organic compounds
N-(2,3,5,6-Tetrafluoropyridin-4-yl)formamide
aThe University of Tennessee at Chattanooga, Department of Chemistry and Physics, #2252, 615 McCallie Avenue, Chattanooga, TN 37403, USA, and bClemson University, Department of Chemistry, Clemson, SC 29634, USA
*Correspondence e-mail: John-Lee@utc.edu
The title compound, C6H2F4N2O, displays amide bond lengths of 1.218 (3) Å and 1.366 (3) Å for the C=O and C—N bonds, respectively. The Cp—N—C—O (p = pyridine) torsion angle of 179.0 (2)° indicates an anti-conformation for the grouping. Intermolecular hydrogen bonding is observed between the amine N—H group and the carbonyl O atom, which generates chains of molecules propagating along the b-axis direction.
Keywords: crystal structure; amide bond; perfluorinated pyridine; formamide; hydrogen bonding.
CCDC reference: 2196118
Structure description
The title compound, N-(2,3,5,6-tetrafluoropyridin-4-yl)formamide, (I), contains a perfluorinated pyridine heterocycle and a formamide group para to the pyridine N atom. These groups have shown utility in independent biochemical applications. For example, fluoroaromatic compounds are used in positron emission tomography (Hashizume et al., 1996) and pyridine rings can act as the bioisosteres of (Sun et al., 2019). The structure reported here combines these components and could be of interest for biochemical applications. A search of the CCDC shows no structures that contain a pyridine ring functionalized with a formamide group in the 4-position (Groom et al., 2016).
The ). The amide bond lengths for (I) are 1.218 (3) Å and 1.366 (3) Å for the C=O and C—N bonds, respectively, which are in good agreement with the corresponding bonds in the related compounds N-phenylformamide (Omondi et al., 2014), N-(2,6-difluorophenyl)formamide (Omondi et al., 2009b), and N-(2,6-dibromophenyl)formamide (Omondi et al., 2009a). As observed in other structures, the amide bond lengths for (I) are consistent with little to no N=C/C—O bond resonance contribution. The formamide group and pyridine ring in (I) are somewhat twisted with a dihedral angle of 13.21 (5)°. This is similar to N-phenylformamide (Omondi et al., 2014) (dihedral angle between the benzene ring and formamide groups = 10.5°) but in contrast to N-(2,6-difluorophenyl)formamide (Omondi et al., 2009b) and N-(2,6-dibromophenyl)formamide (Omondi et al., 2009a) where the equivalent dihedral angles are 58.4 and 83.2°, respectively. The latter structures indicate that the steric effects likely increase from H to F to Br; however, this large deviation from planarity is not observed in (I). Furthermore, the torsion angle of 179.0 (2)° for C3—N2—C6—O1 in (I) indicates a near anti-conformation, but in structures with a benzene ring, the carbonyl–benzene conformation is syn regardless of aromatic substituents (Omondi et al., 2009a,b, 2014). Taken together, these indicate that the pyridine ring is playing a role in the structure beyond the sterics of the aromatic ring substituents. The pyridyl related compounds N-(3,5-dichloro-2-pyridyl)formamide (Resinger et al., 2005) and formyl(2-pyridyl)amine (Bock et al., 1996) also show an anti-conformation for the carbonyl and pyridine ring as well as near coplanarity of the functional groups as observed for the title compound.
of (I) represents the first example of a perfluorinated pyridine ring with a formamide (Fig. 1In the extended structure of (I) the molecules are linked by N—H⋯O hydrogen bonds with a bond angle of 171 (3)° (Table 1), which suggests evidence of intermediate–strong hydrogen bonding (Arunan et al., 2011). The hydrogen bonding generates chains of molecules propagating along the b-axis direction in the extended structure (Fig. 2) with adjacent molecules in the chain related by 21 screw axis symmetry. Neighboring sets of chains form an L shape through a nearly orthogonal (84°) orientation of the pyridine rings in each chain (Fig. 3). This brings about short contacts between the pyridyl nitrogen atoms and the π systems of these orthogonal pyridine rings (N⋯centroid = 3.502 Å; shortest N⋯C = 3.032 Å).
Synthesis and crystallization
A 50 ml round-bottom flask was charged with 2,3,5,6-tetrafluoropyridin-4-amine (0.1078 g, 0.6491mmol), p-toluenesulfonic acid (0.0046 g, 0.027 mmol), trimethyl orthoformate (0.28 ml, 2.6 mmol), and toluene (5 ml). A Dean–Stark apparatus was filled with toluene (10 ml), and the solution was refluxed for 16 h. A homogenous colorless solution was obtained. Crystals were obtained by dichloromethane layered with hexanes, yielding orange needles. 19F{1H} NMR (CDCl3, δ): 91.1 (2F, d, –CF), 154.9 (2F, d, –CF). 1H NMR (CDCl3, δ): 9.00 (1H, s, –O=CH), 7.70 (1H, s, –NH).
Refinement
Crystal data, data collection, and structure .
details are summarized in Table 2Structural data
CCDC reference: 2196118
https://doi.org/10.1107/S2414314622008045/hb4409sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314622008045/hb4409Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314622008045/hb4409Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C6H2F4N2O | Dx = 1.947 Mg m−3 |
Mr = 194.10 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 2461 reflections |
a = 5.1183 (4) Å | θ = 3.4–26.0° |
b = 6.2707 (6) Å | µ = 0.21 mm−1 |
c = 20.6294 (16) Å | T = 100 K |
V = 662.11 (10) Å3 | Column, colourless |
Z = 4 | 0.28 × 0.06 × 0.05 mm |
F(000) = 384 |
Bruker D8 Venture Photon 2 diffractometer | 1200 reflections with I > 2σ(I) |
Radiation source: Incoatec IµS | Rint = 0.029 |
φ and ω scans | θmax = 26.0°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2018) | h = −6→6 |
Tmin = 0.897, Tmax = 1.000 | k = −7→7 |
3556 measured reflections | l = −25→25 |
1309 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0317P)2 + 0.041P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
1309 reflections | Δρmax = 0.14 e Å−3 |
122 parameters | Δρmin = −0.19 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 424 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.1 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.9516 (3) | −0.1033 (2) | 0.60146 (7) | 0.0280 (4) | |
F2 | 0.5417 (3) | −0.0546 (2) | 0.68314 (6) | 0.0218 (4) | |
F3 | 0.3999 (3) | 0.6218 (2) | 0.58674 (7) | 0.0246 (4) | |
F4 | 0.8168 (3) | 0.5429 (2) | 0.51143 (7) | 0.0246 (4) | |
O1 | −0.0674 (4) | 0.4673 (3) | 0.73924 (8) | 0.0239 (4) | |
N1 | 0.8836 (4) | 0.2207 (3) | 0.55635 (10) | 0.0194 (5) | |
N2 | 0.2513 (4) | 0.3050 (3) | 0.68341 (10) | 0.0176 (5) | |
H2 | 0.208 (6) | 0.193 (5) | 0.7052 (15) | 0.030 (8)* | |
C1 | 0.8095 (5) | 0.0761 (4) | 0.59878 (12) | 0.0186 (6) | |
C2 | 0.6040 (5) | 0.0998 (4) | 0.64033 (11) | 0.0172 (5) | |
C3 | 0.4581 (5) | 0.2879 (4) | 0.64007 (11) | 0.0153 (5) | |
C4 | 0.5327 (5) | 0.4385 (4) | 0.59394 (11) | 0.0168 (5) | |
C5 | 0.7440 (5) | 0.3963 (4) | 0.55472 (11) | 0.0188 (6) | |
C6 | 0.1120 (5) | 0.4818 (4) | 0.70070 (12) | 0.0195 (6) | |
H6 | 0.155131 | 0.616615 | 0.682599 | 0.023* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0275 (9) | 0.0267 (8) | 0.0299 (8) | 0.0124 (7) | 0.0063 (8) | 0.0033 (6) |
F2 | 0.0255 (8) | 0.0183 (7) | 0.0215 (7) | 0.0018 (7) | 0.0038 (7) | 0.0059 (6) |
F3 | 0.0292 (9) | 0.0193 (7) | 0.0253 (8) | 0.0059 (7) | 0.0041 (8) | 0.0053 (6) |
F4 | 0.0272 (8) | 0.0280 (8) | 0.0187 (7) | −0.0051 (7) | 0.0039 (7) | 0.0064 (6) |
O1 | 0.0232 (10) | 0.0228 (9) | 0.0255 (9) | 0.0014 (9) | 0.0100 (9) | −0.0038 (7) |
N1 | 0.0152 (11) | 0.0287 (11) | 0.0143 (10) | −0.0001 (9) | −0.0007 (10) | −0.0007 (8) |
N2 | 0.0183 (11) | 0.0174 (10) | 0.0170 (10) | −0.0002 (9) | 0.0036 (11) | 0.0011 (8) |
C1 | 0.0167 (13) | 0.0196 (12) | 0.0195 (12) | 0.0029 (10) | −0.0009 (12) | −0.0008 (10) |
C2 | 0.0183 (13) | 0.0185 (12) | 0.0149 (12) | −0.0013 (10) | −0.0003 (12) | 0.0013 (9) |
C3 | 0.0146 (11) | 0.0197 (11) | 0.0117 (11) | −0.0002 (10) | −0.0011 (11) | −0.0029 (8) |
C4 | 0.0182 (13) | 0.0176 (11) | 0.0146 (11) | 0.0010 (11) | −0.0021 (11) | 0.0005 (9) |
C5 | 0.0211 (13) | 0.0220 (12) | 0.0132 (12) | −0.0055 (11) | −0.0026 (12) | 0.0026 (10) |
C6 | 0.0198 (14) | 0.0183 (12) | 0.0205 (12) | 0.0005 (11) | 0.0016 (13) | −0.0021 (9) |
F1—C1 | 1.341 (3) | N2—C3 | 1.390 (3) |
F2—C2 | 1.348 (3) | N2—H2 | 0.87 (3) |
F3—C4 | 1.343 (3) | C1—C2 | 1.365 (3) |
F4—C5 | 1.335 (3) | C2—C3 | 1.396 (3) |
O1—C6 | 1.218 (3) | C3—C4 | 1.394 (3) |
N1—C5 | 1.313 (3) | C4—C5 | 1.376 (4) |
N1—C1 | 1.316 (3) | C6—H6 | 0.9500 |
N2—C6 | 1.366 (3) | ||
C5—N1—C1 | 116.0 (2) | N2—C3—C2 | 118.0 (2) |
C6—N2—C3 | 128.9 (2) | C4—C3—C2 | 115.4 (2) |
C6—N2—H2 | 113 (2) | F3—C4—C5 | 119.8 (2) |
C3—N2—H2 | 118 (2) | F3—C4—C3 | 121.1 (2) |
N1—C1—F1 | 116.7 (2) | C5—C4—C3 | 119.1 (2) |
N1—C1—C2 | 124.4 (2) | N1—C5—F4 | 116.3 (2) |
F1—C1—C2 | 118.9 (2) | N1—C5—C4 | 125.0 (2) |
F2—C2—C1 | 121.0 (2) | F4—C5—C4 | 118.7 (2) |
F2—C2—C3 | 118.9 (2) | O1—C6—N2 | 120.2 (2) |
C1—C2—C3 | 120.1 (2) | O1—C6—H6 | 119.9 |
N2—C3—C4 | 126.5 (2) | N2—C6—H6 | 119.9 |
C5—N1—C1—F1 | −179.4 (2) | N2—C3—C4—F3 | −1.1 (4) |
C5—N1—C1—C2 | −0.8 (4) | C2—C3—C4—F3 | 176.8 (2) |
N1—C1—C2—F2 | −179.1 (2) | N2—C3—C4—C5 | 179.8 (2) |
F1—C1—C2—F2 | −0.6 (3) | C2—C3—C4—C5 | −2.3 (3) |
N1—C1—C2—C3 | −0.7 (4) | C1—N1—C5—F4 | −179.5 (2) |
F1—C1—C2—C3 | 177.9 (2) | C1—N1—C5—C4 | 0.7 (4) |
C6—N2—C3—C4 | −15.2 (4) | F3—C4—C5—N1 | −178.2 (2) |
C6—N2—C3—C2 | 167.0 (2) | C3—C4—C5—N1 | 0.9 (4) |
F2—C2—C3—N2 | −1.3 (3) | F3—C4—C5—F4 | 2.0 (3) |
C1—C2—C3—N2 | −179.8 (2) | C3—C4—C5—F4 | −178.9 (2) |
F2—C2—C3—C4 | −179.3 (2) | C3—N2—C6—O1 | 179.0 (2) |
C1—C2—C3—C4 | 2.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.87 (3) | 1.96 (3) | 2.814 (3) | 171 (3) |
Symmetry code: (i) −x, y−1/2, −z+3/2. |
Funding information
Acknowledgements are made to the University of Tennessee at Chattanooga, and the Grote Chemistry Fund at UTC.
References
Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B. & Nesbitt, D. J. (2011). Pure Appl. Chem. 83, 1637–1641. Web of Science CrossRef CAS Google Scholar
Bock, H., Van, T. T. H., Solouki, B., Schödel, H., Artus, G., Herdtwech, E. & Hermann, W. A. (1996). Liebigs Ann. pp. 403–407. DOI: 10.1002/jlac. 199619960316. Google Scholar
Bruker (2018). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hashizume, T., Hashimoto, N. & Miyake, Y. (1996). Japan Patent JP 08310973 A. Google Scholar
Omondi, B., Lemmerer, A., Fernandes, M. A., Levendis, D. C. & Layh, M. (2014). Acta Cryst. B70, 106–114. Web of Science CSD CrossRef IUCr Journals Google Scholar
Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009a). Acta Cryst. C65, 160–162. Web of Science CSD CrossRef IUCr Journals Google Scholar
Omondi, B., Levendis, D. C., Layh, M. & Fernandes, M. A. (2009b). Acta Cryst. C65, 470–475. Web of Science CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Resinger, A., Wentrup, C., Byriel, K. A. & Kennard, C. H. L. (2005). Acta Cryst. E61, o2053–o2054. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sun, S., Jia, Q. & Zhang, Z. (2019). Bioorg. Med. Chem. Lett. 29, 2535–2550. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.