organic compounds
10-[(4-Nitrophenyl)ethynyl]-10H-phenothiazine
aDepartment of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp
The title compound, C20H12N2OS, is a 10-ethynyl-10H-phenothiazine derivative. The phenothiazine unit has a butterfly shape, where the folding angle between the two benzene rings is 153.87 (7)°, which is almost as in other reported phenothiazine derivatives. The dihedral angle between the mean plane including the C atoms bonded to the phenothiazine N atom and the benzene ring of the nitrobenzene group is 10.34 (5)°. The near planar geometry of the molecule is reasonably explained by intramolecular charge-transfer interactions.
Keywords: crystal structure; phenothiazine; ynamine; heterocycle conformation..
CCDC reference: 2209381
Structure description
Phenothiazines are known to be good electron donors and have attracted interest from the point of view of photo-induced et al., 2004; Okamoto et al., 2004; Okada et al., 1996). A phenothiazine derivative, 10-(prop-1-yn-1-yl)-10H-phenothiazine, which incorporates an ynamine moiety, is well known as the first reported ynamine compound (Zaugg et al., 1958), and its structure has already been studied (Umezono & Okuno, 2012). Other structures of some related derivatives have also been analysed (Umezono & Okuno, 2013; Umezono et al., 2013).
or magnetism (SunIn the title compound, the phenothiazine moiety has a butterfly structure, as shown in Fig. 1, in which the dihedral angle between the two benzene rings (the C1–C6 and C7–C12 mean planes) is 153.87 (7)°. The central six-membered ring has a boat conformation, in which the S1⋯N1 separation is 3.0565 (14) Å. The structure around the phenothiazine nitrogen atom is pyramidal, with atom N1 located 0.1271 (16) Å above the C1/C12/C13 plane. The dihedral angle between the C1/C12/C13 plane and the C15–C20 benzene ring is 10.34 (5)°. The molecule is thus almost planar, and this feature is reasonably explained by intramolecular charge-transfer interactions between phenothiazine and nitrophenyl units.
Synthesis and crystallization
Single crystals suitable for X-ray analysis were obtained by concentration of a dichloromethane solution. The title compound was prepared through the Sonogashira-coupling reaction between 1-iodo-4-nitrobenzene and 10-ethynyl-10H-phenothiazine, as follows: to a solution of 1-iodo-4-nitrobenzene (0.33 g, 1.3 mmol) and 10-ethynyl-10H-phenothiazine (0.30 g, 1.3 mmol) in 13 ml of THF and triethylamine (1:1 v/v), tetrakis(triphenylphosphine)palladium(0) (0.093 g, 0.080 mmol) and copper(I) iodide (8.0 mg, 0.040 mmol) were added. The solution was stirred for 20 h and filtrated. The filtrate was concentrated and the residue was extracted with CHCl3. The organic layer was washed with water, dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by to give 32 mg (6.9% yield) of the title compound, as pale-red crystals. 1H NMR (CDCl3): δ = 8.21 (d, J = 9.0 Hz, 0.8 Hz, 2H), 7.58 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 7.3 Hz, 2H), 7.26 (t, J = 7.3 Hz, 2H), 7.17 (d, J = 6.5 Hz, 2H), 7.10 (t, J = 6.5 Hz, 2H).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 2209381
https://doi.org/10.1107/S2414314622009427/bh4070sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622009427/bh4070Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622009427/bh4070Isup3.cml
Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXD2013/2 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2019).C20H12N2O2S | Z = 2 |
Mr = 344.39 | F(000) = 356.00 |
Triclinic, P1 | Dx = 1.464 Mg m−3 |
a = 8.1891 (15) Å | Mo Kα radiation, λ = 0.71075 Å |
b = 8.2417 (15) Å | Cell parameters from 2498 reflections |
c = 12.813 (3) Å | θ = 1.6–31.3° |
α = 81.632 (9)° | µ = 0.22 mm−1 |
β = 81.394 (10)° | T = 93 K |
γ = 66.649 (8)° | Block, red |
V = 781.4 (3) Å3 | 0.15 × 0.12 × 0.05 mm |
Rigaku Saturn724+ diffractometer | 2234 reflections with F2 > 2.0σ(F2) |
Detector resolution: 7.111 pixels mm-1 | Rint = 0.021 |
ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: numerical (NUMABS; Rigaku, 1999) | h = −9→9 |
Tmin = 0.977, Tmax = 0.988 | k = −9→9 |
5406 measured reflections | l = −11→15 |
2701 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2098P] where P = (Fo2 + 2Fc2)/3 |
2701 reflections | (Δ/σ)max = 0.001 |
226 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
Primary atom site location: structure-invariant direct methods |
Refinement. The C-bound H atoms were placed in ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom). |
x | y | z | Uiso*/Ueq | ||
S1 | −0.18967 (6) | 1.42062 (6) | 0.10364 (4) | 0.02912 (16) | |
O1 | 0.67949 (19) | −0.06179 (18) | 0.41540 (13) | 0.0439 (4) | |
O2 | 0.5066 (2) | −0.10830 (18) | 0.32062 (13) | 0.0465 (4) | |
N1 | −0.02003 (19) | 1.04512 (18) | 0.21162 (11) | 0.0224 (3) | |
N2 | 0.5590 (2) | −0.0089 (2) | 0.35670 (14) | 0.0341 (4) | |
C1 | −0.1331 (2) | 1.0636 (2) | 0.13171 (13) | 0.0211 (4) | |
C2 | −0.1530 (2) | 0.9172 (2) | 0.10350 (14) | 0.0256 (4) | |
H2 | −0.0962 | 0.8040 | 0.1403 | 0.031* | |
C3 | −0.2544 (2) | 0.9333 (3) | 0.02236 (15) | 0.0283 (4) | |
H3 | −0.2634 | 0.8309 | 0.0022 | 0.034* | |
C4 | −0.3429 (2) | 1.0989 (2) | −0.02954 (15) | 0.0279 (4) | |
H4 | −0.4134 | 1.1107 | −0.0849 | 0.034* | |
C5 | −0.3276 (2) | 1.2470 (2) | 0.00017 (14) | 0.0262 (4) | |
H5 | −0.3903 | 1.3608 | −0.0341 | 0.031* | |
C6 | −0.2220 (2) | 1.2315 (2) | 0.07908 (14) | 0.0231 (4) | |
C7 | −0.1384 (2) | 1.3617 (2) | 0.23645 (14) | 0.0224 (4) | |
C8 | −0.1760 (2) | 1.4970 (2) | 0.30086 (15) | 0.0263 (4) | |
H8 | −0.2378 | 1.6169 | 0.2748 | 0.032* | |
C9 | −0.1241 (2) | 1.4584 (2) | 0.40224 (15) | 0.0274 (4) | |
H9 | −0.1490 | 1.5515 | 0.4454 | 0.033* | |
C10 | −0.0355 (2) | 1.2829 (2) | 0.44086 (15) | 0.0283 (4) | |
H10 | 0.0026 | 1.2558 | 0.5100 | 0.034* | |
C11 | −0.0028 (2) | 1.1470 (2) | 0.37808 (14) | 0.0244 (4) | |
H11 | 0.0552 | 1.0270 | 0.4053 | 0.029* | |
C12 | −0.0541 (2) | 1.1850 (2) | 0.27614 (14) | 0.0216 (4) | |
C13 | 0.0882 (2) | 0.8781 (2) | 0.24405 (13) | 0.0226 (4) | |
C14 | 0.1838 (2) | 0.7265 (2) | 0.26460 (14) | 0.0234 (4) | |
C15 | 0.2884 (2) | 0.5416 (2) | 0.28480 (13) | 0.0217 (4) | |
C16 | 0.4081 (2) | 0.4783 (2) | 0.36260 (14) | 0.0255 (4) | |
H16 | 0.4267 | 0.5599 | 0.4001 | 0.031* | |
C17 | 0.4991 (2) | 0.2982 (2) | 0.38510 (15) | 0.0268 (4) | |
H17 | 0.5802 | 0.2548 | 0.4379 | 0.032* | |
C18 | 0.4703 (2) | 0.1825 (2) | 0.32941 (15) | 0.0251 (4) | |
C19 | 0.3582 (2) | 0.2398 (2) | 0.24936 (15) | 0.0255 (4) | |
H19 | 0.3436 | 0.1570 | 0.2110 | 0.031* | |
C20 | 0.2681 (2) | 0.4202 (2) | 0.22653 (14) | 0.0244 (4) | |
H20 | 0.1919 | 0.4623 | 0.1711 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0395 (3) | 0.0158 (2) | 0.0288 (3) | −0.0084 (2) | −0.0061 (2) | 0.00428 (18) |
O1 | 0.0330 (8) | 0.0244 (7) | 0.0613 (10) | 0.0006 (6) | −0.0119 (7) | 0.0094 (7) |
O2 | 0.0478 (9) | 0.0152 (7) | 0.0734 (12) | −0.0077 (6) | −0.0084 (8) | −0.0054 (7) |
N1 | 0.0264 (8) | 0.0130 (7) | 0.0236 (8) | −0.0034 (6) | −0.0026 (6) | −0.0003 (6) |
N2 | 0.0272 (9) | 0.0167 (8) | 0.0481 (11) | −0.0020 (7) | 0.0046 (8) | 0.0011 (8) |
C1 | 0.0190 (8) | 0.0194 (9) | 0.0211 (9) | −0.0052 (7) | 0.0021 (7) | −0.0009 (7) |
C2 | 0.0245 (9) | 0.0182 (9) | 0.0299 (10) | −0.0057 (7) | 0.0014 (8) | −0.0004 (7) |
C3 | 0.0262 (9) | 0.0263 (10) | 0.0327 (10) | −0.0113 (8) | 0.0024 (8) | −0.0056 (8) |
C4 | 0.0221 (9) | 0.0333 (10) | 0.0272 (10) | −0.0098 (8) | −0.0005 (7) | −0.0033 (8) |
C5 | 0.0213 (9) | 0.0238 (9) | 0.0260 (10) | −0.0033 (8) | 0.0007 (7) | 0.0026 (7) |
C6 | 0.0235 (9) | 0.0187 (9) | 0.0228 (9) | −0.0055 (7) | 0.0023 (7) | −0.0012 (7) |
C7 | 0.0221 (9) | 0.0183 (9) | 0.0251 (9) | −0.0074 (7) | −0.0011 (7) | 0.0007 (7) |
C8 | 0.0253 (9) | 0.0152 (9) | 0.0356 (11) | −0.0067 (7) | 0.0013 (8) | −0.0013 (7) |
C9 | 0.0298 (10) | 0.0238 (10) | 0.0314 (10) | −0.0131 (8) | 0.0025 (8) | −0.0083 (8) |
C10 | 0.0328 (10) | 0.0252 (10) | 0.0274 (10) | −0.0122 (8) | −0.0028 (8) | −0.0012 (8) |
C11 | 0.0261 (9) | 0.0174 (9) | 0.0268 (10) | −0.0068 (7) | −0.0019 (7) | 0.0016 (7) |
C12 | 0.0207 (8) | 0.0155 (8) | 0.0259 (9) | −0.0054 (7) | 0.0016 (7) | −0.0024 (7) |
C13 | 0.0257 (9) | 0.0181 (9) | 0.0212 (9) | −0.0068 (8) | −0.0008 (7) | 0.0002 (7) |
C14 | 0.0270 (9) | 0.0183 (9) | 0.0228 (9) | −0.0067 (8) | −0.0022 (7) | −0.0018 (7) |
C15 | 0.0213 (9) | 0.0166 (8) | 0.0230 (9) | −0.0052 (7) | 0.0025 (7) | 0.0004 (7) |
C16 | 0.0257 (9) | 0.0203 (9) | 0.0290 (10) | −0.0074 (8) | −0.0005 (8) | −0.0036 (7) |
C17 | 0.0222 (9) | 0.0230 (9) | 0.0302 (10) | −0.0045 (8) | −0.0034 (8) | 0.0016 (8) |
C18 | 0.0205 (9) | 0.0142 (9) | 0.0338 (10) | −0.0021 (7) | 0.0026 (8) | −0.0003 (7) |
C19 | 0.0245 (9) | 0.0194 (9) | 0.0309 (10) | −0.0073 (8) | 0.0030 (8) | −0.0060 (7) |
C20 | 0.0241 (9) | 0.0209 (9) | 0.0256 (9) | −0.0066 (7) | −0.0007 (7) | −0.0020 (7) |
S1—C6 | 1.7591 (19) | C8—C9 | 1.381 (3) |
S1—C7 | 1.7661 (19) | C8—H8 | 0.9500 |
O1—N2 | 1.231 (2) | C9—C10 | 1.390 (3) |
O2—N2 | 1.232 (2) | C9—H9 | 0.9500 |
N1—C13 | 1.353 (2) | C10—C11 | 1.390 (3) |
N1—C12 | 1.430 (2) | C10—H10 | 0.9500 |
N1—C1 | 1.434 (2) | C11—C12 | 1.386 (3) |
N2—C18 | 1.464 (2) | C11—H11 | 0.9500 |
C1—C2 | 1.383 (3) | C13—C14 | 1.198 (2) |
C1—C6 | 1.406 (2) | C14—C15 | 1.428 (2) |
C2—C3 | 1.385 (3) | C15—C16 | 1.401 (3) |
C2—H2 | 0.9500 | C15—C20 | 1.405 (2) |
C3—C4 | 1.388 (3) | C16—C17 | 1.380 (2) |
C3—H3 | 0.9500 | C16—H16 | 0.9500 |
C4—C5 | 1.386 (3) | C17—C18 | 1.379 (3) |
C4—H4 | 0.9500 | C17—H17 | 0.9500 |
C5—C6 | 1.386 (3) | C18—C19 | 1.384 (3) |
C5—H5 | 0.9500 | C19—C20 | 1.382 (2) |
C7—C8 | 1.392 (2) | C19—H19 | 0.9500 |
C7—C12 | 1.396 (2) | C20—H20 | 0.9500 |
C6—S1—C7 | 100.18 (8) | C8—C9—H9 | 120.1 |
C13—N1—C12 | 118.98 (15) | C10—C9—H9 | 120.1 |
C13—N1—C1 | 116.86 (15) | C9—C10—C11 | 119.86 (17) |
C12—N1—C1 | 121.74 (13) | C9—C10—H10 | 120.1 |
O1—N2—O2 | 123.51 (16) | C11—C10—H10 | 120.1 |
O1—N2—C18 | 118.62 (17) | C12—C11—C10 | 120.61 (16) |
O2—N2—C18 | 117.86 (17) | C12—C11—H11 | 119.7 |
C2—C1—C6 | 119.15 (17) | C10—C11—H11 | 119.7 |
C2—C1—N1 | 120.85 (15) | C11—C12—C7 | 119.39 (16) |
C6—C1—N1 | 119.98 (16) | C11—C12—N1 | 120.54 (15) |
C1—C2—C3 | 120.95 (17) | C7—C12—N1 | 120.07 (16) |
C1—C2—H2 | 119.5 | C14—C13—N1 | 174.55 (19) |
C3—C2—H2 | 119.5 | C13—C14—C15 | 175.25 (19) |
C2—C3—C4 | 120.04 (18) | C16—C15—C20 | 119.27 (15) |
C2—C3—H3 | 120.0 | C16—C15—C14 | 121.62 (16) |
C4—C3—H3 | 120.0 | C20—C15—C14 | 119.10 (16) |
C5—C4—C3 | 119.34 (18) | C17—C16—C15 | 120.40 (17) |
C5—C4—H4 | 120.3 | C17—C16—H16 | 119.8 |
C3—C4—H4 | 120.3 | C15—C16—H16 | 119.8 |
C4—C5—C6 | 121.03 (16) | C18—C17—C16 | 118.75 (17) |
C4—C5—H5 | 119.5 | C18—C17—H17 | 120.6 |
C6—C5—H5 | 119.5 | C16—C17—H17 | 120.6 |
C5—C6—C1 | 119.45 (17) | C17—C18—C19 | 122.61 (16) |
C5—C6—S1 | 118.75 (13) | C17—C18—N2 | 119.09 (17) |
C1—C6—S1 | 121.63 (14) | C19—C18—N2 | 118.29 (17) |
C8—C7—C12 | 119.73 (17) | C20—C19—C18 | 118.49 (17) |
C8—C7—S1 | 118.41 (13) | C20—C19—H19 | 120.8 |
C12—C7—S1 | 121.78 (14) | C18—C19—H19 | 120.8 |
C9—C8—C7 | 120.60 (16) | C19—C20—C15 | 120.37 (17) |
C9—C8—H8 | 119.7 | C19—C20—H20 | 119.8 |
C7—C8—H8 | 119.7 | C15—C20—H20 | 119.8 |
C8—C9—C10 | 119.75 (17) | ||
C13—N1—C1—C2 | 11.1 (2) | C10—C11—C12—C7 | 0.3 (3) |
C12—N1—C1—C2 | −151.03 (16) | C10—C11—C12—N1 | 179.89 (16) |
C13—N1—C1—C6 | −167.32 (15) | C8—C7—C12—C11 | −2.3 (3) |
C12—N1—C1—C6 | 30.6 (2) | S1—C7—C12—C11 | 174.37 (13) |
C6—C1—C2—C3 | 2.0 (3) | C8—C7—C12—N1 | 178.07 (16) |
N1—C1—C2—C3 | −176.47 (15) | S1—C7—C12—N1 | −5.2 (2) |
C1—C2—C3—C4 | −2.2 (3) | C13—N1—C12—C11 | −10.9 (2) |
C2—C3—C4—C5 | 0.5 (3) | C1—N1—C12—C11 | 150.89 (16) |
C3—C4—C5—C6 | 1.5 (3) | C13—N1—C12—C7 | 168.71 (15) |
C4—C5—C6—C1 | −1.7 (3) | C1—N1—C12—C7 | −29.5 (2) |
C4—C5—C6—S1 | 173.52 (13) | C20—C15—C16—C17 | −2.9 (3) |
C2—C1—C6—C5 | 0.0 (2) | C14—C15—C16—C17 | 175.91 (16) |
N1—C1—C6—C5 | 178.45 (15) | C15—C16—C17—C18 | 0.2 (3) |
C2—C1—C6—S1 | −175.11 (13) | C16—C17—C18—C19 | 2.3 (3) |
N1—C1—C6—S1 | 3.3 (2) | C16—C17—C18—N2 | −176.74 (15) |
C7—S1—C6—C5 | 155.97 (14) | O1—N2—C18—C17 | −12.3 (2) |
C7—S1—C6—C1 | −28.87 (16) | O2—N2—C18—C17 | 166.68 (17) |
C6—S1—C7—C8 | −153.28 (14) | O1—N2—C18—C19 | 168.69 (17) |
C6—S1—C7—C12 | 29.96 (16) | O2—N2—C18—C19 | −12.4 (2) |
C12—C7—C8—C9 | 2.6 (3) | C17—C18—C19—C20 | −1.8 (3) |
S1—C7—C8—C9 | −174.25 (14) | N2—C18—C19—C20 | 177.16 (15) |
C7—C8—C9—C10 | −0.7 (3) | C18—C19—C20—C15 | −1.0 (2) |
C8—C9—C10—C11 | −1.3 (3) | C16—C15—C20—C19 | 3.3 (3) |
C9—C10—C11—C12 | 1.5 (3) | C14—C15—C20—C19 | −175.53 (16) |
Funding information
This work was supported by the Adaptable and Seamless Technology Transfer Program through Target-driven R&D from the Japan Science and Technology Agency (JST).
References
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Okada, K., Imakura, T., Oda, M., Murai, H. & Baumgarten, M. (1996). J. Am. Chem. Soc. 118, 3047–3048. CrossRef CAS Web of Science Google Scholar
Okamoto, T., Kuratsu, M., Kozaki, M., Hirotsu, K., Ichimura, A., Matsushita, T. & Okada, K. (2004). Org. Lett. 6, 3493–3496. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2019). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, D., Rosokha, S. V. & Kochi, J. K. (2004). J. Am. Chem. Soc. 126, 1388–1401. Web of Science CSD CrossRef PubMed CAS Google Scholar
Umezono, S., Ikeda, S. & Okuno, T. (2013). Acta Cryst. C69, 1553–1556. CrossRef IUCr Journals Google Scholar
Umezono, S. & Okuno, T. (2012). Acta Cryst. E68, o2790. CSD CrossRef IUCr Journals Google Scholar
Umezono, S. & Okuno, T. (2013). J. Mol. Struct. 1049, 293–298. Web of Science CSD CrossRef CAS Google Scholar
Zaugg, H. E., Swett, L. & Stone, G. R. (1958). J. Org. Chem. 23, 1389–1390. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.