metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[(benzyl­di­phenyl­phosphine-κP)silver(I)]-μ-nitrato-κ2O:O′-[(benzyl­di­phenyl­phosphine-κP)silver(I)]-μ-nitrato-κ4O,O′:O′,O′′]

crossmark logo

aDepartment of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, 2006, Johannesburg, South Africa, and bDepartment of Chemistry, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 27 July 2022; accepted 1 August 2022; online 12 August 2022)

The structure of the title complex, [Ag2(NO3)2(C19H17P)2]n, reveals a chain emanating from the coordination of one phosphine ligand to each silver(I) cation, as well as the bis-monodentate coordination of a bridging nitrato ligand (per Ag atom) and the bis-bidentate coordination of another bridging nitrato ligand (per Ag atom). The distorted four-coordinate Ag atoms are characterized by bonding angles that notably deviate from the ideal tetra­hedral shape.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The solid-state mol­ecular structure of the title compound was established using single-crystal X-ray diffraction with data measured at 150 K. The complex crystallizes in the ortho­rhom­bic space group Pna21 with Z = 4. The asymmetric unit contains two unique silver atoms, each with one benzyl­diphenyl phosphine ligand coordinated with bond lengths Ag1—P1 = 2.3506 (19) and Ag2—P2 = 2.3612 (19) Å. As seen in Fig. 1[link], each of the four-coordinate silver atoms are heavily distorted with bond angles P1—Ag1—O4 [129.6 (2)°], O1—Ag1—O4 [88.5 (3)°], P2—Ag1—O2 [121.08 (15)°], P2—Ag2—O2 [121.08 (15)°], O2—Ag2—O6 [96.0 (3)°] and P2—Ag2—O6 [142.8 (3)°]. Two unique nitrato groups bridge alternating silver atoms to form a polymeric chain. One nitrato group bridges Ag1 and Ag2 via three oxygen atoms (O1 and O2 bind to Ag1, O2 and O3 binds to Ag2) in a bis-bidentate fashion. This results in a near co-planar bond angle of Ag1—O2—Ag2 = 170.3 (5)°. The second nitrato group connects Ag1 to another Ag2 atom in a bis-monodentate fashion using only two oxygen atoms (O4 bonds to Ag1 and O6 bonds to Ag2). Differences in the respective Ag—O bond lengths of the two different nitrato groups are observed to fall within shorter [2.295 (7)–2.406 (7) Å] and longer [2.460 (6)–2.635 (7) Å] ranges.

[Figure 1]
Figure 1
The mol­ecular structure of the asymmetric unit in the title compound showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.

The inorganic polymer packs in three dimensions as layers of one-dimensional ribbons when viewed along the b axis (Fig. 2[link]); the chain has glide symmetry. Furthermore, the aromatic rings of the phosphine ligands then overlap in an adjacent layer to form a hydro­phobic layer in between Ag—NO3-containing layers.

[Figure 2]
Figure 2
Perspective views along the (a) a and (b) b axes of the mol­ecular packing of the title compound.

Synthesis and crystallization

Benzyl­diphenyl­phosphine (1 mmol) was dissolved in aceto­nitrile (10 ml). Silver nitrate (1 mmol) was dissolved in aceto­nitrile (10 ml). In order to obtain the given 1:1 molar ratio, the solutions were mixed. The resulting solution was heated to 353 K for approximately 2 h. The solution was removed from the heat and left to slowly cool. During the process of the slow evaporation of the solvent, clear colorless crystals started to form.

Refinement

Experimental details including crystal data, data collection and structure refinement details are summarized in Table 1[link]. The highest calculated residual electron density peak is 2.51 e Å−3 and is located 0.99 Å from Ag2, which is attributed to the presence of the strong absorber (Ag), as well as imperfections in the absorption correction process.

