organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-(2,3,5,6-Tetra­fluoropyridin-4-yl)formamide

crossmark logo

aThe University of Tennessee at Chattanooga, Department of Chemistry and Physics, #2252, 615 McCallie Avenue, Chattanooga, TN 37403, USA, and bClemson University, Department of Chemistry, Clemson, SC 29634, USA
*Correspondence e-mail: John-Lee@utc.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 June 2022; accepted 10 August 2022; online 16 August 2022)

The title compound, C6H2F4N2O, displays amide bond lengths of 1.218 (3) Å and 1.366 (3) Å for the C=O and C—N bonds, respectively. The Cp—N—C—O (p = pyridine) torsion angle of 179.0 (2)° indicates an anti-conformation for the grouping. Inter­molecular hydrogen bonding is observed between the amine N—H group and the carbonyl O atom, which generates chains of mol­ecules propagating along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, N-(2,3,5,6-tetrafluoropyridin-4-yl)formamide, (I), contains a perfluorinated pyridine heterocycle and a formamide group para to the pyridine N atom. These groups have shown utility in independent biochemical applications. For example, fluoro­aromatic compounds are used in positron emission tomography (Hashizume et al., 1996[Hashizume, T., Hashimoto, N. & Miyake, Y. (1996). Japan Patent JP 08310973 A.]) and pyridine rings can act as the bioisosteres of amides (Sun et al., 2019[Sun, S., Jia, Q. & Zhang, Z. (2019). Bioorg. Med. Chem. Lett. 29, 2535-2550.]). The structure reported here combines these components and could be of inter­est for biochemical applications. A search of the CCDC shows no structures that contain a pyridine ring functionalized with a formamide group in the 4-position (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

The crystal structure of (I) represents the first example of a perfluorinated pyridine ring with a formamide functional group (Fig. 1[link]). The amide bond lengths for (I) are 1.218 (3) Å and 1.366 (3) Å for the C=O and C—N bonds, respectively, which are in good agreement with the corresponding bonds in the related compounds N-phenyl­formamide (Omondi et al., 2014[Omondi, B., Lemmerer, A., Fernandes, M. A., Levendis, D. C. & Layh, M. (2014). Acta Cryst. B70, 106-114.]), N-(2,6-di­fluoro­phen­yl)formamide (Omondi et al., 2009b[Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009b). Acta Cryst. C65, 470-475.]), and N-(2,6-di­bromo­phen­yl)formamide (Omondi et al., 2009a[Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009a). Acta Cryst. C65, 160-162.]). As observed in other structures, the amide bond lengths for (I) are consistent with little to no N=C/C—O bond resonance contribution. The formamide group and pyridine ring in (I) are somewhat twisted with a dihedral angle of 13.21 (5)°. This is similar to N-phenyl­formamide (Omondi et al., 2014[Omondi, B., Lemmerer, A., Fernandes, M. A., Levendis, D. C. & Layh, M. (2014). Acta Cryst. B70, 106-114.]) (dihedral angle between the benzene ring and formamide groups = 10.5°) but in contrast to N-(2,6-di­fluoro­phen­yl)formamide (Omondi et al., 2009b[Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009b). Acta Cryst. C65, 470-475.]) and N-(2,6-di­bromo­phen­yl)formamide (Omondi et al., 2009a[Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009a). Acta Cryst. C65, 160-162.]) where the equivalent dihedral angles are 58.4 and 83.2°, respectively. The latter structures indicate that the steric effects likely increase from H to F to Br; however, this large deviation from planarity is not observed in (I). Furthermore, the torsion angle of 179.0 (2)° for C3—N2—C6—O1 in (I) indicates a near anti-conformation, but in structures with a benzene ring, the carbon­yl–benzene conformation is syn regardless of aromatic substituents (Omondi et al., 2009a[Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009a). Acta Cryst. C65, 160-162.],b[Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009b). Acta Cryst. C65, 470-475.], 2014[Omondi, B., Lemmerer, A., Fernandes, M. A., Levendis, D. C. & Layh, M. (2014). Acta Cryst. B70, 106-114.]). Taken together, these indicate that the pyridine ring is playing a role in the structure beyond the sterics of the aromatic ring substituents. The pyridyl related compounds N-(3,5-di­chloro-2-pyrid­yl)formamide (Resinger et al., 2005[Resinger, A., Wentrup, C., Byriel, K. A. & Kennard, C. H. L. (2005). Acta Cryst. E61, o2053-o2054.]) and form­yl(2-pyrid­yl)amine (Bock et al., 1996[Bock, H., Van, T. T. H., Solouki, B., Schödel, H., Artus, G., Herdtwech, E. & Hermann, W. A. (1996). Liebigs Ann. pp. 403-407. DOI: 10.1002/jlac. 199619960316.]) also show an anti-conformation for the carbonyl and pyridine ring as well as near coplanarity of the functional groups as observed for the title compound.

[Figure 1]
Figure 1
Displacement ellipsoid perspective view (50% probability) for the title structure showing the atom-numbering scheme.

In the extended structure of (I) the mol­ecules are linked by N—H⋯O hydrogen bonds with a bond angle of 171 (3)° (Table 1[link]), which suggests evidence of inter­mediate–strong hydrogen bonding (Arunan et al., 2011[Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637-1641.]). The hydrogen bonding generates chains of mol­ecules propagating along the b-axis direction in the extended structure (Fig. 2[link]) with adjacent mol­ecules in the chain related by 21 screw axis symmetry. Neighboring sets of chains form an L shape through a nearly orthogonal (84°) orientation of the pyridine rings in each chain (Fig. 3[link]). This brings about short contacts between the pyridyl nitro­gen atoms and the π systems of these orthogonal pyridine rings (N⋯centroid = 3.502 Å; shortest N⋯C = 3.032 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.87 (3) 1.96 (3) 2.814 (3) 171 (3)
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Inter­molecular hydrogen bonding forming a chain propagating along the b-axis direction where hydrogen bonds are represented with dashed lines.
[Figure 3]
Figure 3
Extended structure as viewed looking down the b-axis showing the L-shape that is formed by the orthogonal pyridine rings of neighboring chains.

Synthesis and crystallization

A 50 ml round-bottom flask was charged with 2,3,5,6-tetra­fluoro­pyridin-4-amine (0.1078 g, 0.6491mmol), p-toluene­sulfonic acid (0.0046 g, 0.027 mmol), trimethyl orthoformate (0.28 ml, 2.6 mmol), and toluene (5 ml). A Dean–Stark apparatus was filled with toluene (10 ml), and the solution was refluxed for 16 h. A homogenous colorless solution was obtained. Crystals were obtained by di­chloro­methane layered with hexa­nes, yielding orange needles. 19F{1H} NMR (CDCl3, δ): 91.1 (2F, d, –CF), 154.9 (2F, d, –CF). 1H NMR (CDCl3, δ): 9.00 (1H, s, –O=CH), 7.70 (1H, s, –NH).

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H2F4N2O
Mr 194.10
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.1183 (4), 6.2707 (6), 20.6294 (16)
V3) 662.11 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.21
Crystal size (mm) 0.28 × 0.06 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture Photon 2
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.897, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3556, 1309, 1200
Rint 0.029
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.09
No. of reflections 1309
No. of parameters 122
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.19
Absolute structure Flack x determined using 424 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.1 (6)
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

N-(2,3,5,6-Tetrafluoropyridin-4-yl)formamide top
Crystal data top
C6H2F4N2ODx = 1.947 Mg m3
Mr = 194.10Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2461 reflections
a = 5.1183 (4) Åθ = 3.4–26.0°
b = 6.2707 (6) ŵ = 0.21 mm1
c = 20.6294 (16) ÅT = 100 K
V = 662.11 (10) Å3Column, colourless
Z = 40.28 × 0.06 × 0.05 mm
F(000) = 384
Data collection top
Bruker D8 Venture Photon 2
diffractometer
1200 reflections with I > 2σ(I)
Radiation source: Incoatec IµSRint = 0.029
φ and ω scansθmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
h = 66
Tmin = 0.897, Tmax = 1.000k = 77
3556 measured reflectionsl = 2525
1309 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0317P)2 + 0.041P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1309 reflectionsΔρmax = 0.14 e Å3
122 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack x determined using 424 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.1 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.9516 (3)0.1033 (2)0.60146 (7)0.0280 (4)
F20.5417 (3)0.0546 (2)0.68314 (6)0.0218 (4)
F30.3999 (3)0.6218 (2)0.58674 (7)0.0246 (4)
F40.8168 (3)0.5429 (2)0.51143 (7)0.0246 (4)
O10.0674 (4)0.4673 (3)0.73924 (8)0.0239 (4)
N10.8836 (4)0.2207 (3)0.55635 (10)0.0194 (5)
N20.2513 (4)0.3050 (3)0.68341 (10)0.0176 (5)
H20.208 (6)0.193 (5)0.7052 (15)0.030 (8)*
C10.8095 (5)0.0761 (4)0.59878 (12)0.0186 (6)
C20.6040 (5)0.0998 (4)0.64033 (11)0.0172 (5)
C30.4581 (5)0.2879 (4)0.64007 (11)0.0153 (5)
C40.5327 (5)0.4385 (4)0.59394 (11)0.0168 (5)
C50.7440 (5)0.3963 (4)0.55472 (11)0.0188 (6)
C60.1120 (5)0.4818 (4)0.70070 (12)0.0195 (6)
H60.1551310.6166150.6825990.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0275 (9)0.0267 (8)0.0299 (8)0.0124 (7)0.0063 (8)0.0033 (6)
F20.0255 (8)0.0183 (7)0.0215 (7)0.0018 (7)0.0038 (7)0.0059 (6)
F30.0292 (9)0.0193 (7)0.0253 (8)0.0059 (7)0.0041 (8)0.0053 (6)
F40.0272 (8)0.0280 (8)0.0187 (7)0.0051 (7)0.0039 (7)0.0064 (6)
O10.0232 (10)0.0228 (9)0.0255 (9)0.0014 (9)0.0100 (9)0.0038 (7)
N10.0152 (11)0.0287 (11)0.0143 (10)0.0001 (9)0.0007 (10)0.0007 (8)
N20.0183 (11)0.0174 (10)0.0170 (10)0.0002 (9)0.0036 (11)0.0011 (8)
C10.0167 (13)0.0196 (12)0.0195 (12)0.0029 (10)0.0009 (12)0.0008 (10)
C20.0183 (13)0.0185 (12)0.0149 (12)0.0013 (10)0.0003 (12)0.0013 (9)
C30.0146 (11)0.0197 (11)0.0117 (11)0.0002 (10)0.0011 (11)0.0029 (8)
C40.0182 (13)0.0176 (11)0.0146 (11)0.0010 (11)0.0021 (11)0.0005 (9)
C50.0211 (13)0.0220 (12)0.0132 (12)0.0055 (11)0.0026 (12)0.0026 (10)
C60.0198 (14)0.0183 (12)0.0205 (12)0.0005 (11)0.0016 (13)0.0021 (9)
Geometric parameters (Å, º) top
F1—C11.341 (3)N2—C31.390 (3)
F2—C21.348 (3)N2—H20.87 (3)
F3—C41.343 (3)C1—C21.365 (3)
F4—C51.335 (3)C2—C31.396 (3)
O1—C61.218 (3)C3—C41.394 (3)
N1—C51.313 (3)C4—C51.376 (4)
N1—C11.316 (3)C6—H60.9500
N2—C61.366 (3)
C5—N1—C1116.0 (2)N2—C3—C2118.0 (2)
C6—N2—C3128.9 (2)C4—C3—C2115.4 (2)
C6—N2—H2113 (2)F3—C4—C5119.8 (2)
C3—N2—H2118 (2)F3—C4—C3121.1 (2)
N1—C1—F1116.7 (2)C5—C4—C3119.1 (2)
N1—C1—C2124.4 (2)N1—C5—F4116.3 (2)
F1—C1—C2118.9 (2)N1—C5—C4125.0 (2)
F2—C2—C1121.0 (2)F4—C5—C4118.7 (2)
F2—C2—C3118.9 (2)O1—C6—N2120.2 (2)
C1—C2—C3120.1 (2)O1—C6—H6119.9
N2—C3—C4126.5 (2)N2—C6—H6119.9
C5—N1—C1—F1179.4 (2)N2—C3—C4—F31.1 (4)
C5—N1—C1—C20.8 (4)C2—C3—C4—F3176.8 (2)
N1—C1—C2—F2179.1 (2)N2—C3—C4—C5179.8 (2)
F1—C1—C2—F20.6 (3)C2—C3—C4—C52.3 (3)
N1—C1—C2—C30.7 (4)C1—N1—C5—F4179.5 (2)
F1—C1—C2—C3177.9 (2)C1—N1—C5—C40.7 (4)
C6—N2—C3—C415.2 (4)F3—C4—C5—N1178.2 (2)
C6—N2—C3—C2167.0 (2)C3—C4—C5—N10.9 (4)
F2—C2—C3—N21.3 (3)F3—C4—C5—F42.0 (3)
C1—C2—C3—N2179.8 (2)C3—C4—C5—F4178.9 (2)
F2—C2—C3—C4179.3 (2)C3—N2—C6—O1179.0 (2)
C1—C2—C3—C42.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.87 (3)1.96 (3)2.814 (3)171 (3)
Symmetry code: (i) x, y1/2, z+3/2.
 

Funding information

Acknowledgements are made to the University of Tennessee at Chattanooga, and the Grote Chemistry Fund at UTC.

References

First citationArunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637–1641.  Web of Science CrossRef CAS Google Scholar
First citationBock, H., Van, T. T. H., Solouki, B., Schödel, H., Artus, G., Herdtwech, E. & Hermann, W. A. (1996). Liebigs Ann. pp. 403–407. DOI: 10.1002/jlac. 199619960316.  Google Scholar
First citationBruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHashizume, T., Hashimoto, N. & Miyake, Y. (1996). Japan Patent JP 08310973 A.  Google Scholar
First citationOmondi, B., Lemmerer, A., Fernandes, M. A., Levendis, D. C. & Layh, M. (2014). Acta Cryst. B70, 106–114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOmondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009a). Acta Cryst. C65, 160–162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOmondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009b). Acta Cryst. C65, 470–475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationResinger, A., Wentrup, C., Byriel, K. A. & Kennard, C. H. L. (2005). Acta Cryst. E61, o2053–o2054.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, S., Jia, Q. & Zhang, Z. (2019). Bioorg. Med. Chem. Lett. 29, 2535–2550.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds