metal-organic compounds
Bis(nitrato-κO)(1,4,8,11-tetraazacyclotetradecane-κ4N)zinc(II) methanol monosolvate
aFaculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan, bCollege of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Nagoya 463-8521, Japan, and cDepartment of Functional Molecular Science, Institute of Biochemical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
*Correspondence e-mail: kato-k@kinjo-u.ac.jp, h-kurosaki@kinjo-u.ac.jp
The two ZnII atoms in the of the title complex, [Zn(NO3)2(C10H24N4)]·CH3OH, have a distorted octahedral coordination sphere, defined by 1,4,8,11-tetraazacyclotetradecane (cyclam) N atoms in the equatorial plane and nitrate O atoms in the axial sites. The conformation of the cyclam is trans-III (R, R, S, S), which is typical for metal–cyclam complexes. Nitrate anions are involved in intra- and intermolecular hydrogen bonding with the N–H groups of the ZnII–cyclam unit. Together with the methanol solvent molecule, the hydrogen-bonding network connects the ZnII–cyclam units into ribbons running parallel to the a axis.
Keywords: crystal structure; zinc(II) complex; cyclam.
CCDC reference: 2193206
Structure description
Cyclam is a well-known macrocyclic polyamine and water-soluble ligand that can strongly chelate transition-metal cations. As a result, various cyclam derivatives and metal complexes have been synthesized, and their crystal structures have been described. The
of the title zinc nitrate complex, on the other hand, is the first reported in this context. We anticipate that, in future, this structural property can be used in the development of new functional materials.The II(C10H24N4 = cyclam)](NO3)2·CH3OH, comprises two half-ZnII–cyclam complexes that are centered on Zn1 and Zn2, as well as two nitrate anions that coordinate to each ZnII atom, and a methanol solvent molecule. The two half-ZnII–cyclam complexes are completed by inversion symmetry. Each ZnII atom is coordinated in a planar fashion by the four N atoms of the cyclam ligand. N1, N2, N1i, and N2i [symmetry code: (i) 2 − x, 1 − y, 1 − z] define the cyclam plane around Zn1, and nitrate atoms O1 and O1i coordinate at the axial positions of the resulting distorted octahedron (Fig. 1). For Zn2, the equatorial plane is defined by N3, N4, N3ii, and N4ii [symmetry code: (ii) 1 − x, 1 − y, 1 − z], and the axially bound O atoms by O4 and O4ii (Fig. 2). The coordination environments of the two central ZnII atoms are similar to that of Co(cyclam)Cl2 (Oba & Mochida, 2015). The conformation of the cyclam structure is trans-III (R, R, S, S) type, which is the most energetically favorable conformation (Bosnich et al., 1965). The conformation is generally consistent with previous reports for metal–cyclam complexes such as CuII (Emsley et al., 1990), NiII (Prasad et al., 1987), and PdII (Hunter et al., 2004). The Zn1—O1 and Zn2—O4 bond lengths are 2.3045 (18) and 2.3233 (19) Å, respectively, which is longer than in the ZnII–nitrate ion (ca 2.0 Å; Ichimaru et al., 2021; Kinoshita-Kikuta et al., 2021), owing to the hydrogen-bonding network detailed below. The N1—Zn1—O1 and N2—Zn1—O1 bond angles are 92.98 (8)° and 89.14 (9)°, and N3—Zn2—O4 and N4—Zn2—O4 are 91.98 (8) and 87.95 (9)°. These angles imply that both ZnII atoms are on the centroid of the plane created by the four cyclam N atoms. However, the two cyclam rings chelating Zn1 and Zn2 have different asymmetric structures: N1—H1 and N2—H2 have syn-configurations, while N3—H3 and N4—H4 have anti-configurations.
of the title complex, [ZnIn addition to the methanol solvate molecule, two nitrate anions are involved in the formation of an inter- and intramolecular hydrogen-bonding network. The nitrate anion coordinating to Zn1 forms an intramolecular hydrogen bond (O2⋯H1—N1) and an intermolecular hydrogen-bond (O3⋯H4—N4) (Fig. 2). N2—H2 and N3—H3 create hydrogen bonds with the other nitrate ion. As a result, the hydrogen-bond network includes all N-bound H atoms. Table 1 summarizes numerical data of the hydrogen bonding. In the crystal packing, the different moieties form ribbons parallel to the a axis through the hydrogen-bonding network (Fig. 3). The distances between Zn atoms parallel to the a axis, for example, Zn1⋯Zn2, are 7.6706 (3) Å (Fig. 3). The distances between Zn atoms in neighboring ribbons, for example, Zn1⋯Zn1iii [symmetry code: (iii) x, − y, − + z], are 7.93804 (18) Å (Figs. 3 and 4). The nitrate ions coordinating to Zn1 and Zn2 have an N⋯N distance of 3.409 (4) Å (Fig. 3).
Synthesis and crystallization
Under an argon atmosphere, zinc nitrate hexahydrate (1.5 g, 5 mmol), dissolved in dry methanol (5 ml), was added to a 20 ml dry methanolic solution of cyclam (1.0 g, 5 mmol). The reaction mixture was agitated at room temperature for 2 h before the solvent was evaporated to get a colorless solid. To obtain colorless crystals appropriate for X-ray crystallography, the crude product was dissolved in hot methanol, filtered through a cellulose filter (0.45 µm pore size) and cooled to room temperature (yield 1.7 g, 87%).
Refinement
Table 2 summarizes crystal data, data collection, and structure details.
Structural data
CCDC reference: 2193206
https://doi.org/10.1107/S2414314622008549/wm4171sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622008549/wm4171Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2022); cell
CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Zn(NO3)2(C10H24N4)]·CH4O | F(000) = 888 |
Mr = 421.76 | Dx = 1.576 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 15.3412 (5) Å | Cell parameters from 4300 reflections |
b = 9.4306 (3) Å | θ = 3.0–68.2° |
c = 12.7716 (4) Å | µ = 2.36 mm−1 |
β = 105.864 (4)° | T = 100 K |
V = 1777.38 (10) Å3 | Block, clear colourless |
Z = 4 | 0.54 × 0.19 × 0.09 mm |
Rigaku XtaLAB Synergy-i diffractometer | 2568 reflections with I > 2σ(I) |
Detector resolution: 10.0 pixels mm-1 | Rint = 0.078 |
ω scans | θmax = 68.3°, θmin = 3.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | h = −11→18 |
Tmin = 0.356, Tmax = 1.000 | k = −11→11 |
9899 measured reflections | l = −15→15 |
3230 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.063 | H-atom parameters constrained |
wR(F2) = 0.188 | w = 1/[σ2(Fo2) + (0.1278P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
3230 reflections | Δρmax = 1.01 e Å−3 |
231 parameters | Δρmin = −0.92 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All hydrogen atoms were placed using a geometrical computation. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 1.000000 | 0.500000 | 0.500000 | 0.0174 (3) | |
Zn2 | 0.500000 | 0.500000 | 0.500000 | 0.0210 (3) | |
O1 | 0.90165 (12) | 0.6144 (2) | 0.57953 (17) | 0.0228 (5) | |
O4 | 0.41074 (12) | 0.4107 (2) | 0.60524 (17) | 0.0240 (5) | |
O3 | 0.77063 (11) | 0.6485 (2) | 0.60726 (18) | 0.0285 (6) | |
O2 | 0.83570 (14) | 0.4444 (3) | 0.6451 (2) | 0.0327 (6) | |
N4 | 0.60866 (19) | 0.5006 (2) | 0.6400 (3) | 0.0180 (7) | |
H4 | 0.664921 | 0.519254 | 0.617093 | 0.022* | |
O7 | 0.81007 (13) | 0.9063 (2) | 0.4951 (2) | 0.0361 (6) | |
H7 | 0.812347 | 0.819336 | 0.516078 | 0.043* | |
O6 | 0.28873 (13) | 0.3907 (2) | 0.6578 (2) | 0.0392 (7) | |
O5 | 0.31960 (14) | 0.5903 (2) | 0.5959 (2) | 0.0373 (7) | |
N2 | 0.89281 (18) | 0.4685 (3) | 0.3604 (2) | 0.0212 (6) | |
H2 | 0.835219 | 0.491792 | 0.379058 | 0.025* | |
N1 | 0.98381 (15) | 0.3061 (3) | 0.5702 (2) | 0.0214 (6) | |
H1 | 0.933487 | 0.318926 | 0.605250 | 0.026* | |
N5 | 0.83550 (14) | 0.5680 (3) | 0.6110 (2) | 0.0174 (6) | |
N6 | 0.33879 (16) | 0.4640 (3) | 0.6198 (2) | 0.0203 (6) | |
N3 | 0.47857 (15) | 0.7086 (2) | 0.5418 (2) | 0.0206 (6) | |
H3 | 0.428178 | 0.705969 | 0.577575 | 0.025* | |
C9 | 0.62304 (18) | 0.3673 (3) | 0.7042 (2) | 0.0228 (7) | |
H9A | 0.570572 | 0.350872 | 0.733703 | 0.027* | |
H9B | 0.677734 | 0.377161 | 0.766423 | 0.027* | |
C5 | 0.90590 (18) | 0.5758 (3) | 0.2809 (2) | 0.0273 (7) | |
H5A | 0.849116 | 0.587691 | 0.221956 | 0.033* | |
H5B | 0.954085 | 0.544320 | 0.248060 | 0.033* | |
C8 | 0.59354 (18) | 0.6245 (3) | 0.7040 (2) | 0.0241 (7) | |
H8A | 0.650488 | 0.649443 | 0.759304 | 0.029* | |
H8B | 0.547153 | 0.601449 | 0.742138 | 0.029* | |
C6 | 0.45112 (18) | 0.8098 (3) | 0.4500 (2) | 0.0243 (7) | |
H6A | 0.501178 | 0.820272 | 0.415422 | 0.029* | |
H6B | 0.439699 | 0.903787 | 0.478126 | 0.029* | |
C7 | 0.56169 (17) | 0.7496 (3) | 0.6268 (2) | 0.0242 (7) | |
H7A | 0.548869 | 0.832283 | 0.668051 | 0.029* | |
H7B | 0.609813 | 0.776730 | 0.592444 | 0.029* | |
C1 | 1.06750 (19) | 0.2846 (3) | 0.6595 (3) | 0.0286 (7) | |
H1A | 1.116932 | 0.251144 | 0.629517 | 0.034* | |
H1B | 1.057015 | 0.211822 | 0.710621 | 0.034* | |
C10 | 0.63455 (18) | 0.2400 (3) | 0.6356 (2) | 0.0243 (7) | |
H10A | 0.658080 | 0.159721 | 0.685250 | 0.029* | |
H10B | 0.681107 | 0.263706 | 0.597912 | 0.029* | |
C2 | 0.95855 (19) | 0.1838 (3) | 0.4955 (3) | 0.0294 (8) | |
H2A | 0.947341 | 0.100243 | 0.536938 | 0.035* | |
H2B | 1.009659 | 0.160697 | 0.465025 | 0.035* | |
C4 | 0.88514 (18) | 0.3207 (3) | 0.3175 (3) | 0.0298 (8) | |
H4A | 0.940106 | 0.297254 | 0.294672 | 0.036* | |
H4B | 0.832302 | 0.314258 | 0.252673 | 0.036* | |
C3 | 0.87418 (19) | 0.2135 (3) | 0.4024 (3) | 0.0316 (8) | |
H3A | 0.853153 | 0.122895 | 0.364889 | 0.038* | |
H3B | 0.825874 | 0.247888 | 0.433994 | 0.038* | |
C11 | 0.7259 (2) | 0.9615 (4) | 0.5002 (3) | 0.0329 (7) | |
H11A | 0.676872 | 0.901659 | 0.457126 | 0.049* | |
H11B | 0.718800 | 1.058159 | 0.470901 | 0.049* | |
H11C | 0.723491 | 0.963070 | 0.576083 | 0.049* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0152 (4) | 0.0120 (4) | 0.0215 (4) | −0.00113 (18) | −0.0010 (3) | 0.0007 (2) |
Zn2 | 0.0191 (4) | 0.0141 (5) | 0.0245 (4) | 0.00029 (19) | −0.0030 (3) | −0.0013 (2) |
O1 | 0.0144 (9) | 0.0192 (11) | 0.0366 (12) | −0.0024 (8) | 0.0099 (8) | −0.0047 (9) |
O4 | 0.0131 (9) | 0.0232 (12) | 0.0364 (11) | 0.0042 (8) | 0.0080 (8) | 0.0045 (10) |
O3 | 0.0145 (9) | 0.0193 (12) | 0.0517 (14) | 0.0038 (8) | 0.0093 (9) | −0.0010 (10) |
O2 | 0.0258 (11) | 0.0225 (13) | 0.0545 (16) | 0.0051 (10) | 0.0188 (11) | 0.0139 (12) |
N4 | 0.0137 (12) | 0.0149 (15) | 0.0229 (15) | −0.0021 (8) | 0.0010 (11) | −0.0007 (9) |
O7 | 0.0321 (11) | 0.0227 (13) | 0.0584 (16) | 0.0018 (9) | 0.0207 (11) | 0.0021 (12) |
O6 | 0.0214 (10) | 0.0341 (14) | 0.0685 (17) | 0.0064 (10) | 0.0229 (11) | 0.0227 (13) |
O5 | 0.0291 (11) | 0.0165 (13) | 0.0733 (19) | 0.0070 (10) | 0.0258 (12) | 0.0078 (12) |
N2 | 0.0146 (12) | 0.0234 (13) | 0.0230 (15) | 0.0013 (11) | 0.0006 (10) | −0.0039 (12) |
N1 | 0.0165 (11) | 0.0156 (13) | 0.0339 (14) | 0.0035 (9) | 0.0102 (10) | 0.0027 (11) |
N5 | 0.0095 (10) | 0.0179 (14) | 0.0224 (12) | −0.0002 (10) | 0.0002 (9) | −0.0036 (11) |
N6 | 0.0106 (11) | 0.0263 (15) | 0.0211 (13) | 0.0018 (12) | −0.0007 (9) | 0.0019 (12) |
N3 | 0.0162 (11) | 0.0163 (13) | 0.0283 (13) | −0.0028 (9) | 0.0045 (9) | −0.0011 (10) |
C9 | 0.0156 (12) | 0.0218 (17) | 0.0293 (15) | 0.0014 (12) | 0.0036 (11) | 0.0049 (13) |
C5 | 0.0182 (13) | 0.039 (2) | 0.0228 (15) | 0.0049 (13) | 0.0017 (11) | 0.0058 (14) |
C8 | 0.0189 (13) | 0.0247 (18) | 0.0267 (15) | −0.0022 (12) | 0.0030 (11) | −0.0063 (14) |
C6 | 0.0166 (13) | 0.0168 (15) | 0.0376 (17) | −0.0011 (11) | 0.0042 (11) | 0.0004 (14) |
C7 | 0.0183 (13) | 0.0202 (16) | 0.0319 (16) | −0.0049 (12) | 0.0030 (11) | −0.0059 (14) |
C1 | 0.0208 (14) | 0.0287 (19) | 0.0354 (18) | 0.0094 (13) | 0.0059 (12) | 0.0119 (15) |
C10 | 0.0172 (12) | 0.0186 (16) | 0.0331 (16) | 0.0021 (12) | 0.0001 (11) | 0.0036 (14) |
C2 | 0.0238 (15) | 0.0110 (15) | 0.055 (2) | −0.0010 (12) | 0.0142 (14) | −0.0033 (14) |
C4 | 0.0153 (13) | 0.036 (2) | 0.0357 (18) | −0.0025 (14) | 0.0035 (12) | −0.0174 (16) |
C3 | 0.0178 (13) | 0.0199 (17) | 0.057 (2) | −0.0060 (12) | 0.0104 (13) | −0.0149 (15) |
C11 | 0.0259 (13) | 0.0356 (19) | 0.0372 (19) | 0.0017 (17) | 0.0084 (12) | 0.0016 (16) |
Zn1—O1 | 2.3045 (18) | N3—C7 | 1.483 (3) |
Zn1—O1i | 2.3045 (18) | C9—H9A | 0.9900 |
Zn1—N2 | 2.090 (3) | C9—H9B | 0.9900 |
Zn1—N2i | 2.090 (3) | C9—C10 | 1.524 (4) |
Zn1—N1i | 2.081 (2) | C5—H5A | 0.9900 |
Zn1—N1 | 2.081 (2) | C5—H5B | 0.9900 |
Zn2—O4ii | 2.3233 (19) | C5—C1i | 1.520 (4) |
Zn2—O4 | 2.3232 (19) | C8—H8A | 0.9900 |
Zn2—N4ii | 2.085 (3) | C8—H8B | 0.9900 |
Zn2—N4 | 2.085 (3) | C8—C7 | 1.530 (4) |
Zn2—N3 | 2.087 (2) | C6—H6A | 0.9900 |
Zn2—N3ii | 2.087 (2) | C6—H6B | 0.9900 |
O1—N5 | 1.267 (3) | C6—C10ii | 1.535 (4) |
O4—N6 | 1.272 (3) | C7—H7A | 0.9900 |
O3—N5 | 1.242 (3) | C7—H7B | 0.9900 |
O2—N5 | 1.244 (4) | C1—H1A | 0.9900 |
N4—H4 | 1.0000 | C1—H1B | 0.9900 |
N4—C9 | 1.484 (4) | C10—H10A | 0.9900 |
N4—C8 | 1.480 (4) | C10—H10B | 0.9900 |
O7—H7 | 0.8603 | C2—H2A | 0.9900 |
O7—C11 | 1.410 (4) | C2—H2B | 0.9900 |
O6—N6 | 1.228 (3) | C2—C3 | 1.525 (4) |
O5—N6 | 1.245 (4) | C4—H4A | 0.9900 |
N2—H2 | 1.0000 | C4—H4B | 0.9900 |
N2—C5 | 1.485 (4) | C4—C3 | 1.525 (5) |
N2—C4 | 1.490 (4) | C3—H3A | 0.9900 |
N1—H1 | 1.0000 | C3—H3B | 0.9900 |
N1—C1 | 1.480 (4) | C11—H11A | 0.9800 |
N1—C2 | 1.480 (4) | C11—H11B | 0.9800 |
N3—H3 | 1.0000 | C11—H11C | 0.9800 |
N3—C6 | 1.481 (4) | ||
O1i—Zn1—O1 | 180.0 | N4—C9—C10 | 111.9 (2) |
N2i—Zn1—O1 | 90.86 (9) | H9A—C9—H9B | 107.9 |
N2—Zn1—O1i | 90.86 (9) | C10—C9—H9A | 109.2 |
N2—Zn1—O1 | 89.14 (9) | C10—C9—H9B | 109.2 |
N2i—Zn1—O1i | 89.14 (9) | N2—C5—H5A | 110.0 |
N2—Zn1—N2i | 180.00 (15) | N2—C5—H5B | 110.0 |
N1i—Zn1—O1i | 92.98 (8) | N2—C5—C1i | 108.4 (2) |
N1i—Zn1—O1 | 87.02 (8) | H5A—C5—H5B | 108.4 |
N1—Zn1—O1i | 87.02 (8) | C1i—C5—H5A | 110.0 |
N1—Zn1—O1 | 92.98 (8) | C1i—C5—H5B | 110.0 |
N1i—Zn1—N2i | 94.81 (10) | N4—C8—H8A | 109.9 |
N1—Zn1—N2i | 85.19 (10) | N4—C8—H8B | 109.9 |
N1i—Zn1—N2 | 85.19 (10) | N4—C8—C7 | 108.9 (2) |
N1—Zn1—N2 | 94.81 (10) | H8A—C8—H8B | 108.3 |
N1—Zn1—N1i | 180.00 (12) | C7—C8—H8A | 109.9 |
O4—Zn2—O4ii | 180.0 | C7—C8—H8B | 109.9 |
N4ii—Zn2—O4ii | 87.95 (9) | N3—C6—H6A | 109.3 |
N4—Zn2—O4ii | 92.05 (9) | N3—C6—H6B | 109.3 |
N4ii—Zn2—O4 | 92.05 (9) | N3—C6—C10ii | 111.7 (2) |
N4—Zn2—O4 | 87.95 (9) | H6A—C6—H6B | 107.9 |
N4ii—Zn2—N4 | 180.0 | C10ii—C6—H6A | 109.3 |
N4ii—Zn2—N3 | 94.42 (9) | C10ii—C6—H6B | 109.3 |
N4—Zn2—N3ii | 94.42 (9) | N3—C7—C8 | 109.2 (2) |
N4ii—Zn2—N3ii | 85.58 (9) | N3—C7—H7A | 109.8 |
N4—Zn2—N3 | 85.58 (9) | N3—C7—H7B | 109.8 |
N3ii—Zn2—O4 | 88.02 (8) | C8—C7—H7A | 109.8 |
N3—Zn2—O4 | 91.98 (8) | C8—C7—H7B | 109.8 |
N3ii—Zn2—O4ii | 91.98 (8) | H7A—C7—H7B | 108.3 |
N3—Zn2—O4ii | 88.02 (8) | N1—C1—C5i | 108.9 (2) |
N3—Zn2—N3ii | 180.0 | N1—C1—H1A | 109.9 |
N5—O1—Zn1 | 130.97 (17) | N1—C1—H1B | 109.9 |
N6—O4—Zn2 | 127.85 (18) | C5i—C1—H1A | 109.9 |
Zn2—N4—H4 | 107.5 | C5i—C1—H1B | 109.9 |
C9—N4—Zn2 | 115.77 (18) | H1A—C1—H1B | 108.3 |
C9—N4—H4 | 107.5 | C9—C10—C6ii | 116.0 (2) |
C8—N4—Zn2 | 105.45 (18) | C9—C10—H10A | 108.3 |
C8—N4—H4 | 107.5 | C9—C10—H10B | 108.3 |
C8—N4—C9 | 112.7 (3) | C6ii—C10—H10A | 108.3 |
C11—O7—H7 | 107.3 | C6ii—C10—H10B | 108.3 |
Zn1—N2—H2 | 107.8 | H10A—C10—H10B | 107.4 |
C5—N2—Zn1 | 105.34 (18) | N1—C2—H2A | 109.2 |
C5—N2—H2 | 107.8 | N1—C2—H2B | 109.2 |
C5—N2—C4 | 113.4 (3) | N1—C2—C3 | 112.1 (2) |
C4—N2—Zn1 | 114.27 (19) | H2A—C2—H2B | 107.9 |
C4—N2—H2 | 107.8 | C3—C2—H2A | 109.2 |
Zn1—N1—H1 | 106.5 | C3—C2—H2B | 109.2 |
C1—N1—Zn1 | 105.80 (17) | N2—C4—H4A | 109.3 |
C1—N1—H1 | 106.5 | N2—C4—H4B | 109.3 |
C2—N1—Zn1 | 116.65 (18) | N2—C4—C3 | 111.8 (3) |
C2—N1—H1 | 106.5 | H4A—C4—H4B | 107.9 |
C2—N1—C1 | 114.1 (2) | C3—C4—H4A | 109.3 |
O3—N5—O1 | 118.6 (2) | C3—C4—H4B | 109.3 |
O3—N5—O2 | 120.8 (2) | C2—C3—H3A | 108.2 |
O2—N5—O1 | 120.6 (2) | C2—C3—H3B | 108.2 |
O6—N6—O4 | 119.8 (3) | C4—C3—C2 | 116.2 (2) |
O6—N6—O5 | 120.3 (2) | C4—C3—H3A | 108.2 |
O5—N6—O4 | 119.9 (2) | C4—C3—H3B | 108.2 |
Zn2—N3—H3 | 106.8 | H3A—C3—H3B | 107.4 |
C6—N3—Zn2 | 115.81 (18) | O7—C11—H11A | 109.5 |
C6—N3—H3 | 106.8 | O7—C11—H11B | 109.5 |
C6—N3—C7 | 114.4 (2) | O7—C11—H11C | 109.5 |
C7—N3—Zn2 | 105.63 (17) | H11A—C11—H11B | 109.5 |
C7—N3—H3 | 106.8 | H11A—C11—H11C | 109.5 |
N4—C9—H9A | 109.2 | H11B—C11—H11C | 109.5 |
N4—C9—H9B | 109.2 | ||
Zn1—O1—N5—O3 | −149.2 (2) | N4—C9—C10—C6ii | −71.3 (3) |
Zn1—O1—N5—O2 | 30.9 (4) | N4—C8—C7—N3 | 57.2 (3) |
Zn1—N2—C5—C1i | −42.5 (2) | N2—C4—C3—C2 | −73.0 (3) |
Zn1—N2—C4—C3 | 57.8 (3) | N1—C2—C3—C4 | 70.0 (3) |
Zn1—N1—C1—C5i | 41.5 (2) | C9—N4—C8—C7 | −169.3 (2) |
Zn1—N1—C2—C3 | −53.7 (3) | C5—N2—C4—C3 | 178.6 (2) |
Zn2—O4—N6—O6 | 164.3 (2) | C8—N4—C9—C10 | 177.6 (2) |
Zn2—O4—N6—O5 | −16.1 (4) | C6—N3—C7—C8 | −168.6 (2) |
Zn2—N4—C9—C10 | 56.1 (3) | C7—N3—C6—C10ii | 179.3 (2) |
Zn2—N4—C8—C7 | −42.1 (2) | C1—N1—C2—C3 | −177.7 (2) |
Zn2—N3—C6—C10ii | 56.1 (3) | C2—N1—C1—C5i | 171.1 (2) |
Zn2—N3—C7—C8 | −40.1 (2) | C4—N2—C5—C1i | −168.2 (2) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 1.00 | 2.08 | 2.995 (3) | 151 |
N2—H2···O5ii | 1.00 | 2.60 | 3.497 (4) | 149 |
N2—H2···O6ii | 1.00 | 2.14 | 3.036 (4) | 148 |
N3—H3···O5 | 1.00 | 2.06 | 2.931 (3) | 145 |
N4—H4···O3 | 1.00 | 2.06 | 2.977 (3) | 152 |
O7—H7···O1 | 0.86 | 2.38 | 3.144 (3) | 148 |
O7—H7···O3 | 0.86 | 2.18 | 2.966 (3) | 151 |
Symmetry code: (ii) −x+1, −y+1, −z+1. |
Funding information
Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. JP21K15244 to K. Kato; grant No. JP21K06455 to H. Kurosaki; grant No. JP20K07210 to T. Koike).
References
Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102–1108. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1990). J. Mol. Struct. 220, 1–12. CSD CrossRef CAS Web of Science Google Scholar
Hunter, T. M., Paisey, S. J., Park, H., Cleghorn, L., Parkin, A., Parsons, S. & Sadler, P. J. (2004). J. Inorg. Biochem. 98, 713–719. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ichimaru, Y., Kato, K., Kurosaki, H., Fujioka, H., Sakai, M., Yamaguchi, Y., Wanchun, J., Sugiura, K., Imai, M. & Koike, T. (2021). IUCr Data, 6, x210397. Google Scholar
Kinoshita-Kikuta, E., Ichimaru, Y., Yamano, Y., Kato, K., Kurosaki, H., Kinoshita, E. & Koike, T. (2021). Bull. Chem. Soc. Jpn, 94, 2670–2677. CAS Google Scholar
Oba, Y. & Mochida, T. (2015). Polyhedron, 99, 275–279. Web of Science CSD CrossRef CAS Google Scholar
Prasad, L., Nyburg, S. C. & McAuley, A. (1987). Acta Cryst. C43, 1038–1042. CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.