Table 1
Experimental details

Crystal data
Chemical formula [Ag2(NO3)2(C19H17P)2]
Mr 892.35
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 150
a, b, c (Å) 18.0126 (3), 10.6251 (2), 19.2397 (3)
V3) 3682.20 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 9.75
Crystal size (mm) 0.21 × 0.15 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.665, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 53360, 7741, 7352
Rint 0.068
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.05
No. of reflections 7741
No. of parameters 451
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.51, −0.73
Absolute structure Flack x determined using 3276 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.009 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[(benzyldiphenylphosphine-κP)silver(I)]-µ-nitrato-κ2O:O'-[(benzyldiphenylphosphine-κP)silver(I)]-µ-nitrato-κ4O,O':O',O''] top
Crystal data top
[Ag2(NO3)2(C19H17P)2]Dx = 1.610 Mg m3
Mr = 892.35Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21Cell parameters from 34740 reflections
a = 18.0126 (3) Åθ = 4.6–78.2°
b = 10.6251 (2) ŵ = 9.75 mm1
c = 19.2397 (3) ÅT = 150 K
V = 3682.20 (11) Å3Block, colourless
Z = 40.21 × 0.14 × 0.12 mm
F(000) = 1792
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
7741 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source7352 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.068
Detector resolution: 10.0000 pixels mm-1θmax = 79.5°, θmin = 4.6°
ω scansh = 1822
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1313
Tmin = 0.665, Tmax = 1.000l = 2424
53360 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0747P)2 + 4.1236P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.05Δρmax = 2.51 e Å3
7741 reflectionsΔρmin = 0.73 e Å3
451 parametersAbsolute structure: Flack x determined using 3276 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.009 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.20763 (3)0.67285 (6)0.57043 (3)0.04561 (16)
Ag20.49695 (3)0.61627 (5)0.44110 (5)0.04420 (16)
P10.20175 (9)0.65229 (16)0.69195 (10)0.0293 (3)
P20.52210 (9)0.42137 (17)0.38704 (10)0.0337 (4)
O10.1529 (4)0.5950 (6)0.4664 (3)0.0513 (14)
O30.0623 (3)0.6720 (6)0.4045 (3)0.0487 (14)
O20.0958 (4)0.7638 (5)0.4994 (3)0.0461 (13)
N10.1028 (4)0.6746 (6)0.4568 (3)0.0374 (13)
C260.4647 (3)0.2889 (7)0.4155 (4)0.0321 (13)
N20.3496 (4)0.7223 (7)0.4926 (4)0.0487 (17)
O50.3505 (5)0.6175 (7)0.5180 (4)0.067 (2)
O40.2935 (4)0.7904 (7)0.5001 (5)0.068 (2)
O60.4046 (4)0.7612 (7)0.4599 (6)0.092 (3)
C10.2459 (4)0.5121 (6)0.7253 (4)0.0372 (15)
C140.0614 (3)0.5503 (8)0.6926 (4)0.0365 (15)
C310.4020 (4)0.3152 (7)0.4557 (4)0.0384 (15)
H310.39170.39890.47010.046*
C270.4797 (4)0.1673 (7)0.3947 (4)0.0355 (14)
H270.52170.15030.36650.043*
C190.0502 (4)0.4320 (8)0.7222 (5)0.0465 (19)
H190.07050.41350.76660.056*
C370.6669 (5)0.2182 (9)0.5650 (6)0.0526 (19)
H370.66260.13960.58830.063*
C90.3472 (5)0.9341 (9)0.7401 (5)0.054 (2)
H90.38650.97660.71700.065*
C110.2715 (5)0.9051 (8)0.8408 (5)0.0471 (18)
H110.25920.92860.88710.057*
C280.4326 (4)0.0685 (7)0.4153 (4)0.0395 (16)
H280.44360.01570.40230.047*
C350.7050 (5)0.4361 (9)0.5645 (6)0.052 (2)
H350.72820.50520.58710.062*
C130.1073 (4)0.6497 (7)0.7280 (4)0.0360 (14)
H13A0.10960.63220.77850.043*
H13B0.08370.73300.72150.043*
C330.6447 (4)0.3482 (7)0.4637 (4)0.0355 (15)
C100.3299 (6)0.9636 (8)0.8070 (6)0.055 (2)
H100.35831.02530.83080.066*
C70.2484 (4)0.7797 (7)0.7387 (4)0.0337 (14)
C120.2310 (5)0.8122 (8)0.8074 (4)0.0411 (16)
H120.19170.77070.83090.049*
C340.6760 (4)0.4487 (8)0.4988 (4)0.0402 (16)
H340.67740.52880.47680.048*
C150.0299 (5)0.5748 (11)0.6288 (5)0.054 (2)
H150.03660.65540.60840.065*
C380.6402 (4)0.2314 (9)0.4981 (5)0.0477 (19)
H380.61860.16120.47510.057*
C360.6994 (5)0.3173 (10)0.5976 (5)0.057 (2)
H360.71860.30700.64320.069*
C180.0101 (5)0.3420 (10)0.6875 (8)0.062 (3)
H180.00250.26190.70820.074*
C300.3549 (4)0.2173 (9)0.4743 (5)0.0460 (18)
H300.31160.23470.50080.055*
C60.2349 (5)0.4681 (8)0.7926 (5)0.051 (2)
H60.20100.50800.82330.061*
C290.3703 (4)0.0948 (8)0.4548 (4)0.0440 (18)
H290.33800.02860.46850.053*
C80.3063 (5)0.8403 (8)0.7055 (5)0.0463 (19)
H80.31860.81840.65900.056*
C230.4602 (7)0.4667 (12)0.1562 (6)0.072 (3)
H230.44680.48010.10910.086*
C200.5020 (4)0.4340 (7)0.2941 (4)0.0406 (17)
C20.2970 (5)0.4527 (9)0.6817 (6)0.055 (2)
H20.30460.48320.63580.066*
C240.4162 (8)0.5068 (11)0.2077 (6)0.074 (3)
H240.36990.54450.19670.088*
C220.5270 (7)0.4042 (15)0.1732 (6)0.074 (4)
H220.55830.37330.13740.089*
C320.6180 (4)0.3627 (7)0.3912 (4)0.0366 (14)
H32A0.62080.28030.36730.044*
H32B0.65100.42200.36620.044*
C250.4366 (6)0.4945 (10)0.2755 (5)0.061 (2)
H250.40540.52800.31090.073*
C40.3264 (8)0.3052 (9)0.7701 (9)0.084 (4)
H40.35400.23450.78570.101*
C210.5468 (5)0.3881 (11)0.2420 (5)0.056 (2)
H210.59150.34520.25340.067*
C170.0197 (6)0.3671 (14)0.6222 (7)0.075 (4)
H170.04580.30380.59730.090*
C30.3366 (7)0.3495 (11)0.7051 (9)0.081 (4)
H30.37130.30960.67510.097*
C160.0106 (6)0.4861 (17)0.5941 (6)0.079 (4)
H160.03260.50620.55060.095*
C50.2766 (8)0.3612 (10)0.8135 (8)0.075 (4)
H50.26960.32790.85890.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0474 (3)0.0544 (3)0.0350 (2)0.0033 (2)0.0018 (2)0.0002 (3)
Ag20.0444 (3)0.0335 (3)0.0547 (3)0.0016 (2)0.0037 (2)0.0057 (3)
P10.0242 (7)0.0301 (8)0.0335 (8)0.0013 (6)0.0005 (6)0.0039 (7)
P20.0254 (7)0.0310 (8)0.0448 (9)0.0035 (7)0.0029 (7)0.0018 (7)
O10.059 (4)0.049 (3)0.045 (3)0.016 (3)0.001 (3)0.004 (3)
O30.041 (3)0.058 (4)0.048 (3)0.002 (3)0.002 (2)0.010 (3)
O20.061 (3)0.034 (3)0.044 (3)0.005 (2)0.002 (2)0.003 (2)
N10.037 (3)0.034 (3)0.041 (3)0.004 (2)0.002 (2)0.006 (2)
C260.026 (3)0.029 (3)0.041 (4)0.002 (2)0.001 (3)0.007 (3)
N20.038 (3)0.038 (4)0.069 (5)0.001 (3)0.020 (3)0.004 (3)
O50.072 (5)0.054 (4)0.074 (5)0.020 (3)0.023 (4)0.015 (3)
O40.060 (4)0.050 (4)0.092 (6)0.016 (3)0.035 (4)0.017 (4)
O60.068 (5)0.045 (4)0.163 (10)0.003 (3)0.071 (6)0.003 (5)
C10.030 (3)0.023 (3)0.058 (4)0.001 (2)0.012 (3)0.008 (3)
C140.022 (3)0.052 (4)0.036 (3)0.004 (3)0.004 (3)0.008 (3)
C310.032 (3)0.038 (4)0.045 (4)0.001 (3)0.001 (3)0.002 (3)
C270.030 (3)0.037 (4)0.039 (4)0.006 (3)0.000 (3)0.006 (3)
C190.031 (3)0.045 (4)0.063 (5)0.002 (3)0.004 (3)0.009 (4)
C370.044 (4)0.058 (5)0.055 (5)0.010 (4)0.005 (4)0.011 (5)
C90.054 (5)0.042 (4)0.067 (6)0.020 (4)0.004 (4)0.003 (4)
C110.060 (5)0.037 (4)0.044 (4)0.000 (4)0.011 (4)0.003 (3)
C280.039 (4)0.034 (4)0.046 (4)0.011 (3)0.010 (3)0.005 (3)
C350.043 (4)0.053 (5)0.059 (5)0.010 (4)0.001 (4)0.019 (5)
C130.030 (3)0.035 (4)0.042 (4)0.001 (3)0.001 (3)0.004 (3)
C330.023 (3)0.037 (3)0.047 (4)0.002 (3)0.003 (3)0.002 (3)
C100.062 (5)0.036 (4)0.068 (6)0.011 (4)0.020 (5)0.000 (4)
C70.034 (3)0.026 (3)0.041 (4)0.002 (2)0.006 (3)0.001 (3)
C120.046 (4)0.043 (4)0.035 (4)0.001 (3)0.009 (3)0.004 (3)
C340.031 (3)0.038 (4)0.052 (4)0.005 (3)0.003 (3)0.002 (3)
C150.036 (4)0.082 (6)0.043 (4)0.018 (4)0.002 (3)0.004 (5)
C380.036 (4)0.044 (4)0.063 (5)0.005 (3)0.003 (3)0.009 (4)
C360.051 (5)0.077 (7)0.044 (4)0.028 (5)0.003 (4)0.002 (4)
C180.037 (4)0.048 (5)0.102 (9)0.008 (4)0.000 (5)0.021 (6)
C300.027 (3)0.059 (5)0.052 (4)0.001 (3)0.006 (3)0.014 (4)
C60.055 (5)0.032 (4)0.066 (5)0.013 (3)0.026 (4)0.007 (4)
C290.037 (4)0.045 (4)0.050 (5)0.011 (3)0.010 (3)0.015 (3)
C80.045 (4)0.037 (4)0.057 (5)0.009 (3)0.003 (4)0.001 (4)
C230.078 (7)0.079 (8)0.059 (6)0.022 (6)0.022 (5)0.029 (6)
C200.046 (4)0.028 (4)0.048 (4)0.019 (3)0.005 (3)0.006 (3)
C20.038 (4)0.048 (5)0.079 (7)0.011 (3)0.015 (4)0.021 (5)
C240.095 (8)0.063 (6)0.064 (7)0.010 (6)0.020 (6)0.016 (6)
C220.060 (6)0.113 (10)0.050 (6)0.028 (6)0.014 (5)0.004 (6)
C320.030 (3)0.035 (3)0.045 (4)0.004 (3)0.003 (3)0.005 (3)
C250.077 (6)0.050 (5)0.054 (5)0.014 (5)0.021 (5)0.002 (4)
C40.088 (8)0.030 (4)0.135 (12)0.019 (5)0.056 (8)0.012 (6)
C210.036 (4)0.084 (7)0.049 (5)0.008 (4)0.001 (4)0.003 (4)
C170.046 (5)0.111 (10)0.070 (7)0.025 (6)0.002 (5)0.047 (7)
C30.069 (7)0.050 (6)0.125 (12)0.029 (5)0.033 (7)0.022 (7)
C160.052 (5)0.138 (13)0.048 (5)0.043 (7)0.001 (4)0.021 (7)
C50.092 (8)0.044 (5)0.090 (9)0.019 (5)0.047 (7)0.022 (6)
Geometric parameters (Å, º) top
Ag1—P12.3506 (19)C37—C381.381 (14)
Ag1—O12.380 (6)C37—C361.358 (15)
Ag1—O42.406 (7)C9—C101.360 (15)
Ag2—P22.3612 (19)C9—C81.407 (12)
Ag2—O2i2.460 (6)C11—C101.384 (14)
Ag2—O62.295 (7)C11—C121.386 (12)
P1—C11.806 (7)C28—C291.384 (12)
P1—C131.838 (8)C35—C341.375 (14)
P1—C71.830 (7)C35—C361.417 (15)
P2—C261.830 (7)C33—C341.383 (11)
P2—C201.829 (9)C33—C381.409 (11)
P2—C321.838 (7)C33—C321.484 (11)
O1—N11.251 (9)C7—C121.400 (11)
O3—N11.243 (9)C7—C81.382 (11)
O2—Ag2ii2.460 (6)C15—C161.366 (15)
O2—N11.260 (8)C18—C171.39 (2)
C26—C311.398 (10)C30—C291.382 (13)
C26—C271.379 (11)C6—C51.420 (14)
N2—O51.216 (10)C23—C241.338 (19)
N2—O41.249 (10)C23—C221.412 (19)
N2—O61.245 (10)C20—C251.389 (13)
C1—C61.391 (13)C20—C211.376 (13)
C1—C21.396 (12)C2—C31.383 (15)
C14—C191.394 (12)C24—C251.362 (15)
C14—C131.504 (10)C22—C211.381 (15)
C14—C151.377 (12)C4—C31.35 (2)
C31—C301.389 (11)C4—C51.36 (2)
C27—C281.406 (10)C17—C161.38 (2)
C19—C181.372 (13)
P1—Ag1—O1141.80 (17)C18—C19—C14120.4 (10)
P1—Ag1—O4129.6 (2)C36—C37—C38120.1 (9)
O1—Ag1—O488.5 (3)C10—C9—C8119.4 (9)
P2—Ag2—O2i121.08 (15)C10—C11—C12120.0 (9)
O6—Ag2—P2142.8 (3)C29—C28—C27119.6 (8)
O6—Ag2—O2i96.0 (3)C34—C35—C36118.2 (9)
C1—P1—Ag1114.2 (3)C14—C13—P1110.4 (5)
C1—P1—C13105.1 (4)C34—C33—C38118.4 (8)
C1—P1—C7103.5 (3)C34—C33—C32120.6 (7)
C13—P1—Ag1114.8 (3)C38—C33—C32121.0 (7)
C7—P1—Ag1113.5 (2)C9—C10—C11121.1 (8)
C7—P1—C13104.5 (3)C12—C7—P1122.9 (6)
C26—P2—Ag2115.7 (2)C8—C7—P1117.6 (6)
C26—P2—C32104.9 (3)C8—C7—C12119.3 (7)
C20—P2—Ag2109.2 (3)C11—C12—C7119.7 (8)
C20—P2—C26103.7 (3)C35—C34—C33121.8 (8)
C20—P2—C32104.7 (4)C16—C15—C14121.7 (11)
C32—P2—Ag2117.3 (3)C37—C38—C33120.5 (8)
N1—O1—Ag1100.8 (5)C37—C36—C35120.9 (10)
N1—O2—Ag2ii99.5 (4)C19—C18—C17120.6 (12)
O1—N1—O2119.0 (7)C29—C30—C31120.9 (7)
O3—N1—O1121.9 (7)C1—C6—C5117.2 (11)
O3—N1—O2119.0 (6)C30—C29—C28120.1 (7)
C31—C26—P2117.9 (5)C7—C8—C9120.4 (9)
C27—C26—P2121.6 (5)C24—C23—C22118.9 (10)
C27—C26—C31120.4 (6)C25—C20—P2117.0 (7)
O5—N2—O4119.6 (7)C21—C20—P2124.8 (7)
O5—N2—O6119.7 (7)C21—C20—C25118.3 (9)
O6—N2—O4120.6 (8)C3—C2—C1120.2 (12)
N2—O4—Ag1106.5 (5)C23—C24—C25121.3 (11)
N2—O6—Ag2115.7 (6)C21—C22—C23120.0 (11)
C6—C1—P1123.0 (6)C33—C32—P2112.4 (5)
C6—C1—C2120.1 (8)C24—C25—C20121.3 (11)
C2—C1—P1116.7 (7)C3—C4—C5120.4 (10)
C19—C14—C13121.8 (7)C20—C21—C22120.2 (10)
C15—C14—C19118.3 (8)C16—C17—C18118.8 (9)
C15—C14—C13119.8 (8)C4—C3—C2120.5 (13)
C30—C31—C26119.1 (7)C15—C16—C17120.1 (11)
C26—C27—C28120.0 (7)C4—C5—C6121.6 (13)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x1/2, y+3/2, z.
 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the University of Pretoria (UP) and the University of Johannesburg (UJ) is gratefully acknowledged.

Funding information

Funding for this research was provided by: National Research Foundation (grant No. 138280 to Frederick P. Malan).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds