2012[Umezono, S. & Okuno, T. (2012). Acta Cryst. E68, o2790.]). Other structures of some related derivatives have also been analysed (Umezono & Okuno, 2013[Umezono, S. & Okuno, T. (2013). J. Mol. Struct. 1049, 293-298.]; Umezono et al., 2013[Umezono, S., Ikeda, S. & Okuno, T. (2013). Acta Cryst. C69, 1553-1556.]).

In the title compound, the pheno­thia­zine moiety has a butterfly structure, as shown in Fig. 1[link], in which the dihedral angle between the two benzene rings (the C1–C6 and C7–C12 mean planes) is 153.87 (7)°. The central six-membered ring has a boat conformation, in which the S1⋯N1 separation is 3.0565 (14) Å. The structure around the pheno­thia­zine nitro­gen atom is pyramidal, with atom N1 located 0.1271 (16) Å above the C1/C12/C13 plane. The dihedral angle between the C1/C12/C13 plane and the C15–C20 benzene ring is 10.34 (5)°. The mol­ecule is thus almost planar, and this feature is reasonably explained by intra­molecular charge-transfer inter­actions between pheno­thia­zine and nitro­phenyl units.

[Figure 1]
Figure 1
ORTEP view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Synthesis and crystallization

Single crystals suitable for X-ray analysis were obtained by concentration of a di­chloro­methane solution. The title compound was prepared through the Sonogashira-coupling reaction between 1-iodo-4-nitro­benzene and 10-ethynyl-10H-pheno­thia­zine, as follows: to a solution of 1-iodo-4-nitro­benzene (0.33 g, 1.3 mmol) and 10-ethynyl-10H-pheno­thia­zine (0.30 g, 1.3 mmol) in 13 ml of THF and tri­ethyl­amine (1:1 v/v), tetra­kis­(tri­phenyl­phosphine)palladium(0) (0.093 g, 0.080 mmol) and copper(I) iodide (8.0 mg, 0.040 mmol) were added. The solution was stirred for 20 h and filtrated. The filtrate was concentrated and the residue was extracted with CHCl3. The organic layer was washed with water, dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by gel permeation chromatography to give 32 mg (6.9% yield) of the title compound, as pale-red crystals. 1H NMR (CDCl3): δ = 8.21 (d, J = 9.0 Hz, 0.8 Hz, 2H), 7.58 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 7.3 Hz, 2H), 7.26 (t, J = 7.3 Hz, 2H), 7.17 (d, J = 6.5 Hz, 2H), 7.10 (t, J = 6.5 Hz, 2H).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C20H12N2O2S
Mr 344.39
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 93
a, b, c (Å) 8.1891 (15), 8.2417 (15), 12.813 (3)
α, β, γ (°) 81.632 (9), 81.394 (10), 66.649 (8)
V3) 781.4 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.15 × 0.12 × 0.05
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.977, 0.988
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 5406, 2701, 2234
Rint 0.021
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.09
No. of reflections 2701
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.22
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXD2013/2 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CrystalStructure (Rigaku, 2019[Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXD2013/2 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2019).

10-[(4-Nitrophenyl)ethynyl]-10H-phenothiazine top
Crystal data top
C20H12N2O2SZ = 2
Mr = 344.39F(000) = 356.00
Triclinic, P1Dx = 1.464 Mg m3
a = 8.1891 (15) ÅMo Kα radiation, λ = 0.71075 Å
b = 8.2417 (15) ÅCell parameters from 2498 reflections
c = 12.813 (3) Åθ = 1.6–31.3°
α = 81.632 (9)°µ = 0.22 mm1
β = 81.394 (10)°T = 93 K
γ = 66.649 (8)°Block, red
V = 781.4 (3) Å30.15 × 0.12 × 0.05 mm
Data collection top
Rigaku Saturn724+
diffractometer
2234 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.021
ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 99
Tmin = 0.977, Tmax = 0.988k = 99
5406 measured reflectionsl = 1115
2701 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2098P]
where P = (Fo2 + 2Fc2)/3
2701 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Refinement. The C-bound H atoms were placed in ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18967 (6)1.42062 (6)0.10364 (4)0.02912 (16)
O10.67949 (19)0.06179 (18)0.41540 (13)0.0439 (4)
O20.5066 (2)0.10830 (18)0.32062 (13)0.0465 (4)
N10.02003 (19)1.04512 (18)0.21162 (11)0.0224 (3)
N20.5590 (2)0.0089 (2)0.35670 (14)0.0341 (4)
C10.1331 (2)1.0636 (2)0.13171 (13)0.0211 (4)
C20.1530 (2)0.9172 (2)0.10350 (14)0.0256 (4)
H20.09620.80400.14030.031*
C30.2544 (2)0.9333 (3)0.02236 (15)0.0283 (4)
H30.26340.83090.00220.034*
C40.3429 (2)1.0989 (2)0.02954 (15)0.0279 (4)
H40.41341.11070.08490.034*
C50.3276 (2)1.2470 (2)0.00017 (14)0.0262 (4)
H50.39031.36080.03410.031*
C60.2220 (2)1.2315 (2)0.07908 (14)0.0231 (4)
C70.1384 (2)1.3617 (2)0.23645 (14)0.0224 (4)
C80.1760 (2)1.4970 (2)0.30086 (15)0.0263 (4)
H80.23781.61690.27480.032*
C90.1241 (2)1.4584 (2)0.40224 (15)0.0274 (4)
H90.14901.55150.44540.033*
C100.0355 (2)1.2829 (2)0.44086 (15)0.0283 (4)
H100.00261.25580.51000.034*
C110.0028 (2)1.1470 (2)0.37808 (14)0.0244 (4)
H110.05521.02700.40530.029*
C120.0541 (2)1.1850 (2)0.27614 (14)0.0216 (4)
C130.0882 (2)0.8781 (2)0.24405 (13)0.0226 (4)
C140.1838 (2)0.7265 (2)0.26460 (14)0.0234 (4)
C150.2884 (2)0.5416 (2)0.28480 (13)0.0217 (4)
C160.4081 (2)0.4783 (2)0.36260 (14)0.0255 (4)
H160.42670.55990.40010.031*
C170.4991 (2)0.2982 (2)0.38510 (15)0.0268 (4)
H170.58020.25480.43790.032*
C180.4703 (2)0.1825 (2)0.32941 (15)0.0251 (4)
C190.3582 (2)0.2398 (2)0.24936 (15)0.0255 (4)
H190.34360.15700.21100.031*
C200.2681 (2)0.4202 (2)0.22653 (14)0.0244 (4)
H200.19190.46230.17110.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0395 (3)0.0158 (2)0.0288 (3)0.0084 (2)0.0061 (2)0.00428 (18)
O10.0330 (8)0.0244 (7)0.0613 (10)0.0006 (6)0.0119 (7)0.0094 (7)
O20.0478 (9)0.0152 (7)0.0734 (12)0.0077 (6)0.0084 (8)0.0054 (7)
N10.0264 (8)0.0130 (7)0.0236 (8)0.0034 (6)0.0026 (6)0.0003 (6)
N20.0272 (9)0.0167 (8)0.0481 (11)0.0020 (7)0.0046 (8)0.0011 (8)
C10.0190 (8)0.0194 (9)0.0211 (9)0.0052 (7)0.0021 (7)0.0009 (7)
C20.0245 (9)0.0182 (9)0.0299 (10)0.0057 (7)0.0014 (8)0.0004 (7)
C30.0262 (9)0.0263 (10)0.0327 (10)0.0113 (8)0.0024 (8)0.0056 (8)
C40.0221 (9)0.0333 (10)0.0272 (10)0.0098 (8)0.0005 (7)0.0033 (8)
C50.0213 (9)0.0238 (9)0.0260 (10)0.0033 (8)0.0007 (7)0.0026 (7)
C60.0235 (9)0.0187 (9)0.0228 (9)0.0055 (7)0.0023 (7)0.0012 (7)
C70.0221 (9)0.0183 (9)0.0251 (9)0.0074 (7)0.0011 (7)0.0007 (7)
C80.0253 (9)0.0152 (9)0.0356 (11)0.0067 (7)0.0013 (8)0.0013 (7)
C90.0298 (10)0.0238 (10)0.0314 (10)0.0131 (8)0.0025 (8)0.0083 (8)
C100.0328 (10)0.0252 (10)0.0274 (10)0.0122 (8)0.0028 (8)0.0012 (8)
C110.0261 (9)0.0174 (9)0.0268 (10)0.0068 (7)0.0019 (7)0.0016 (7)
C120.0207 (8)0.0155 (8)0.0259 (9)0.0054 (7)0.0016 (7)0.0024 (7)
C130.0257 (9)0.0181 (9)0.0212 (9)0.0068 (8)0.0008 (7)0.0002 (7)
C140.0270 (9)0.0183 (9)0.0228 (9)0.0067 (8)0.0022 (7)0.0018 (7)
C150.0213 (9)0.0166 (8)0.0230 (9)0.0052 (7)0.0025 (7)0.0004 (7)
C160.0257 (9)0.0203 (9)0.0290 (10)0.0074 (8)0.0005 (8)0.0036 (7)
C170.0222 (9)0.0230 (9)0.0302 (10)0.0045 (8)0.0034 (8)0.0016 (8)
C180.0205 (9)0.0142 (9)0.0338 (10)0.0021 (7)0.0026 (8)0.0003 (7)
C190.0245 (9)0.0194 (9)0.0309 (10)0.0073 (8)0.0030 (8)0.0060 (7)
C200.0241 (9)0.0209 (9)0.0256 (9)0.0066 (7)0.0007 (7)0.0020 (7)
Geometric parameters (Å, º) top
S1—C61.7591 (19)C8—C91.381 (3)
S1—C71.7661 (19)C8—H80.9500
O1—N21.231 (2)C9—C101.390 (3)
O2—N21.232 (2)C9—H90.9500
N1—C131.353 (2)C10—C111.390 (3)
N1—C121.430 (2)C10—H100.9500
N1—C11.434 (2)C11—C121.386 (3)
N2—C181.464 (2)C11—H110.9500
C1—C21.383 (3)C13—C141.198 (2)
C1—C61.406 (2)C14—C151.428 (2)
C2—C31.385 (3)C15—C161.401 (3)
C2—H20.9500C15—C201.405 (2)
C3—C41.388 (3)C16—C171.380 (2)
C3—H30.9500C16—H160.9500
C4—C51.386 (3)C17—C181.379 (3)
C4—H40.9500C17—H170.9500
C5—C61.386 (3)C18—C191.384 (3)
C5—H50.9500C19—C201.382 (2)
C7—C81.392 (2)C19—H190.9500
C7—C121.396 (2)C20—H200.9500
C6—S1—C7100.18 (8)C8—C9—H9120.1
C13—N1—C12118.98 (15)C10—C9—H9120.1
C13—N1—C1116.86 (15)C9—C10—C11119.86 (17)
C12—N1—C1121.74 (13)C9—C10—H10120.1
O1—N2—O2123.51 (16)C11—C10—H10120.1
O1—N2—C18118.62 (17)C12—C11—C10120.61 (16)
O2—N2—C18117.86 (17)C12—C11—H11119.7
C2—C1—C6119.15 (17)C10—C11—H11119.7
C2—C1—N1120.85 (15)C11—C12—C7119.39 (16)
C6—C1—N1119.98 (16)C11—C12—N1120.54 (15)
C1—C2—C3120.95 (17)C7—C12—N1120.07 (16)
C1—C2—H2119.5C14—C13—N1174.55 (19)
C3—C2—H2119.5C13—C14—C15175.25 (19)
C2—C3—C4120.04 (18)C16—C15—C20119.27 (15)
C2—C3—H3120.0C16—C15—C14121.62 (16)
C4—C3—H3120.0C20—C15—C14119.10 (16)
C5—C4—C3119.34 (18)C17—C16—C15120.40 (17)
C5—C4—H4120.3C17—C16—H16119.8
C3—C4—H4120.3C15—C16—H16119.8
C4—C5—C6121.03 (16)C18—C17—C16118.75 (17)
C4—C5—H5119.5C18—C17—H17120.6
C6—C5—H5119.5C16—C17—H17120.6
C5—C6—C1119.45 (17)C17—C18—C19122.61 (16)
C5—C6—S1118.75 (13)C17—C18—N2119.09 (17)
C1—C6—S1121.63 (14)C19—C18—N2118.29 (17)
C8—C7—C12119.73 (17)C20—C19—C18118.49 (17)
C8—C7—S1118.41 (13)C20—C19—H19120.8
C12—C7—S1121.78 (14)C18—C19—H19120.8
C9—C8—C7120.60 (16)C19—C20—C15120.37 (17)
C9—C8—H8119.7C19—C20—H20119.8
C7—C8—H8119.7C15—C20—H20119.8
C8—C9—C10119.75 (17)
C13—N1—C1—C211.1 (2)C10—C11—C12—C70.3 (3)
C12—N1—C1—C2151.03 (16)C10—C11—C12—N1179.89 (16)
C13—N1—C1—C6167.32 (15)C8—C7—C12—C112.3 (3)
C12—N1—C1—C630.6 (2)S1—C7—C12—C11174.37 (13)
C6—C1—C2—C32.0 (3)C8—C7—C12—N1178.07 (16)
N1—C1—C2—C3176.47 (15)S1—C7—C12—N15.2 (2)
C1—C2—C3—C42.2 (3)C13—N1—C12—C1110.9 (2)
C2—C3—C4—C50.5 (3)C1—N1—C12—C11150.89 (16)
C3—C4—C5—C61.5 (3)C13—N1—C12—C7168.71 (15)
C4—C5—C6—C11.7 (3)C1—N1—C12—C729.5 (2)
C4—C5—C6—S1173.52 (13)C20—C15—C16—C172.9 (3)
C2—C1—C6—C50.0 (2)C14—C15—C16—C17175.91 (16)
N1—C1—C6—C5178.45 (15)C15—C16—C17—C180.2 (3)
C2—C1—C6—S1175.11 (13)C16—C17—C18—C192.3 (3)
N1—C1—C6—S13.3 (2)C16—C17—C18—N2176.74 (15)
C7—S1—C6—C5155.97 (14)O1—N2—C18—C1712.3 (2)
C7—S1—C6—C128.87 (16)O2—N2—C18—C17166.68 (17)
C6—S1—C7—C8153.28 (14)O1—N2—C18—C19168.69 (17)
C6—S1—C7—C1229.96 (16)O2—N2—C18—C1912.4 (2)
C12—C7—C8—C92.6 (3)C17—C18—C19—C201.8 (3)
S1—C7—C8—C9174.25 (14)N2—C18—C19—C20177.16 (15)
C7—C8—C9—C100.7 (3)C18—C19—C20—C151.0 (2)
C8—C9—C10—C111.3 (3)C16—C15—C20—C193.3 (3)
C9—C10—C11—C121.5 (3)C14—C15—C20—C19175.53 (16)
 

Funding information

This work was supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D from the Japan Science and Technology Agency (JST).

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOkada, K., Imakura, T., Oda, M., Murai, H. & Baumgarten, M. (1996). J. Am. Chem. Soc. 118, 3047–3048.  CrossRef CAS Web of Science Google Scholar
First citationOkamoto, T., Kuratsu, M., Kozaki, M., Hirotsu, K., Ichimura, A., Matsushita, T. & Okada, K. (2004). Org. Lett. 6, 3493–3496.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, D., Rosokha, S. V. & Kochi, J. K. (2004). J. Am. Chem. Soc. 126, 1388–1401.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationUmezono, S., Ikeda, S. & Okuno, T. (2013). Acta Cryst. C69, 1553–1556.  CrossRef IUCr Journals Google Scholar
First citationUmezono, S. & Okuno, T. (2012). Acta Cryst. E68, o2790.  CSD CrossRef IUCr Journals Google Scholar
First citationUmezono, S. & Okuno, T. (2013). J. Mol. Struct. 1049, 293–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaugg, H. E., Swett, L. & Stone, G. R. (1958). J. Org. Chem. 23, 1389–1390.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds