metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(nitrato-κO)(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)zinc(II) methanol monosolvate

crossmark logo

aFaculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan, bCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Nagoya 463-8521, Japan, and cDepartment of Functional Molecular Science, Institute of Biochemical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
*Correspondence e-mail: kato-k@kinjo-u.ac.jp, h-kurosaki@kinjo-u.ac.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 August 2022; accepted 25 August 2022; online 31 August 2022)

The two ZnII atoms in the crystal structure of the title complex, [Zn(NO3)2(C10H24N4)]·CH3OH, have a distorted octa­hedral coordination sphere, defined by 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) N atoms in the equatorial plane and nitrate O atoms in the axial sites. The conformation of the cyclam is trans-III (R, R, S, S), which is typical for metal–cyclam complexes. Nitrate anions are involved in intra- and inter­molecular hydrogen bonding with the N–H groups of the ZnII–cyclam unit. Together with the methanol solvent mol­ecule, the hydrogen-bonding network connects the ZnII–cyclam units into ribbons running parallel to the a axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclam is a well-known macrocyclic polyamine and water-soluble ligand that can strongly chelate transition-metal cations. As a result, various cyclam derivatives and metal complexes have been synthesized, and their crystal structures have been described. The crystal structure of the title zinc nitrate complex, on the other hand, is the first reported in this context. We anti­cipate that, in future, this structural property can be used in the development of new functional materials.

The asymmetric unit of the title complex, [ZnII(C10H24N4 = cyclam)](NO3)2·CH3OH, comprises two half-ZnII–cyclam complexes that are centered on Zn1 and Zn2, as well as two nitrate anions that coordinate to each ZnII atom, and a methanol solvent mol­ecule. The two half-ZnII–cyclam complexes are completed by inversion symmetry. Each ZnII atom is coordinated in a planar fashion by the four N atoms of the cyclam ligand. N1, N2, N1i, and N2i [symmetry code: (i) 2 − x, 1 − y, 1 − z] define the cyclam plane around Zn1, and nitrate atoms O1 and O1i coordinate at the axial positions of the resulting distorted octa­hedron (Fig. 1[link]). For Zn2, the equatorial plane is defined by N3, N4, N3ii, and N4ii [symmetry code: (ii) 1 − x, 1 − y, 1 − z], and the axially bound O atoms by O4 and O4ii (Fig. 2[link]). The coordination environments of the two central ZnII atoms are similar to that of Co(cyclam)Cl2 (Oba & Mochida, 2015[Oba, Y. & Mochida, T. (2015). Polyhedron, 99, 275-279.]). The conformation of the cyclam structure is trans-III (R, R, S, S) type, which is the most energetically favorable conformation (Bosnich et al., 1965[Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102-1108.]). The conformation is generally consistent with previous reports for metal–cyclam complexes such as CuII (Emsley et al., 1990[Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1990). J. Mol. Struct. 220, 1-12.]), NiII (Prasad et al., 1987[Prasad, L., Nyburg, S. C. & McAuley, A. (1987). Acta Cryst. C43, 1038-1042.]), and PdII (Hunter et al., 2004[Hunter, T. M., Paisey, S. J., Park, H., Cleghorn, L., Parkin, A., Parsons, S. & Sadler, P. J. (2004). J. Inorg. Biochem. 98, 713-719.]). The Zn1—O1 and Zn2—O4 bond lengths are 2.3045 (18) and 2.3233 (19) Å, respectively, which is longer than in the ZnII–nitrate ion (ca 2.0 Å; Ichimaru et al., 2021[Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data, 6, x210397.]; Kinoshita-Kikuta et al., 2021[Kinoshita-Kikuta, E., Ichimaru, Y., Yamano, Y., Kato, K., Kurosaki, H., Kinoshita, E. & Koike, T. (2021). Bull. Chem. Soc. Jpn, 94, 2670-2677.]), owing to the hydrogen-bonding network detailed below. The N1—Zn1—O1 and N2—Zn1—O1 bond angles are 92.98 (8)° and 89.14 (9)°, and N3—Zn2—O4 and N4—Zn2—O4 are 91.98 (8) and 87.95 (9)°. These angles imply that both ZnII atoms are on the centroid of the plane created by the four cyclam N atoms. However, the two cyclam rings chelating Zn1 and Zn2 have different asymmetric structures: N1—H1 and N2—H2 have syn-configurations, while N3—H3 and N4—H4 have anti-configurations.

[Figure 1]
Figure 1
The Zn1I–cyclam complex involving Zn1 and the methanol solvate mol­ecule. Displacement ellipsoids are drawn at the 50% probability level;. C-bound H atoms were omitted for clarity. Gray atom labels represent atoms generated by symmetry expansion (symmetry operation: 2 − x, 1 − y, 1 − z).
[Figure 2]
Figure 2
The hydrogen-bonding network between ZnII–cyclam complexes with displacement ellipsoids drawn at the 50% probability level. C-bound H atoms were omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines. [Symmetry codes: (i) 2 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z].

In addition to the methanol solvate mol­ecule, two nitrate anions are involved in the formation of an inter- and intra­molecular hydrogen-bonding network. The nitrate anion coordinating to Zn1 forms an intra­molecular hydrogen bond (O2⋯H1—N1) and an inter­molecular hydrogen-bond (O3⋯H4—N4) (Fig. 2[link]). N2—H2 and N3—H3 create hydrogen bonds with the other nitrate ion. As a result, the hydrogen-bond network includes all N-bound H atoms. Table 1[link] summarizes numerical data of the hydrogen bonding. In the crystal packing, the different moieties form ribbons parallel to the a axis through the hydrogen-bonding network (Fig. 3[link]). The distances between Zn atoms parallel to the a axis, for example, Zn1⋯Zn2, are 7.6706 (3) Å (Fig. 3[link]). The distances between Zn atoms in neighboring ribbons, for example, Zn1⋯Zn1iii [symmetry code: (iii) x, [{1\over 2}] − y, −[{1\over 2}] + z], are 7.93804 (18) Å (Figs. 3[link] and 4[link]). The nitrate ions coordinating to Zn1 and Zn2 have an N⋯N distance of 3.409 (4) Å (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 1.00 2.08 2.995 (3) 151
N2—H2⋯O5i 1.00 2.60 3.497 (4) 149
N2—H2⋯O6i 1.00 2.14 3.036 (4) 148
N3—H3⋯O5 1.00 2.06 2.931 (3) 145
N4—H4⋯O3 1.00 2.06 2.977 (3) 152
O7—H7⋯O1 0.86 2.38 3.144 (3) 148
O7—H7⋯O3 0.86 2.18 2.966 (3) 151
Symmetry code: (i) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Packing view down the b axis of the title complex with displacement ellipsoids drawn at the 50% probability level. Solvent mol­ecules and C-bound H atoms were omitted for clarity. Hydrogen-bonding inter­actions are shown as dotted lines. [Symmetry codes: (i) 2 − x, 1 − y, 1vz; (ii) 1 − x, 1 − y, 1 − z; (iii) x, [{1\over 2}] − y, −[{1\over 2}] + z].
[Figure 4]
Figure 4
Packing view down the a axis of the title complex with displacement ellipsoids drawn at the 50% probability level. Solvent mol­ecules and H atoms are omitted for clarity. [Symmetry code: (iii) x, [{1\over 2}] − y, −[{1\over 2}] + z].

Synthesis and crystallization

Under an argon atmosphere, zinc nitrate hexa­hydrate (1.5 g, 5 mmol), dissolved in dry methanol (5 ml), was added to a 20 ml dry methano­lic solution of cyclam (1.0 g, 5 mmol). The reaction mixture was agitated at room temperature for 2 h before the solvent was evaporated to get a colorless solid. To obtain colorless crystals appropriate for X-ray crystallography, the crude product was dissolved in hot methanol, filtered through a cellulose filter (0.45 µm pore size) and cooled to room temperature (yield 1.7 g, 87%).

Refinement

Table 2[link] summarizes crystal data, data collection, and structure refinement details.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(NO3)2(C10H24N4)]·CH3OH
Mr 421.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 15.3412 (5), 9.4306 (3), 12.7716 (4)
β (°) 105.864 (4)
V3) 1777.38 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.36
Crystal size (mm) 0.54 × 0.19 × 0.09
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-i
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.356, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9899, 3230, 2568
Rint 0.078
(sin θ/λ)max−1) 0.603
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.188, 1.01
No. of reflections 3230
No. of parameters 231
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.92
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(nitrato-κO)(1,4,8,11-tetraazacyclotetradecane-κ4N)zinc(II)] methanol monosolvate top
Crystal data top
[Zn(NO3)2(C10H24N4)]·CH4OF(000) = 888
Mr = 421.76Dx = 1.576 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.3412 (5) ÅCell parameters from 4300 reflections
b = 9.4306 (3) Åθ = 3.0–68.2°
c = 12.7716 (4) ŵ = 2.36 mm1
β = 105.864 (4)°T = 100 K
V = 1777.38 (10) Å3Block, clear colourless
Z = 40.54 × 0.19 × 0.09 mm
Data collection top
Rigaku XtaLAB Synergy-i
diffractometer
2568 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.078
ω scansθmax = 68.3°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
h = 1118
Tmin = 0.356, Tmax = 1.000k = 1111
9899 measured reflectionsl = 1515
3230 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.1278P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3230 reflectionsΔρmax = 1.01 e Å3
231 parametersΔρmin = 0.92 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed using a geometrical computation.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.0000000.5000000.5000000.0174 (3)
Zn20.5000000.5000000.5000000.0210 (3)
O10.90165 (12)0.6144 (2)0.57953 (17)0.0228 (5)
O40.41074 (12)0.4107 (2)0.60524 (17)0.0240 (5)
O30.77063 (11)0.6485 (2)0.60726 (18)0.0285 (6)
O20.83570 (14)0.4444 (3)0.6451 (2)0.0327 (6)
N40.60866 (19)0.5006 (2)0.6400 (3)0.0180 (7)
H40.6649210.5192540.6170930.022*
O70.81007 (13)0.9063 (2)0.4951 (2)0.0361 (6)
H70.8123470.8193360.5160780.043*
O60.28873 (13)0.3907 (2)0.6578 (2)0.0392 (7)
O50.31960 (14)0.5903 (2)0.5959 (2)0.0373 (7)
N20.89281 (18)0.4685 (3)0.3604 (2)0.0212 (6)
H20.8352190.4917920.3790580.025*
N10.98381 (15)0.3061 (3)0.5702 (2)0.0214 (6)
H10.9334870.3189260.6052500.026*
N50.83550 (14)0.5680 (3)0.6110 (2)0.0174 (6)
N60.33879 (16)0.4640 (3)0.6198 (2)0.0203 (6)
N30.47857 (15)0.7086 (2)0.5418 (2)0.0206 (6)
H30.4281780.7059690.5775750.025*
C90.62304 (18)0.3673 (3)0.7042 (2)0.0228 (7)
H9A0.5705720.3508720.7337030.027*
H9B0.6777340.3771610.7664230.027*
C50.90590 (18)0.5758 (3)0.2809 (2)0.0273 (7)
H5A0.8491160.5876910.2219560.033*
H5B0.9540850.5443200.2480600.033*
C80.59354 (18)0.6245 (3)0.7040 (2)0.0241 (7)
H8A0.6504880.6494430.7593040.029*
H8B0.5471530.6014490.7421380.029*
C60.45112 (18)0.8098 (3)0.4500 (2)0.0243 (7)
H6A0.5011780.8202720.4154220.029*
H6B0.4396990.9037870.4781260.029*
C70.56169 (17)0.7496 (3)0.6268 (2)0.0242 (7)
H7A0.5488690.8322830.6680510.029*
H7B0.6098130.7767300.5924440.029*
C11.06750 (19)0.2846 (3)0.6595 (3)0.0286 (7)
H1A1.1169320.2511440.6295170.034*
H1B1.0570150.2118220.7106210.034*
C100.63455 (18)0.2400 (3)0.6356 (2)0.0243 (7)
H10A0.6580800.1597210.6852500.029*
H10B0.6811070.2637060.5979120.029*
C20.95855 (19)0.1838 (3)0.4955 (3)0.0294 (8)
H2A0.9473410.1002430.5369380.035*
H2B1.0096590.1606970.4650250.035*
C40.88514 (18)0.3207 (3)0.3175 (3)0.0298 (8)
H4A0.9401060.2972540.2946720.036*
H4B0.8323020.3142580.2526730.036*
C30.87418 (19)0.2135 (3)0.4024 (3)0.0316 (8)
H3A0.8531530.1228950.3648890.038*
H3B0.8258740.2478880.4339940.038*
C110.7259 (2)0.9615 (4)0.5002 (3)0.0329 (7)
H11A0.6768720.9016590.4571260.049*
H11B0.7188001.0581590.4709010.049*
H11C0.7234910.9630700.5760830.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0152 (4)0.0120 (4)0.0215 (4)0.00113 (18)0.0010 (3)0.0007 (2)
Zn20.0191 (4)0.0141 (5)0.0245 (4)0.00029 (19)0.0030 (3)0.0013 (2)
O10.0144 (9)0.0192 (11)0.0366 (12)0.0024 (8)0.0099 (8)0.0047 (9)
O40.0131 (9)0.0232 (12)0.0364 (11)0.0042 (8)0.0080 (8)0.0045 (10)
O30.0145 (9)0.0193 (12)0.0517 (14)0.0038 (8)0.0093 (9)0.0010 (10)
O20.0258 (11)0.0225 (13)0.0545 (16)0.0051 (10)0.0188 (11)0.0139 (12)
N40.0137 (12)0.0149 (15)0.0229 (15)0.0021 (8)0.0010 (11)0.0007 (9)
O70.0321 (11)0.0227 (13)0.0584 (16)0.0018 (9)0.0207 (11)0.0021 (12)
O60.0214 (10)0.0341 (14)0.0685 (17)0.0064 (10)0.0229 (11)0.0227 (13)
O50.0291 (11)0.0165 (13)0.0733 (19)0.0070 (10)0.0258 (12)0.0078 (12)
N20.0146 (12)0.0234 (13)0.0230 (15)0.0013 (11)0.0006 (10)0.0039 (12)
N10.0165 (11)0.0156 (13)0.0339 (14)0.0035 (9)0.0102 (10)0.0027 (11)
N50.0095 (10)0.0179 (14)0.0224 (12)0.0002 (10)0.0002 (9)0.0036 (11)
N60.0106 (11)0.0263 (15)0.0211 (13)0.0018 (12)0.0007 (9)0.0019 (12)
N30.0162 (11)0.0163 (13)0.0283 (13)0.0028 (9)0.0045 (9)0.0011 (10)
C90.0156 (12)0.0218 (17)0.0293 (15)0.0014 (12)0.0036 (11)0.0049 (13)
C50.0182 (13)0.039 (2)0.0228 (15)0.0049 (13)0.0017 (11)0.0058 (14)
C80.0189 (13)0.0247 (18)0.0267 (15)0.0022 (12)0.0030 (11)0.0063 (14)
C60.0166 (13)0.0168 (15)0.0376 (17)0.0011 (11)0.0042 (11)0.0004 (14)
C70.0183 (13)0.0202 (16)0.0319 (16)0.0049 (12)0.0030 (11)0.0059 (14)
C10.0208 (14)0.0287 (19)0.0354 (18)0.0094 (13)0.0059 (12)0.0119 (15)
C100.0172 (12)0.0186 (16)0.0331 (16)0.0021 (12)0.0001 (11)0.0036 (14)
C20.0238 (15)0.0110 (15)0.055 (2)0.0010 (12)0.0142 (14)0.0033 (14)
C40.0153 (13)0.036 (2)0.0357 (18)0.0025 (14)0.0035 (12)0.0174 (16)
C30.0178 (13)0.0199 (17)0.057 (2)0.0060 (12)0.0104 (13)0.0149 (15)
C110.0259 (13)0.0356 (19)0.0372 (19)0.0017 (17)0.0084 (12)0.0016 (16)
Geometric parameters (Å, º) top
Zn1—O12.3045 (18)N3—C71.483 (3)
Zn1—O1i2.3045 (18)C9—H9A0.9900
Zn1—N22.090 (3)C9—H9B0.9900
Zn1—N2i2.090 (3)C9—C101.524 (4)
Zn1—N1i2.081 (2)C5—H5A0.9900
Zn1—N12.081 (2)C5—H5B0.9900
Zn2—O4ii2.3233 (19)C5—C1i1.520 (4)
Zn2—O42.3232 (19)C8—H8A0.9900
Zn2—N4ii2.085 (3)C8—H8B0.9900
Zn2—N42.085 (3)C8—C71.530 (4)
Zn2—N32.087 (2)C6—H6A0.9900
Zn2—N3ii2.087 (2)C6—H6B0.9900
O1—N51.267 (3)C6—C10ii1.535 (4)
O4—N61.272 (3)C7—H7A0.9900
O3—N51.242 (3)C7—H7B0.9900
O2—N51.244 (4)C1—H1A0.9900
N4—H41.0000C1—H1B0.9900
N4—C91.484 (4)C10—H10A0.9900
N4—C81.480 (4)C10—H10B0.9900
O7—H70.8603C2—H2A0.9900
O7—C111.410 (4)C2—H2B0.9900
O6—N61.228 (3)C2—C31.525 (4)
O5—N61.245 (4)C4—H4A0.9900
N2—H21.0000C4—H4B0.9900
N2—C51.485 (4)C4—C31.525 (5)
N2—C41.490 (4)C3—H3A0.9900
N1—H11.0000C3—H3B0.9900
N1—C11.480 (4)C11—H11A0.9800
N1—C21.480 (4)C11—H11B0.9800
N3—H31.0000C11—H11C0.9800
N3—C61.481 (4)
O1i—Zn1—O1180.0N4—C9—C10111.9 (2)
N2i—Zn1—O190.86 (9)H9A—C9—H9B107.9
N2—Zn1—O1i90.86 (9)C10—C9—H9A109.2
N2—Zn1—O189.14 (9)C10—C9—H9B109.2
N2i—Zn1—O1i89.14 (9)N2—C5—H5A110.0
N2—Zn1—N2i180.00 (15)N2—C5—H5B110.0
N1i—Zn1—O1i92.98 (8)N2—C5—C1i108.4 (2)
N1i—Zn1—O187.02 (8)H5A—C5—H5B108.4
N1—Zn1—O1i87.02 (8)C1i—C5—H5A110.0
N1—Zn1—O192.98 (8)C1i—C5—H5B110.0
N1i—Zn1—N2i94.81 (10)N4—C8—H8A109.9
N1—Zn1—N2i85.19 (10)N4—C8—H8B109.9
N1i—Zn1—N285.19 (10)N4—C8—C7108.9 (2)
N1—Zn1—N294.81 (10)H8A—C8—H8B108.3
N1—Zn1—N1i180.00 (12)C7—C8—H8A109.9
O4—Zn2—O4ii180.0C7—C8—H8B109.9
N4ii—Zn2—O4ii87.95 (9)N3—C6—H6A109.3
N4—Zn2—O4ii92.05 (9)N3—C6—H6B109.3
N4ii—Zn2—O492.05 (9)N3—C6—C10ii111.7 (2)
N4—Zn2—O487.95 (9)H6A—C6—H6B107.9
N4ii—Zn2—N4180.0C10ii—C6—H6A109.3
N4ii—Zn2—N394.42 (9)C10ii—C6—H6B109.3
N4—Zn2—N3ii94.42 (9)N3—C7—C8109.2 (2)
N4ii—Zn2—N3ii85.58 (9)N3—C7—H7A109.8
N4—Zn2—N385.58 (9)N3—C7—H7B109.8
N3ii—Zn2—O488.02 (8)C8—C7—H7A109.8
N3—Zn2—O491.98 (8)C8—C7—H7B109.8
N3ii—Zn2—O4ii91.98 (8)H7A—C7—H7B108.3
N3—Zn2—O4ii88.02 (8)N1—C1—C5i108.9 (2)
N3—Zn2—N3ii180.0N1—C1—H1A109.9
N5—O1—Zn1130.97 (17)N1—C1—H1B109.9
N6—O4—Zn2127.85 (18)C5i—C1—H1A109.9
Zn2—N4—H4107.5C5i—C1—H1B109.9
C9—N4—Zn2115.77 (18)H1A—C1—H1B108.3
C9—N4—H4107.5C9—C10—C6ii116.0 (2)
C8—N4—Zn2105.45 (18)C9—C10—H10A108.3
C8—N4—H4107.5C9—C10—H10B108.3
C8—N4—C9112.7 (3)C6ii—C10—H10A108.3
C11—O7—H7107.3C6ii—C10—H10B108.3
Zn1—N2—H2107.8H10A—C10—H10B107.4
C5—N2—Zn1105.34 (18)N1—C2—H2A109.2
C5—N2—H2107.8N1—C2—H2B109.2
C5—N2—C4113.4 (3)N1—C2—C3112.1 (2)
C4—N2—Zn1114.27 (19)H2A—C2—H2B107.9
C4—N2—H2107.8C3—C2—H2A109.2
Zn1—N1—H1106.5C3—C2—H2B109.2
C1—N1—Zn1105.80 (17)N2—C4—H4A109.3
C1—N1—H1106.5N2—C4—H4B109.3
C2—N1—Zn1116.65 (18)N2—C4—C3111.8 (3)
C2—N1—H1106.5H4A—C4—H4B107.9
C2—N1—C1114.1 (2)C3—C4—H4A109.3
O3—N5—O1118.6 (2)C3—C4—H4B109.3
O3—N5—O2120.8 (2)C2—C3—H3A108.2
O2—N5—O1120.6 (2)C2—C3—H3B108.2
O6—N6—O4119.8 (3)C4—C3—C2116.2 (2)
O6—N6—O5120.3 (2)C4—C3—H3A108.2
O5—N6—O4119.9 (2)C4—C3—H3B108.2
Zn2—N3—H3106.8H3A—C3—H3B107.4
C6—N3—Zn2115.81 (18)O7—C11—H11A109.5
C6—N3—H3106.8O7—C11—H11B109.5
C6—N3—C7114.4 (2)O7—C11—H11C109.5
C7—N3—Zn2105.63 (17)H11A—C11—H11B109.5
C7—N3—H3106.8H11A—C11—H11C109.5
N4—C9—H9A109.2H11B—C11—H11C109.5
N4—C9—H9B109.2
Zn1—O1—N5—O3149.2 (2)N4—C9—C10—C6ii71.3 (3)
Zn1—O1—N5—O230.9 (4)N4—C8—C7—N357.2 (3)
Zn1—N2—C5—C1i42.5 (2)N2—C4—C3—C273.0 (3)
Zn1—N2—C4—C357.8 (3)N1—C2—C3—C470.0 (3)
Zn1—N1—C1—C5i41.5 (2)C9—N4—C8—C7169.3 (2)
Zn1—N1—C2—C353.7 (3)C5—N2—C4—C3178.6 (2)
Zn2—O4—N6—O6164.3 (2)C8—N4—C9—C10177.6 (2)
Zn2—O4—N6—O516.1 (4)C6—N3—C7—C8168.6 (2)
Zn2—N4—C9—C1056.1 (3)C7—N3—C6—C10ii179.3 (2)
Zn2—N4—C8—C742.1 (2)C1—N1—C2—C3177.7 (2)
Zn2—N3—C6—C10ii56.1 (3)C2—N1—C1—C5i171.1 (2)
Zn2—N3—C7—C840.1 (2)C4—N2—C5—C1i168.2 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O21.002.082.995 (3)151
N2—H2···O5ii1.002.603.497 (4)149
N2—H2···O6ii1.002.143.036 (4)148
N3—H3···O51.002.062.931 (3)145
N4—H4···O31.002.062.977 (3)152
O7—H7···O10.862.383.144 (3)148
O7—H7···O30.862.182.966 (3)151
Symmetry code: (ii) x+1, y+1, z+1.
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP21K15244 to K. Kato; grant No. JP21K06455 to H. Kurosaki; grant No. JP20K07210 to T. Koike).

References

First citationBosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1990). J. Mol. Struct. 220, 1–12.  CSD CrossRef CAS Web of Science Google Scholar
First citationHunter, T. M., Paisey, S. J., Park, H., Cleghorn, L., Parkin, A., Parsons, S. & Sadler, P. J. (2004). J. Inorg. Biochem. 98, 713–719.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationIchimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data, 6, x210397.  Google Scholar
First citationKinoshita-Kikuta, E., Ichimaru, Y., Yamano, Y., Kato, K., Kurosaki, H., Kinoshita, E. & Koike, T. (2021). Bull. Chem. Soc. Jpn, 94, 2670–2677.  CAS Google Scholar
First citationOba, Y. & Mochida, T. (2015). Polyhedron, 99, 275–279.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrasad, L., Nyburg, S. C. & McAuley, A. (1987). Acta Cryst. C43, 1038–1042.  CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds