metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[3,5-di­fluoro-2-(pyridin-2-yl)phen­yl](4,4′-di­meth­­oxy-2,2′-bi­pyridine)­iridium(III) hexa­fluorido­phosphate

crossmark logo

aDepartment of Chemistry and Physics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA, and bDepartment of Chemistry, Clemson University, Clemson, SC 29634, USA
*Correspondence e-mail: jared-pienkos@utc.edu

Edited by M. Zeller, Purdue University, USA (Received 25 July 2022; accepted 19 August 2022; online 26 August 2022)

The title cyclo­metalated distorted octa­hedral iridium complex, [Ir(C11H6F2N)2(C12H12N2O2)]PF6, exhibits elongated Ir—N bonds to the dimeth­oxy bi­pyridine ligand [2.128 (3) and 2.136 (3) Å] where these nitro­gen atoms are trans to the Ir—C bonds of the two cyclo­metalating di­fluoro­phenyl­pyridine ligands. The angles between the mean planes of the phenyl and pyridyl fragments within the individual ligands range from 3.5 (2) to 11.4 (2)° to deviate slightly from coplanarity.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, [Ir(dfppy)2(bipyOMe)](PF6), is a distorted octa­hedral complex composed of bidentate cyclo­metallated ligands. The photophysical properties of cyclo­metalated iridium(III) complexes have been studied extensively in diverse applications such as cell imaging and OLEDs (Lee et al., 2009[Lee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030-1037.]; Thorp-Greenwood, 2012[Thorp-Greenwood, F. L. (2012). Organometallics, 31, 5686-5692.]; You et al., 2014[You, Y., Cho, S. & Nam, W. (2014). Inorg. Chem. 53, 1804-1815.]). In [Ir(dfppy)2(bipyOMe)](PF6), the nitro­gen atoms of the bipyOMe ligand are oriented trans to the carbon atoms of the dfppy ligands (Fig. 1[link]). The Ir—N bond lengths to the bipyOMe ligand are 2.128 (3) and 2.136 (3) Å, longer than the Ir—N [2.035 (3) and 2.042 (3) Å] or Ir—C [2.014 (3) and 2.017 (3) Å] bonds to the dfppy ligands. This is consistent with a substantial trans effect directed by the carbon atoms of dfppy. This feature is also present in related structures in the literature, including for example Ir—N bonds to the trans-effected nitro­gen atoms of the hydrogen pyridin-2-yl-phosophonato ligand of bis­[3,5-di­fluoro-2-(pyridin-2-yl)phen­yl](hydrogen pyridin-2-yl-phospho­nato)iridium(III) [Ir—N = 2.153 (4) Å; Zeng et al., 2019[Zeng, D., Yuan, X.-A., Liu, J.-C., Li, L., Wang, L.-P., Qin, M.-F., Bao, S.-S., Ma, J. & Zheng, L.-M. (2019). ACS Omega, 4, 16543-16550.]], and of the bi­pyridine ligands in the structures of (2,2′-bi­pyridine)­bis­[3,5-di­fluoro-2-(pyridin-2-yl)phen­yl]iridium(III) com­plexes [ranging from 2.120 (4) to 2.141 (4) Å; Li et al., 2017[Li, X., Tong, X., Yin, Y., Yan, H., Lu, C., Huang, W. & Zhao, Q. (2017). Chem. Sci. 8, 5930-5940.]; Moriuchi et al., 2012[Moriuchi, T., Katano, C. & Hirao, T. (2012). Chem. Lett. 41, 310-312.]]. This arrangement maximizes the number of C—Ir—N inter­ligand trans-inter­actions compared to other potential isomers that would orient only one of the bipyOMe nitro­gen atoms across from a strong trans-donor carbon atom, or that would have both strong trans-donor carbon atoms opposing one another (i.e. all nitro­gen atoms are trans to one another).

[Figure 1]
Figure 1
The structures of the molecular components of the title compound shown as 50% probability ellipsoids. Hydrogen atoms have been omitted for clarity.

In addition to the octa­hedral distortion arising from the trans-effect, an angular distortion occurs from the chelating ligands, with cis-angles about iridium ranging from 76.39 (10) to 101.08 (12)°, and trans-angles about iridium ranging from 172.49 (12) to 177.11 (12)°. The ligands themselves deviate slightly from coplanarity, with mean plane to mean plane angles between the phenyl and pyridyl fragments within the individual ligands ranging from 3.5 (2) to 11.4 (2)°. The methyl groups of the bipyOMe ligands both fold inward. Neighboring complexes form dimers (Fig. 2[link]) through inter­actions between their dfppy ligands, including offset π stacking [centroid–centroid = 3.616 (3) Å; plane-to-plane distance = 3.202 (3) Å] and C—H⋯π (H⋯centroid = 2.52 Å) inter­actions. Several C—H⋯F inter­actions between the complexes and the (PF6) anions (Table 1[link], Fig. 3[link]), as well as a C—H⋯O inter­action between meth­oxy groups of neighboring complexes further support the long-range packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯F7i 0.98 2.51 3.240 (6) 131
C11—H11B⋯O2ii 0.98 2.52 3.294 (5) 136
C20—H20⋯F2 0.95 2.25 2.866 (6) 122
C31—H31⋯F4 0.95 2.25 2.869 (6) 122
C34—H34⋯F8iii 0.95 2.55 3.412 (5) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, y-1, z].
[Figure 2]
Figure 2
Dimers of the title complex formed via offset π stacking and C—H⋯π inter­actions. The projection is viewed along [010].
[Figure 3]
Figure 3
Packing diagram of the title compound viewed along [010].

Synthesis and crystallization

[Ir(dfppy)2Cl]2 was prepared according to the literature (Skórka et al., 2016[Skórka, Ł., Filapek, M., Zur, L., Małecki, J. G., Pisarski, W., Olejnik, M., Danikiewicz, W. & Krompiec, S. (2016). J. Phys. Chem. C, 120, 7284-7294.]). [Ir (dfppy)2Cl]2 (0.0508 g, 0.0418 mmol) and 4,4′-dimeth­oxy-2,2′-bi­pyridine (0.0208 g, 0.0962 mmol) were combined in ethyl­ene glycol (5 ml). The resulting yellow–green heterogenous mixture was heated under N2 to 150°C while stirring. After 20 h, the resulting yellow homogenous solution was allowed to cool to room temperature and 10 ml of NH4PF6 (sat. aq.) were added. The yellow precipitate that formed was collected by vacuum filtration, washed with H2O (3 × 10 ml), Et2O (3 ×10 ml), and dried in vacuo to give a yellow powder (0.0517 g, 78.3%). Yellow needle-like crystals suitable for X-ray diffraction were obtained by vapor–vapor diffusion from a solution of hexa­nes and di­chloro­methane. 1H NMR (400 MHz, DMSO-d6) δ 8.48 (d, J = 2.7 Hz, 2H), 8.28 (d, J = 8.5 Hz, 2H), 8.03 (t, J = 7.9 Hz, 2H), 7.75 (dd, 2H), 7.65 (d, J = 6.4 Hz, 2H), 7.28 (td, 4H), 6.97 (d, J = 11.8 Hz, 2H), 5.61 (dd, 2H), 4.00 (s, 6H).

Refinement

Crystal data, data collection, and structure refinement details are summzarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ir(C11H6F2N)2(C12H12N2O2)]PF6
Mr 933.74
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 100
a, b, c (Å) 41.574 (3), 8.6065 (7), 18.2384 (14)
V3) 6525.9 (9)
Z 8
Radiation type Cu Kα
μ (mm−1) 9.27
Crystal size (mm) 0.20 × 0.07 × 0.06
 
Data collection
Diffractometer Bruker D8 Venture Photon 2
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.667, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 51121, 6215, 5595
Rint 0.043
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.16
No. of reflections 6215
No. of parameters 471
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.91, −0.61
Computer programs: APEX3 (Bruker, 2017[Bruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[3,5-difluoro-2-(pyridin-2-yl)phenyl](4,4'-dimethoxy-2,2'-bipyridine)iridium(III) hexafluoridophosphate top
Crystal data top
[Ir(C11H6F2N)2(C12H12N2O2)]PF6Dx = 1.901 Mg m3
Mr = 933.74Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcnCell parameters from 9410 reflections
a = 41.574 (3) Åθ = 4.0–70.2°
b = 8.6065 (7) ŵ = 9.27 mm1
c = 18.2384 (14) ÅT = 100 K
V = 6525.9 (9) Å3Column, yellow
Z = 80.20 × 0.07 × 0.06 mm
F(000) = 3632
Data collection top
Bruker D8 Venture Photon 2
diffractometer
5595 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.043
φ and ω scansθmax = 70.3°, θmin = 5.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 5050
Tmin = 0.667, Tmax = 1.000k = 910
51121 measured reflectionsl = 2022
6215 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0194P)2 + 21.8494P]
where P = (Fo2 + 2Fc2)/3
6215 reflections(Δ/σ)max = 0.008
471 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed in calculated positions with C—H bond distances of 0.95 Å for aromatic 0.98 Å for CH3 moieties, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a 1.5 (for CH3) or 1.2 (for C—H) times Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.60823 (2)0.58537 (2)0.48740 (2)0.01420 (6)
P10.69527 (2)1.06167 (12)0.66335 (5)0.0244 (2)
F10.51080 (6)0.1773 (4)0.52914 (15)0.0471 (7)
F20.50104 (6)0.6651 (4)0.63715 (13)0.0475 (7)
F30.53664 (7)0.9251 (3)0.29752 (15)0.0457 (7)
F40.56046 (7)0.4119 (3)0.23471 (13)0.0439 (7)
F50.67444 (7)0.9209 (3)0.6335 (2)0.0588 (9)
F60.71604 (7)1.2005 (3)0.69438 (17)0.0487 (7)
F70.70871 (7)0.9525 (3)0.72743 (16)0.0484 (7)
F80.68154 (6)1.1714 (4)0.60026 (14)0.0473 (7)
F90.72483 (6)1.0121 (4)0.61233 (14)0.0477 (7)
F100.66573 (6)1.1117 (3)0.71486 (14)0.0392 (6)
O10.68565 (6)0.4864 (3)0.77561 (13)0.0252 (6)
O20.74782 (6)0.8299 (3)0.43096 (14)0.0276 (6)
N10.63528 (7)0.5248 (3)0.58221 (15)0.0172 (6)
N20.65522 (6)0.6726 (3)0.46407 (15)0.0153 (5)
N30.59314 (7)0.7760 (4)0.54453 (15)0.0211 (6)
N40.61822 (7)0.3919 (4)0.42744 (16)0.0207 (6)
C10.62284 (8)0.4565 (4)0.64235 (19)0.0204 (7)
H10.6014410.4180060.6401970.024*
C20.63967 (8)0.4401 (4)0.70643 (19)0.0215 (7)
H20.6302550.3892750.7473790.026*
C30.67100 (8)0.4995 (4)0.71064 (18)0.0184 (7)
C40.68430 (8)0.5666 (4)0.64852 (19)0.0186 (7)
H40.7057780.6042580.6491170.022*
C50.66579 (8)0.5780 (4)0.58555 (18)0.0152 (6)
C60.67759 (8)0.6531 (4)0.51767 (17)0.0159 (6)
C70.70924 (8)0.7019 (4)0.50924 (18)0.0189 (7)
H70.7245420.6849190.5470800.023*
C80.71818 (8)0.7759 (4)0.44450 (19)0.0205 (7)
C90.69516 (9)0.7961 (4)0.38958 (18)0.0210 (7)
H90.7005980.8461050.3448250.025*
C100.66460 (8)0.7424 (4)0.40150 (17)0.0177 (7)
H100.6491580.7549970.3635650.021*
C110.71886 (10)0.5355 (6)0.7799 (2)0.0352 (10)
H11A0.7315600.4792760.7432610.053*
H11B0.7272760.5129890.8289980.053*
H11C0.7202410.6473620.7705050.053*
C120.77258 (9)0.7963 (5)0.4834 (2)0.0307 (9)
H12A0.7671540.8446540.5304720.046*
H12B0.7931250.8378180.4657870.046*
H12C0.7743730.6836140.4898070.046*
C130.56560 (8)0.5034 (5)0.52336 (18)0.0237 (8)
C140.55276 (10)0.3574 (5)0.5117 (2)0.0300 (9)
H140.5641160.2833270.4830500.036*
C150.52304 (9)0.3197 (6)0.5421 (2)0.0332 (9)
C160.50576 (10)0.4217 (6)0.5846 (2)0.0381 (11)
H160.4856450.3930210.6052690.046*
C170.51855 (10)0.5655 (6)0.5960 (2)0.0360 (11)
C180.54814 (9)0.6118 (5)0.5669 (2)0.0279 (9)
C190.56351 (9)0.7625 (5)0.5786 (2)0.0290 (9)
C200.55180 (11)0.8876 (6)0.6201 (2)0.0403 (11)
H200.5313580.8809560.6432230.048*
C210.57016 (12)1.0204 (6)0.6272 (2)0.0426 (11)
H210.5620631.1062710.6542930.051*
C220.60004 (11)1.0293 (6)0.5955 (2)0.0374 (10)
H220.6132871.1180910.6022280.045*
C230.61029 (9)0.9055 (5)0.5534 (2)0.0273 (8)
H230.6305720.9129410.5296810.033*
C240.58468 (8)0.6421 (5)0.39470 (18)0.0222 (7)
C250.56931 (9)0.7793 (5)0.3780 (2)0.0285 (8)
H250.5706150.8654220.4103810.034*
C260.55177 (9)0.7906 (6)0.3128 (2)0.0336 (9)
C270.54847 (9)0.6700 (6)0.2651 (2)0.0340 (10)
H270.5358580.6799060.2219470.041*
C280.56399 (10)0.5335 (6)0.2816 (2)0.0328 (9)
C290.58303 (9)0.5150 (5)0.34384 (19)0.0273 (8)
C300.60312 (10)0.3802 (5)0.3612 (2)0.0269 (8)
C310.60924 (11)0.2514 (6)0.3162 (2)0.0384 (10)
H310.5984640.2417170.2704670.046*
C320.63070 (13)0.1393 (5)0.3378 (3)0.0428 (11)
H320.6349630.0523310.3072270.051*
C330.64615 (12)0.1545 (5)0.4052 (3)0.0405 (10)
H330.6613500.0790180.4208650.049*
C340.63901 (9)0.2812 (5)0.4489 (2)0.0294 (8)
H340.6490920.2903040.4954330.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01073 (8)0.02118 (9)0.01070 (8)0.00081 (5)0.00032 (5)0.00108 (5)
P10.0238 (4)0.0256 (5)0.0237 (5)0.0016 (4)0.0007 (4)0.0031 (4)
F10.0337 (13)0.0576 (18)0.0501 (15)0.0234 (13)0.0067 (12)0.0149 (14)
F20.0249 (12)0.086 (2)0.0310 (13)0.0105 (13)0.0101 (10)0.0011 (14)
F30.0420 (14)0.0589 (18)0.0361 (14)0.0120 (13)0.0097 (11)0.0143 (12)
F40.0491 (15)0.0615 (18)0.0211 (12)0.0119 (13)0.0074 (11)0.0070 (11)
F50.0402 (15)0.0402 (16)0.096 (3)0.0011 (12)0.0179 (16)0.0321 (16)
F60.0400 (14)0.0373 (15)0.0687 (19)0.0080 (12)0.0104 (13)0.0112 (14)
F70.0417 (15)0.0500 (16)0.0534 (17)0.0084 (13)0.0016 (13)0.0212 (14)
F80.0387 (14)0.072 (2)0.0307 (13)0.0182 (14)0.0065 (11)0.0179 (13)
F90.0390 (14)0.0674 (19)0.0368 (14)0.0209 (14)0.0073 (11)0.0052 (13)
F100.0391 (14)0.0416 (14)0.0368 (13)0.0040 (11)0.0145 (11)0.0054 (11)
O10.0263 (13)0.0339 (15)0.0154 (11)0.0057 (11)0.0060 (10)0.0043 (11)
O20.0170 (12)0.0396 (16)0.0261 (13)0.0069 (11)0.0025 (10)0.0079 (12)
N10.0156 (13)0.0207 (15)0.0153 (13)0.0024 (11)0.0003 (10)0.0040 (11)
N20.0149 (13)0.0176 (14)0.0134 (13)0.0014 (11)0.0001 (10)0.0015 (11)
N30.0185 (14)0.0307 (17)0.0140 (13)0.0078 (13)0.0012 (11)0.0010 (12)
N40.0185 (14)0.0271 (16)0.0165 (14)0.0024 (12)0.0024 (11)0.0002 (12)
C10.0147 (15)0.0291 (19)0.0172 (16)0.0017 (14)0.0027 (13)0.0030 (14)
C20.0197 (16)0.0290 (19)0.0157 (16)0.0017 (14)0.0036 (13)0.0047 (14)
C30.0235 (17)0.0158 (16)0.0159 (16)0.0016 (14)0.0025 (13)0.0011 (13)
C40.0168 (16)0.0205 (17)0.0185 (16)0.0011 (13)0.0012 (13)0.0031 (13)
C50.0148 (15)0.0172 (16)0.0137 (15)0.0005 (12)0.0001 (12)0.0009 (12)
C60.0132 (15)0.0200 (17)0.0144 (15)0.0003 (13)0.0012 (12)0.0004 (13)
C70.0165 (16)0.0227 (18)0.0175 (16)0.0017 (14)0.0013 (12)0.0009 (13)
C80.0167 (16)0.0226 (18)0.0221 (17)0.0034 (14)0.0039 (13)0.0002 (14)
C90.0248 (17)0.0250 (18)0.0132 (15)0.0004 (15)0.0022 (13)0.0010 (14)
C100.0200 (16)0.0214 (17)0.0117 (14)0.0002 (13)0.0010 (12)0.0007 (13)
C110.034 (2)0.048 (3)0.0237 (19)0.015 (2)0.0169 (17)0.0066 (18)
C120.0179 (17)0.043 (2)0.031 (2)0.0074 (17)0.0000 (15)0.0066 (18)
C130.0138 (15)0.042 (2)0.0157 (16)0.0058 (15)0.0039 (13)0.0127 (16)
C140.0242 (19)0.041 (2)0.0243 (19)0.0083 (18)0.0061 (15)0.0091 (17)
C150.0239 (19)0.052 (3)0.0238 (19)0.0073 (19)0.0062 (15)0.0124 (19)
C160.0218 (19)0.066 (3)0.027 (2)0.013 (2)0.0083 (16)0.017 (2)
C170.0206 (19)0.071 (3)0.0166 (18)0.006 (2)0.0009 (15)0.0076 (19)
C180.0169 (17)0.052 (3)0.0146 (16)0.0046 (17)0.0007 (13)0.0059 (16)
C190.0250 (18)0.045 (2)0.0174 (17)0.0115 (17)0.0002 (14)0.0010 (17)
C200.038 (2)0.057 (3)0.026 (2)0.019 (2)0.0083 (18)0.002 (2)
C210.052 (3)0.043 (3)0.033 (2)0.017 (2)0.004 (2)0.009 (2)
C220.047 (2)0.035 (2)0.031 (2)0.007 (2)0.0002 (19)0.0048 (19)
C230.029 (2)0.030 (2)0.0235 (19)0.0066 (16)0.0012 (15)0.0023 (15)
C240.0136 (15)0.040 (2)0.0135 (15)0.0064 (15)0.0009 (12)0.0065 (15)
C250.0188 (17)0.043 (2)0.0233 (18)0.0023 (16)0.0021 (14)0.0074 (17)
C260.0242 (19)0.051 (3)0.0252 (19)0.0012 (18)0.0007 (15)0.0110 (19)
C270.0242 (19)0.057 (3)0.0210 (19)0.0041 (19)0.0000 (15)0.0141 (19)
C280.030 (2)0.052 (3)0.0167 (17)0.0143 (19)0.0003 (15)0.0034 (18)
C290.0225 (17)0.044 (2)0.0155 (16)0.0089 (17)0.0016 (14)0.0011 (16)
C300.032 (2)0.032 (2)0.0161 (17)0.0114 (17)0.0019 (15)0.0029 (15)
C310.050 (3)0.040 (3)0.025 (2)0.008 (2)0.0014 (18)0.0052 (19)
C320.063 (3)0.028 (2)0.037 (2)0.000 (2)0.006 (2)0.0135 (19)
C330.046 (3)0.030 (2)0.046 (3)0.004 (2)0.004 (2)0.008 (2)
C340.0288 (19)0.027 (2)0.032 (2)0.0034 (16)0.0027 (16)0.0017 (17)
Geometric parameters (Å, º) top
Ir1—C242.014 (3)C10—H100.9500
Ir1—C132.017 (3)C11—H11A0.9800
Ir1—N42.035 (3)C11—H11B0.9800
Ir1—N32.042 (3)C11—H11C0.9800
Ir1—N12.128 (3)C12—H12A0.9800
Ir1—N22.136 (3)C12—H12B0.9800
P1—F61.579 (3)C12—H12C0.9800
P1—F51.585 (3)C13—C141.382 (6)
P1—F81.594 (3)C13—C181.424 (6)
P1—F91.599 (3)C14—C151.393 (6)
P1—F71.601 (3)C14—H140.9500
P1—F101.605 (3)C15—C161.373 (7)
F1—C151.347 (5)C16—C171.364 (7)
F2—C171.352 (5)C16—H160.9500
F3—C261.347 (5)C17—C181.398 (5)
F4—C281.360 (5)C18—C191.461 (6)
O1—C31.337 (4)C19—C201.404 (6)
O1—C111.446 (5)C20—C211.381 (7)
O2—C81.340 (4)C20—H200.9500
O2—C121.435 (5)C21—C221.373 (7)
N1—C11.347 (4)C21—H210.9500
N1—C51.350 (4)C22—C231.380 (6)
N2—C101.347 (4)C22—H220.9500
N2—C61.360 (4)C23—H230.9500
N3—C231.333 (5)C24—C251.377 (6)
N3—C191.385 (5)C24—C291.435 (6)
N4—C341.344 (5)C25—C261.397 (5)
N4—C301.366 (5)C25—H250.9500
C1—C21.369 (5)C26—C271.361 (7)
C1—H10.9500C27—C281.374 (7)
C2—C31.401 (5)C27—H270.9500
C2—H20.9500C28—C291.393 (5)
C3—C41.387 (5)C29—C301.464 (6)
C4—C51.386 (5)C30—C311.403 (6)
C4—H40.9500C31—C321.372 (7)
C5—C61.481 (4)C31—H310.9500
C6—C71.389 (5)C32—C331.393 (7)
C7—C81.392 (5)C32—H320.9500
C7—H70.9500C33—C341.383 (6)
C8—C91.396 (5)C33—H330.9500
C9—C101.370 (5)C34—H340.9500
C9—H90.9500
C24—Ir1—C1386.02 (13)H11A—C11—H11B109.5
C24—Ir1—N481.16 (14)O1—C11—H11C109.5
C13—Ir1—N493.90 (15)H11A—C11—H11C109.5
C24—Ir1—N394.85 (14)H11B—C11—H11C109.5
C13—Ir1—N381.09 (15)O2—C12—H12A109.5
N4—Ir1—N3173.84 (12)O2—C12—H12B109.5
C24—Ir1—N1177.11 (12)H12A—C12—H12B109.5
C13—Ir1—N196.57 (12)O2—C12—H12C109.5
N4—Ir1—N197.36 (12)H12A—C12—H12C109.5
N3—Ir1—N186.83 (11)H12B—C12—H12C109.5
C24—Ir1—N2101.08 (12)C14—C13—C18119.0 (3)
C13—Ir1—N2172.49 (12)C14—C13—Ir1127.4 (3)
N4—Ir1—N289.64 (11)C18—C13—Ir1113.6 (3)
N3—Ir1—N295.76 (11)C13—C14—C15119.6 (4)
N1—Ir1—N276.39 (10)C13—C14—H14120.2
F6—P1—F5179.0 (2)C15—C14—H14120.2
F6—P1—F890.37 (17)F1—C15—C16118.9 (4)
F5—P1—F890.54 (18)F1—C15—C14118.5 (4)
F6—P1—F989.44 (17)C16—C15—C14122.6 (4)
F5—P1—F990.93 (17)C17—C16—C15117.5 (4)
F8—P1—F990.75 (14)C17—C16—H16121.2
F6—P1—F789.52 (17)C15—C16—H16121.2
F5—P1—F789.57 (18)F2—C17—C16116.8 (4)
F8—P1—F7179.25 (17)F2—C17—C18120.3 (4)
F9—P1—F789.99 (15)C16—C17—C18123.0 (4)
F6—P1—F1090.31 (15)C17—C18—C13118.3 (4)
F5—P1—F1089.32 (16)C17—C18—C19125.6 (4)
F8—P1—F1089.40 (14)C13—C18—C19116.1 (3)
F9—P1—F10179.71 (17)N3—C19—C20119.1 (4)
F7—P1—F1089.86 (15)N3—C19—C18113.4 (3)
C3—O1—C11117.3 (3)C20—C19—C18127.5 (4)
C8—O2—C12117.8 (3)C21—C20—C19119.6 (4)
C1—N1—C5118.1 (3)C21—C20—H20120.2
C1—N1—Ir1124.4 (2)C19—C20—H20120.2
C5—N1—Ir1116.8 (2)C22—C21—C20120.4 (4)
C10—N2—C6117.8 (3)C22—C21—H21119.8
C10—N2—Ir1126.2 (2)C20—C21—H21119.8
C6—N2—Ir1116.0 (2)C21—C22—C23118.1 (5)
C23—N3—C19119.4 (3)C21—C22—H22120.9
C23—N3—Ir1124.7 (2)C23—C22—H22120.9
C19—N3—Ir1115.8 (3)N3—C23—C22123.2 (4)
C34—N4—C30120.1 (3)N3—C23—H23118.4
C34—N4—Ir1123.7 (3)C22—C23—H23118.4
C30—N4—Ir1116.2 (3)C25—C24—C29119.2 (3)
N1—C1—C2122.9 (3)C25—C24—Ir1128.3 (3)
N1—C1—H1118.5C29—C24—Ir1112.4 (3)
C2—C1—H1118.5C24—C25—C26119.4 (4)
C1—C2—C3119.0 (3)C24—C25—H25120.3
C1—C2—H2120.5C26—C25—H25120.3
C3—C2—H2120.5F3—C26—C27118.4 (4)
O1—C3—C4125.3 (3)F3—C26—C25118.7 (4)
O1—C3—C2116.2 (3)C27—C26—C25122.9 (4)
C4—C3—C2118.5 (3)C26—C27—C28117.7 (4)
C5—C4—C3119.0 (3)C26—C27—H27121.1
C5—C4—H4120.5C28—C27—H27121.1
C3—C4—H4120.5F4—C28—C27118.0 (4)
N1—C5—C4122.4 (3)F4—C28—C29119.1 (4)
N1—C5—C6114.9 (3)C27—C28—C29122.9 (4)
C4—C5—C6122.7 (3)C28—C29—C24117.8 (4)
N2—C6—C7122.1 (3)C28—C29—C30126.2 (4)
N2—C6—C5115.4 (3)C24—C29—C30115.9 (3)
C7—C6—C5122.6 (3)N4—C30—C31119.5 (4)
C6—C7—C8119.0 (3)N4—C30—C29113.3 (3)
C6—C7—H7120.5C31—C30—C29127.1 (4)
C8—C7—H7120.5C32—C31—C30120.4 (4)
O2—C8—C7124.1 (3)C32—C31—H31119.8
O2—C8—C9117.0 (3)C30—C31—H31119.8
C7—C8—C9118.9 (3)C31—C32—C33119.2 (4)
C10—C9—C8118.7 (3)C31—C32—H32120.4
C10—C9—H9120.7C33—C32—H32120.4
C8—C9—H9120.7C34—C33—C32118.9 (4)
N2—C10—C9123.6 (3)C34—C33—H33120.5
N2—C10—H10118.2C32—C33—H33120.5
C9—C10—H10118.2N4—C34—C33121.9 (4)
O1—C11—H11A109.5N4—C34—H34119.0
O1—C11—H11B109.5C33—C34—H34119.0
C5—N1—C1—C20.5 (5)C14—C13—C18—C19178.4 (3)
Ir1—N1—C1—C2169.9 (3)Ir1—C13—C18—C190.1 (4)
N1—C1—C2—C31.4 (6)C23—N3—C19—C201.8 (5)
C11—O1—C3—C45.0 (5)Ir1—N3—C19—C20178.8 (3)
C11—O1—C3—C2175.2 (3)C23—N3—C19—C18177.3 (3)
C1—C2—C3—O1177.0 (3)Ir1—N3—C19—C180.3 (4)
C1—C2—C3—C42.9 (5)C17—C18—C19—N3178.7 (3)
O1—C3—C4—C5177.4 (3)C13—C18—C19—N30.3 (5)
C2—C3—C4—C52.5 (5)C17—C18—C19—C200.3 (6)
C1—N1—C5—C41.0 (5)C13—C18—C19—C20178.7 (4)
Ir1—N1—C5—C4170.2 (3)N3—C19—C20—C211.1 (6)
C1—N1—C5—C6179.3 (3)C18—C19—C20—C21177.9 (4)
Ir1—N1—C5—C68.1 (4)C19—C20—C21—C221.6 (7)
C3—C4—C5—N10.6 (5)C20—C21—C22—C233.3 (7)
C3—C4—C5—C6177.6 (3)C19—N3—C23—C220.0 (6)
C10—N2—C6—C70.4 (5)Ir1—N3—C23—C22176.6 (3)
Ir1—N2—C6—C7178.8 (3)C21—C22—C23—N32.6 (7)
C10—N2—C6—C5179.1 (3)C29—C24—C25—C261.6 (5)
Ir1—N2—C6—C51.7 (4)Ir1—C24—C25—C26174.2 (3)
N1—C5—C6—N26.4 (4)C24—C25—C26—F3179.4 (3)
C4—C5—C6—N2171.9 (3)C24—C25—C26—C271.5 (6)
N1—C5—C6—C7174.1 (3)F3—C26—C27—C28179.9 (3)
C4—C5—C6—C77.6 (5)C25—C26—C27—C281.9 (6)
N2—C6—C7—C81.4 (5)C26—C27—C28—F4179.2 (3)
C5—C6—C7—C8178.1 (3)C26—C27—C28—C290.9 (6)
C12—O2—C8—C76.2 (5)F4—C28—C29—C24176.2 (3)
C12—O2—C8—C9173.8 (3)C27—C28—C29—C243.9 (6)
C6—C7—C8—O2178.8 (3)F4—C28—C29—C307.2 (6)
C6—C7—C8—C91.2 (5)C27—C28—C29—C30172.8 (4)
O2—C8—C9—C10180.0 (3)C25—C24—C29—C284.2 (5)
C7—C8—C9—C100.1 (5)Ir1—C24—C29—C28172.3 (3)
C6—N2—C10—C90.9 (5)C25—C24—C29—C30172.8 (3)
Ir1—N2—C10—C9180.0 (3)Ir1—C24—C29—C3010.7 (4)
C8—C9—C10—N21.0 (5)C34—N4—C30—C310.6 (5)
C18—C13—C14—C150.4 (5)Ir1—N4—C30—C31178.9 (3)
Ir1—C13—C14—C15178.7 (3)C34—N4—C30—C29176.0 (3)
C13—C14—C15—F1179.1 (3)Ir1—N4—C30—C292.3 (4)
C13—C14—C15—C160.7 (6)C28—C29—C30—N4177.7 (4)
F1—C15—C16—C17179.1 (3)C24—C29—C30—N45.6 (5)
C14—C15—C16—C170.7 (6)C28—C29—C30—C316.0 (7)
C15—C16—C17—F2179.2 (3)C24—C29—C30—C31170.7 (4)
C15—C16—C17—C180.4 (6)N4—C30—C31—C321.3 (6)
F2—C17—C18—C13179.5 (3)C29—C30—C31—C32174.9 (4)
C16—C17—C18—C130.1 (6)C30—C31—C32—C330.4 (7)
F2—C17—C18—C192.1 (6)C31—C32—C33—C341.0 (7)
C16—C17—C18—C19178.3 (4)C30—N4—C34—C330.9 (6)
C14—C13—C18—C170.1 (5)Ir1—N4—C34—C33177.3 (3)
Ir1—C13—C18—C17178.6 (3)C32—C33—C34—N41.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···F7i0.982.513.240 (6)131
C11—H11B···O2ii0.982.523.294 (5)136
C20—H20···F20.952.252.866 (6)122
C31—H31···F40.952.252.869 (6)122
C34—H34···F8iii0.952.553.412 (5)150
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+3/2, y+3/2, z+1/2; (iii) x, y1, z.
 

Acknowledgements

The authors thank Bailey Newell and Dr John Lee for assistance and helpful discussions.

References

First citationBruker (2016). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, S. J., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, X., Tong, X., Yin, Y., Yan, H., Lu, C., Huang, W. & Zhao, Q. (2017). Chem. Sci. 8, 5930–5940.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoriuchi, T., Katano, C. & Hirao, T. (2012). Chem. Lett. 41, 310–312.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSkórka, Ł., Filapek, M., Zur, L., Małecki, J. G., Pisarski, W., Olejnik, M., Danikiewicz, W. & Krompiec, S. (2016). J. Phys. Chem. C, 120, 7284–7294.  Google Scholar
First citationThorp-Greenwood, F. L. (2012). Organometallics, 31, 5686–5692.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, Y., Cho, S. & Nam, W. (2014). Inorg. Chem. 53, 1804–1815.  CrossRef CAS PubMed Google Scholar
First citationZeng, D., Yuan, X.-A., Liu, J.-C., Li, L., Wang, L.-P., Qin, M.-F., Bao, S.-S., Ma, J. & Zheng, L.-M. (2019). ACS Omega, 4, 16543–16550.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds