organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-(Hex-5-en-1-yl)-4-{[3-methyl-2,3-di­hydro-1,3-benzo­thia­zol-2-yl­­idene]meth­yl}quinolin-1-ium iodide monohydrate

crossmark logo

aDepartment of Chemistry and Biochemistry, Georgia Southern University, Armstrong Campus, 11935 Abercorn Street, Savannah GA 31419, USA, and bChemistry, Department of Physical Sciences, St. Joseph's College, 155 West Roe Blvd, Patchogue, NY 11772, USA
*Correspondence e-mail: nshank@georgiasouthern.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 June 2022; accepted 8 August 2022; online 16 August 2022)

The title thia­zole orange derivative, bearing an alkene substituent, crystallized as a monohydrate of its iodide salt, namely, (Z)-1-(hex-5-en-1-yl)-4-{[3-methyl-2,3-di­hydro-1,3-benzo­thia­zol-2-yl­idene]meth­yl}quinolin-1-ium iodide monohydrate, C24H25N2S+·I·H2O. The packing features aromatic π-stacking and van der Waals inter­actions. The water mol­ecule of crystallization inter­acts with the cation and anion via O—H⋯N and O—H⋯I hydrogen bonds, respectively.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Inter­calating dyes are a standard means to detect duplex DNA or RNA in vitro and in vivo. The cyanine dye thia­zole orange has been used extensively as a on/off fluorescent probe in a host of biological applications (Suss et al., 2021[Suss, O., Motiei, L. & Margulies, D. (2021). Molecules, 26, 2828.]). The bis-inter­calating dye based on thia­zole orange has been shown to have an increased affinity towards duplexed oligomers and retains its fluoro­genic characteristic (Rye et al., 1992[Rye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A. & Glazer, A. N. (1992). Nucleic Acids Res. 20, 2803-2812.]). In an effort to enhance the binding affinity further, and essentially create a non-covalent inter­action that is effectively permanent, we synthesized a thia­zole orange dye bearing an alkene substituent that is capable of participating in polymerization reactions. Access to polymeric thia­zole orange dye and other cyanine dyes will afford extremely bright, highly organized, and versatile fluorescent probes that can be attached to mol­ecules of inter­est and mitigate the equilibrium the dye would establish with endogenous duplexes.

Herein we report the crystal structure of 4-hexenyl thia­zole orange iodide monohydrate, C24H25N2S+·I·H2O, which crystallizes in the triclinic space group P[\overline{1}]. In the cation (Fig. 1[link]), the benzo­thia­zole ring is titled by 3.32 (13)° with respect to the quinoline ring system: as a result the mol­ecule is close to planar (excluding the hex-1-ene group) with an r.m.s. deviation of 0.048 Å for the non-hydrogen atoms; including the hex-1-ene group increases the r.m.s.d to 0.416 Å for the non-hydrogen atoms. The crystal structure contains a water mol­ecule of crystallization bound to the cation via a weak O1—H1A⋯N1 hydrogen bond [O⋯N = 3.014 (10) Å] and the anion via an O1—H1B⋯I1 link [O1⋯I1 = 3.546 (10) Å] (Table 1[link]). There is also a weak C2—H2⋯S1 intra­molecular inter­action with C⋯S = 3.128 (7) that helps to maintain the coplanarity of the two ring systems.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯S1 0.93 2.40 3.128 (7) 135
O1—H1A⋯N1 0.85 2.39 3.014 (10) 131
O1—H1B⋯I1 0.85 2.71 3.546 (10) 169
[Figure 1]
Figure 1
A view of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.

In the extended structure (Fig. 2[link]), aromatic ππ stacking is observed with Cg1⋯Cg2i = 3.559 (6) Å [symmetry code: (i) 2 − x, 2 − y, 1 − z] and Cg1⋯Cg3i = 3.492 (5) Å, where Cg1 is the centroid of the phenyl ring of the benzo­thia­zole group containing atoms C18–C23, Cg2 is the centroid of the phenyl ring of the quinoline group containing atoms C4–C9, and Cg3 is the centroid of the pyridyl ring of the quinoline groups containing atoms N1/C1–C4/C9. These π–stacking inter­actions run along the [100] direction with neighboring layers held together with van der Waals inter­actions.

[Figure 2]
Figure 2
Crystal packing diagram of the title compound viewed down the b-axis direction with H atoms omitted for clarity.

Synthesis and crystallization

All materials were purchased from Fisher Scientific or Sigma Aldrich and used as received. All flash chromatography was performed with 230 × 400 mesh silica gel. Pure samples were analyzed with a Joel 300 MHz NMR and HRMS of the title compound was acquired on a Shimadzu LCMS 9030 QTof operating in positive mode. The reaction scheme is shown in Fig. 3[link].

[Figure 3]
Figure 3
Reaction scheme.

6-Iodo­hex-1-ene (1)

In a conical reaction vial with a magnetic stir bar, 3.0 g of 6-chloro­hex-1-ene (25.4 mmol, 1 eqv) was dissolved in 50 ml of acetone. To this solution was added 11.36 g (76.3 mmol, 3 equiv.) of sodium iodide. The solution was warmed slightly to assist with dissolving the sodium iodide and then covered and stirred for 48 h. An equal portion of hexane was added to the reaction and then the solids were filtered. The volatiles were stripped and the product was purified on silica with 100% hexa­nes as the eluent. Yield 3.31 g (62%) NMR: 1H NMR [300 MHz, (CDCl3] δ = 5.77 (m, 1H, –CH=CH2), 4.98 (m, 2H, –CH=CH2), 2.19 (t, 2H, –CH2I), 2.07 (t, 2H, –CH2CH2CH2I), 1.77 (t, 2H, –CH2CH2CH2I), 1.52 (t, 2H, –CH2= CHCH2CH2) p.p.m.

1-(Hex-5-en-1-yl)-4-methyl­quinolin-1-ium iodide (2)

To a conical reaction vial with a magnetic stir bar was added 0.22 g (1.58 mmol, 1 eqv) of 4-methyl­quinoline and 0.5 g (2.38 mmol, 1.5 equiv.) of 6-iodo­hex-1-ene. The reaction was stirred at 70°C for 18 h. The reaction was then purified on silica eluting with 2% methanol in DCM. Yield 0.54 g (96%) NMR: 1H NMR [300 MHz, (CDCl3)] δ = 10.17 (d, 1H, Ar.), 8.37 (m, 2H, Ar.), 8.20 (t, 1H, Ar.), 8.01 (m, 2H, Ar.), 5.71 (m, 1H, CH=CH2), 5.28 (t, 2H, –CH2N), 4.96 (m, 2H, –CH=CH2), 2.12 (m, 4H, –CH2CH2CH2), 1.62 (t, 2H, –CH2= CHCH2CH2) p.p.m.

2-Mercapto-3-methyl­benzo­thia­zol-3-ium iodide (3)

To a conical reaction flask was added 1 g (6.0 mmol, 1 eqv) of benzo­thia­zole-2-thiol and 2.2 g (15.5 mmol, 2.6 eqv) of methyl iodide. The reaction was allowed to stir at 50°C for 24 h and then taken up in a minimal amount of methanol. The concentrated solution was then titrated into ether to form a precipitate that was collected by filtration. This provided the product as a white solid that needed no further purification. Yield 0.75 g (69%) NMR: 1H NMR [300 MHz, (CD3)2SO] δ = 8.43 (d, 1H, Ar.), 8.29 (d, 1H, Ar.), 7.90 (t, 2H, Ar.), 7.80 (t, 2H, Ar.), 4.20 (s, 3H, –CH3), 3.17 (t, 3H, –SCH3) p.p.m.

(Z)-1-(Hex-5-en-1-yl)-4-((3-methyl­benzo[d]thia­zol-2(3H)-yl­idene)meth­yl)quinolin-1-ium iodide (4)

Into a conical reaction vial with a magnetic stir bar was added 106 mg (0.3 mmol, 1 eqv) of 2 that was dissolved in 2 ml of DMF. A total of 97 mg (0.3 mmol, 1 eqv) of 3 was added followed by the addition of 42 mg (0.3 mmol, 1 equiv.) of tri­ethyl­amine. The solution immediately turned dark red and was allowed to stir for 48 h.

The solution was then added to ether, and the orange solid was collected.

The title compound was then purified using a gradient (2–5%) of methanol in DCM. Yield 45 mg (30%). NMR: 1H NMR [300 MHz, (CD3)2SO)] δ = 8.80 (d, 1H, Ar.), 8.63 (d, 1H, Ar.), 8.15 (d, 1H, Ar.), 8.06 (d, 1H, Ar.), 7.99 (t, 1H, Ar.), 7.77 (q, 2H, Ar.), 7.62 (t, 1H, Ar.), 7.40 (m, 2H, Ar.), 5.77 (m, 1H, –CH=CH2), 4.97 (t, 2H, –CH2N), 4.61 (t, 2H, –CH=CH2), 4.02 (s, 3H, –N—CH3) 2.08 (q, 2H, –CH2=CHCH2CH2), 1.85 (quin, 2H, –CH2CH2CH2), 1.45 (t, 2H, –CH2CH2CH2–) p.p.m.

Crystal formation: the title compound was taken up in methanol and then allowed to crystallize as dark-red prisms by slow evaporation of the solvent.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C24H25N2S+·I·H2O
Mr 518.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 170
a, b, c (Å) 8.4780 (11), 10.5773 (17), 14.5191 (19)
α, β, γ (°) 95.810 (12), 105.762 (12), 110.651 (14)
V3) 1144.1 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.51
Crystal size (mm) 0.5 × 0.1 × 0.1
 
Data collection
Diffractometer XtaLAB Mini (ROW)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.332, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6581, 4189, 2249
Rint 0.043
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.171, 1.03
No. of reflections 4189
No. of parameters 266
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −0.60
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1-(Hex-5-en-1-yl)-4-{[3-methyl-2,3-dihydro-1,3-benzothiazol-2-ylidene]methyl}quinolin-1-ium iodide monohydrate top
Crystal data top
C24H25N2S+·I·H2OZ = 2
Mr = 518.43F(000) = 524
Triclinic, P1Dx = 1.505 Mg m3
a = 8.4780 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5773 (17) ÅCell parameters from 644 reflections
c = 14.5191 (19) Åθ = 2.1–21.1°
α = 95.810 (12)°µ = 1.51 mm1
β = 105.762 (12)°T = 170 K
γ = 110.651 (14)°Rect. prism, clear dark red
V = 1144.1 (3) Å30.5 × 0.1 × 0.1 mm
Data collection top
XtaLAB Mini (ROW)
diffractometer
4189 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source2249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1010
Tmin = 0.332, Tmax = 1.000k = 1211
6581 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.1317P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4189 reflectionsΔρmax = 0.66 e Å3
266 parametersΔρmin = 0.60 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were placed in idealized locations (C—H = 0.93–0.97, O—H = 0.85 Å) and refined as riding atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.04034 (9)0.55965 (6)0.30846 (5)0.0920 (3)
S10.7927 (3)0.81364 (17)0.36094 (14)0.0577 (5)
N20.8314 (7)1.0670 (5)0.3757 (4)0.0495 (14)
N10.6019 (8)0.6852 (5)0.6841 (5)0.0579 (15)
C230.8637 (9)1.0327 (7)0.2901 (5)0.0511 (17)
C40.6594 (9)0.9170 (7)0.6522 (5)0.0498 (17)
C160.7461 (9)0.9748 (7)0.5082 (5)0.0537 (17)
H160.7469941.0607340.5303480.064*
C30.7026 (9)0.8785 (6)0.5662 (5)0.0486 (17)
C170.7876 (8)0.9617 (6)0.4235 (5)0.0467 (16)
C90.6078 (9)0.8171 (7)0.7091 (5)0.0549 (18)
C20.6923 (9)0.7436 (7)0.5470 (5)0.0559 (18)
H20.7167810.7136010.4921430.067*
C10.6479 (9)0.6548 (7)0.6053 (5)0.0590 (19)
H10.6491260.5676450.5902680.071*
C180.8509 (9)0.8971 (7)0.2716 (5)0.0544 (18)
C220.9072 (10)1.1178 (8)0.2252 (6)0.066 (2)
H220.9180421.2090230.2369880.080*
C100.5465 (10)0.5769 (7)0.7392 (6)0.067 (2)
H10A0.5156250.4875920.6983160.080*
H10B0.4396120.5761840.7518900.080*
C50.6653 (10)1.0472 (7)0.6860 (5)0.0609 (19)
H50.7018501.1159180.6520570.073*
C110.6831 (11)0.5937 (7)0.8340 (6)0.066 (2)
H11A0.7059910.6782820.8780000.079*
H11B0.7936980.6019460.8228710.079*
C60.6208 (11)1.0797 (8)0.7658 (6)0.072 (2)
H60.6244181.1678040.7839950.086*
C240.8400 (10)1.2008 (7)0.4111 (6)0.064 (2)
H24A0.9274821.2395310.4753730.096*
H24B0.7253761.1930660.4141590.096*
H24C0.8729771.2599100.3675200.096*
C80.5616 (11)0.8527 (8)0.7912 (6)0.071 (2)
H80.5242650.7865040.8268430.085*
O10.2316 (12)0.5102 (8)0.5443 (7)0.138 (3)
H1A0.2912750.5812910.5908800.207*
H1B0.1925150.5347550.4917390.207*
C190.8832 (11)0.8450 (8)0.1895 (6)0.073 (2)
H190.8778470.7552320.1779020.087*
C120.6232 (11)0.4721 (8)0.8818 (6)0.071 (2)
H12A0.5121820.4640890.8923230.085*
H12B0.5996530.3878290.8372270.085*
C200.9230 (12)0.9296 (9)0.1268 (6)0.081 (2)
H200.9433210.8955940.0714360.097*
C210.9340 (11)1.0618 (9)0.1423 (6)0.075 (2)
H210.9595341.1155940.0971740.090*
C70.5706 (12)0.9825 (9)0.8191 (7)0.080 (3)
H70.5426701.0051280.8745510.095*
C130.7538 (14)0.4843 (11)0.9753 (8)0.110 (3)
H13A0.7705310.5654951.0207560.132*
H13B0.8670610.5000980.9651760.132*
C140.7080 (18)0.3633 (12)1.0222 (8)0.113 (4)
H140.7900990.3760371.0833810.136*
C150.585 (2)0.2529 (12)0.9957 (10)0.146 (6)
H15A0.4965880.2311680.9353080.175*
H15B0.5783320.1888061.0353480.175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.1378 (6)0.0665 (4)0.0968 (5)0.0488 (4)0.0612 (4)0.0317 (3)
S10.0704 (12)0.0407 (9)0.0605 (12)0.0162 (9)0.0271 (10)0.0111 (9)
N20.057 (4)0.041 (3)0.055 (4)0.019 (3)0.024 (3)0.018 (3)
N10.058 (4)0.041 (3)0.072 (4)0.011 (3)0.029 (3)0.016 (3)
C230.045 (4)0.048 (4)0.056 (5)0.010 (3)0.019 (4)0.014 (4)
C40.053 (4)0.043 (4)0.061 (5)0.019 (3)0.028 (4)0.017 (3)
C160.060 (5)0.046 (4)0.061 (5)0.021 (4)0.028 (4)0.017 (4)
C30.048 (4)0.043 (4)0.055 (4)0.016 (3)0.018 (3)0.016 (3)
C170.038 (4)0.042 (4)0.058 (5)0.010 (3)0.018 (3)0.014 (3)
C90.050 (4)0.058 (4)0.064 (5)0.024 (4)0.025 (4)0.020 (4)
C20.069 (5)0.048 (4)0.057 (5)0.019 (4)0.033 (4)0.018 (4)
C10.069 (5)0.047 (4)0.060 (5)0.018 (4)0.027 (4)0.008 (4)
C180.057 (5)0.047 (4)0.055 (5)0.013 (4)0.023 (4)0.013 (4)
C220.066 (5)0.068 (5)0.075 (6)0.028 (4)0.033 (4)0.027 (5)
C100.084 (6)0.050 (4)0.070 (5)0.016 (4)0.042 (5)0.024 (4)
C50.078 (5)0.057 (4)0.062 (5)0.031 (4)0.035 (4)0.022 (4)
C110.080 (5)0.059 (5)0.073 (6)0.030 (4)0.039 (5)0.024 (4)
C60.101 (6)0.062 (5)0.083 (6)0.045 (5)0.059 (5)0.026 (4)
C240.073 (5)0.054 (4)0.077 (6)0.027 (4)0.036 (4)0.027 (4)
C80.088 (6)0.078 (5)0.082 (6)0.043 (5)0.060 (5)0.042 (5)
O10.121 (7)0.111 (6)0.159 (8)0.044 (6)0.020 (6)0.009 (5)
C190.091 (6)0.058 (5)0.066 (5)0.015 (5)0.043 (5)0.006 (4)
C120.081 (6)0.063 (5)0.078 (6)0.028 (5)0.039 (5)0.025 (5)
C200.093 (7)0.078 (6)0.068 (6)0.016 (5)0.048 (5)0.009 (5)
C210.084 (6)0.072 (5)0.070 (6)0.017 (5)0.040 (5)0.028 (5)
C70.106 (7)0.080 (6)0.096 (7)0.057 (6)0.069 (6)0.035 (5)
C130.123 (9)0.109 (8)0.108 (8)0.051 (7)0.039 (7)0.052 (7)
C140.159 (11)0.105 (8)0.094 (8)0.060 (9)0.051 (8)0.051 (7)
C150.259 (18)0.093 (8)0.128 (11)0.065 (11)0.129 (12)0.048 (8)
Geometric parameters (Å, º) top
S1—C171.750 (7)C11—H11A0.9700
S1—C181.726 (7)C11—H11B0.9700
N2—C231.383 (8)C11—C121.518 (9)
N2—C171.366 (8)C6—H60.9300
N2—C241.426 (8)C6—C71.367 (10)
N1—C91.385 (8)C24—H24A0.9600
N1—C11.349 (9)C24—H24B0.9600
N1—C101.478 (8)C24—H24C0.9600
C23—C181.392 (9)C8—H80.9300
C23—C221.400 (10)C8—C71.361 (10)
C4—C31.453 (9)O1—H1A0.8500
C4—C91.427 (9)O1—H1B0.8499
C4—C51.393 (9)C19—H190.9300
C16—H160.9300C19—C201.365 (11)
C16—C31.399 (9)C12—H12A0.9700
C16—C171.375 (9)C12—H12B0.9700
C3—C21.392 (9)C12—C131.461 (11)
C9—C81.408 (10)C20—H200.9300
C2—H20.9300C20—C211.360 (11)
C2—C11.351 (9)C21—H210.9300
C1—H10.9300C7—H70.9300
C18—C191.397 (10)C13—H13A0.9700
C22—H220.9300C13—H13B0.9700
C22—C211.396 (11)C13—C141.491 (13)
C10—H10A0.9700C14—H140.9300
C10—H10B0.9700C14—C151.196 (15)
C10—C111.485 (10)C15—H15A0.9300
C5—H50.9300C15—H15B0.9300
C5—C61.360 (10)
C18—S1—C1791.7 (3)C10—C11—C12111.7 (7)
C23—N2—C24123.1 (5)H11A—C11—H11B107.9
C17—N2—C23114.8 (5)C12—C11—H11A109.3
C17—N2—C24122.1 (6)C12—C11—H11B109.3
C9—N1—C10123.0 (6)C5—C6—H6120.1
C1—N1—C9118.1 (6)C5—C6—C7119.9 (7)
C1—N1—C10118.9 (6)C7—C6—H6120.1
N2—C23—C18112.7 (6)N2—C24—H24A109.5
N2—C23—C22127.5 (6)N2—C24—H24B109.5
C18—C23—C22119.8 (7)N2—C24—H24C109.5
C9—C4—C3119.4 (6)H24A—C24—H24B109.5
C5—C4—C3125.1 (6)H24A—C24—H24C109.5
C5—C4—C9115.5 (7)H24B—C24—H24C109.5
C3—C16—H16115.1C9—C8—H8119.5
C17—C16—H16115.1C7—C8—C9121.1 (7)
C17—C16—C3129.9 (6)C7—C8—H8119.5
C16—C3—C4119.3 (6)H1A—O1—H1B109.5
C2—C3—C4115.6 (6)C18—C19—H19121.0
C2—C3—C16125.1 (7)C20—C19—C18118.1 (7)
N2—C17—S1110.0 (5)C20—C19—H19121.0
N2—C17—C16123.3 (6)C11—C12—H12A108.9
C16—C17—S1126.8 (5)C11—C12—H12B108.9
N1—C9—C4120.7 (7)H12A—C12—H12B107.7
N1—C9—C8119.7 (6)C13—C12—C11113.6 (7)
C8—C9—C4119.6 (6)C13—C12—H12A108.9
C3—C2—H2118.8C13—C12—H12B108.9
C1—C2—C3122.4 (7)C19—C20—H20118.8
C1—C2—H2118.8C21—C20—C19122.4 (8)
N1—C1—C2123.8 (7)C21—C20—H20118.8
N1—C1—H1118.1C22—C21—H21119.6
C2—C1—H1118.1C20—C21—C22120.7 (8)
C23—C18—S1110.8 (5)C20—C21—H21119.6
C23—C18—C19120.8 (7)C6—C7—H7120.0
C19—C18—S1128.3 (5)C8—C7—C6120.0 (8)
C23—C22—H22120.9C8—C7—H7120.0
C21—C22—C23118.2 (7)C12—C13—H13A108.3
C21—C22—H22120.9C12—C13—H13B108.3
N1—C10—H10A108.6C12—C13—C14116.0 (9)
N1—C10—H10B108.6H13A—C13—H13B107.4
N1—C10—C11114.8 (6)C14—C13—H13A108.3
H10A—C10—H10B107.5C14—C13—H13B108.3
C11—C10—H10A108.6C13—C14—H14114.1
C11—C10—H10B108.6C15—C14—C13131.8 (13)
C4—C5—H5118.1C15—C14—H14114.1
C6—C5—C4123.9 (7)C14—C15—H15A120.0
C6—C5—H5118.1C14—C15—H15B120.0
C10—C11—H11A109.3H15A—C15—H15B120.0
C10—C11—H11B109.3
S1—C18—C19—C20178.2 (6)C9—C4—C3—C21.0 (10)
N2—C23—C18—S11.5 (8)C9—C4—C5—C61.9 (12)
N2—C23—C18—C19178.5 (6)C9—C8—C7—C61.7 (14)
N2—C23—C22—C21179.8 (7)C1—N1—C9—C40.6 (10)
N1—C9—C8—C7178.2 (7)C1—N1—C9—C8179.7 (6)
N1—C10—C11—C12174.8 (6)C1—N1—C10—C11104.1 (8)
C23—N2—C17—S11.7 (7)C18—S1—C17—N20.7 (5)
C23—N2—C17—C16178.1 (6)C18—S1—C17—C16179.2 (6)
C23—C18—C19—C201.7 (12)C18—C23—C22—C211.0 (11)
C23—C22—C21—C201.9 (12)C18—C19—C20—C210.8 (14)
C4—C3—C2—C11.1 (11)C22—C23—C18—S1179.1 (5)
C4—C9—C8—C72.1 (12)C22—C23—C18—C190.8 (11)
C4—C5—C6—C71.6 (13)C10—N1—C9—C4178.9 (6)
C16—C3—C2—C1179.3 (7)C10—N1—C9—C80.8 (11)
C3—C4—C9—N11.2 (10)C10—N1—C1—C2176.7 (7)
C3—C4—C9—C8178.5 (7)C10—C11—C12—C13180.0 (8)
C3—C4—C5—C6178.7 (7)C5—C4—C3—C163.2 (11)
C3—C16—C17—S11.7 (11)C5—C4—C3—C2178.4 (7)
C3—C16—C17—N2178.5 (7)C5—C4—C9—N1178.2 (6)
C3—C2—C1—N13.1 (12)C5—C4—C9—C82.1 (10)
C17—S1—C18—C230.5 (6)C5—C6—C7—C81.4 (14)
C17—S1—C18—C19179.6 (7)C11—C12—C13—C14175.8 (9)
C17—N2—C23—C182.1 (8)C24—N2—C23—C18178.8 (6)
C17—N2—C23—C22178.6 (7)C24—N2—C23—C220.5 (11)
C17—C16—C3—C4178.6 (7)C24—N2—C17—S1179.2 (5)
C17—C16—C3—C20.3 (12)C24—N2—C17—C161.0 (10)
C9—N1—C1—C22.8 (11)C19—C20—C21—C221.0 (14)
C9—N1—C10—C1176.4 (9)C12—C13—C14—C153 (2)
C9—C4—C3—C16177.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···S10.932.403.128 (7)135
O1—H1A···N10.852.393.014 (10)131
O1—H1B···I10.852.713.546 (10)169
 

Acknowledgements

The authors thank Georgia Southern University and the Department of Chemistry and Biochemistry for financial support of the department X-ray facility, and Georgia Southern College of Science and Mathematics Office of Undergraduate Research for partial support, plus an NSF–MRI grant.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 2018774 to Nathaniel Shank).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRye, H. S., Yue, S., Wemmer, D. E., Quesada, M. A., Haugland, R. P., Mathies, R. A. & Glazer, A. N. (1992). Nucleic Acids Res. 20, 2803–2812.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuss, O., Motiei, L. & Margulies, D. (2021). Molecules, 26, 2828.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds