metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[bis­­(μ2-N,N-di­methyl­formamide-κ2O:O)bis­­(μ4-thio­phene-2,5-di­carboxyl­ato-κ4O:O′:O′′:O′′′)dicobalt(II)]

crossmark logo

aCollege of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, People's Republic of China
*Correspondence e-mail: yinzheng@sust.edu.cn

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 14 June 2022; accepted 1 August 2022; online 12 August 2022)

The asymmetric unit of the title three-dimensional metal–organic hybrid compound, [Co2(C6H2O4S)2(C3H7NO)2]n, comprises two cobalt(II) cations, one residing on a twofold axis and the other on a centre of inversion, one thio­phene-2,5-di­carboxyl­ate (tdc2−) ligand and one coordinating di­methyl­formamide (DMF) solvent mol­ecule. Both of the cobalt(II) cations exhibit an octa­hedral coordination environment from the four carboxyl O atoms of the tdc2− anions in a μ4-κ1:κ1:κ1:κ1 fashion and two O atoms from DMF. A pair of carboxyl O atoms and one DMF molecule connect the adjacent cobalt(II) cations into an infinite chain, leading to a rod-spacer framework with rhombus-window channels, yet no residual solvent-accessible voids are present because the coordinating DMF molecules are oriented into the potential channels.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Facing the timetable for a carbon-neutral future, electrochemical redox reactions are the cornerstones of large-scale storage and chemical conversion of renewable clean energy in the future, in which electrocatalytic water splitting plays a central role (Seh et al., 2017[Seh, Z. W., Kibsgaard, J., Dickens, C. F., Chorkendorff, I., Norskov, J. K. & Jaramillo, T. F. (2017). Science, 355, aad4998. https://doi.org/10.1126/science.aad4998.]; Cheng et al., 2022[Cheng, Y., Yin, Z., Ma, W. M., He, Z. X., Yao, X. & Lv, W. Y. (2022). Inorg. Chem. 61, 3327-3336.]). Metal–organic frameworks (MOFs), a class of crystalline and highly porous frameworks usually constructed from 3d metal ions and organic ligands (Yin et al., 2015[Yin, Z., Zhou, Y. L., Zeng, M. H. & Kurmoo, M. (2015). Dalton Trans. 44, 5258-5275.]), provide great opportunities for the preparation of new electrocatalysts for water splitting. Benefitting from outstanding designability and regulation for the composition and structure of MOFs, 3d-metal-based electrocatalysts with excellent electrocatalyst performance can be obtained from both highly stable MOFs and nanocomposites derived from the thermal or chemical reaction of the MOF precursor (Zhu et al., 2018[Zhu, B. J., Zou, R. Q. & Xu, Q. (2018). Adv. Energy Mater. 8, 1801193.]). In a previous study, we discovered alkali-induced in situ formation of amorphous NixFe1–x(OH)2 from a linear [M3(COO)6]-based MOF template for overall electrochemical water splitting (Yin et al., 2015[Yin, Z., Zhou, Y. L., Zeng, M. H. & Kurmoo, M. (2015). Dalton Trans. 44, 5258-5275.]).

In parallel work, thio­phene-2,5-di­carb­oxy­lic acid (H2tdc) and the cobalt ion were chosen to construct MOFs for potential electrochemical applications. The H2tdc ligand is a typical di-topic linker comparable to terephthalic acid that has strong coordination ability. In fact, there are 366 polymeric structure records from a total of 409 compounds constructed from H2tdc, based on a Cambridge Structural Database analysis (CSD version 5.4.1; December 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), suggesting its suitability for MOF assembly. In addition, there are carbon and sulfur elements stemming from the thia­zole ring backbone, facilitating the generation of sulfur-containing nanocomposites for electro-catalysis. On this occasion, the title compound was obtained during the synthetic exploration of new three-dimensional rod-spacer MOFs of [Co2(tdc)2(DMF)2]n in a solvothermal reaction. There have been reports about the isostructural MnII compound, yet no other metal-based MOF has been described (Tan et al., 2013[Tan, Y. X., He, Y. P., Zhang, Y., Zheng, Y. J. & Zhang, J. (2013). CrystEngComm, 15, 6009-6014.]).

The title compound (Fig. 1[link]) crystallizes in the monoclinic space group C2/c. The asymmetric unit comprises two cobalt(II) cations (one resides on a twofold axis and the second on an inversion centre), one full tdc2− ligand, and one coordinating DMF molecule Each of the cobalt(II) cations exhibits a octa­hedral coordination geometry by the four carboxyl O atoms from the tdc2− anions in a μ4-κ1:κ1:κ1:κ1 fashion and two O atoms from DMF. The calculated continuous shape measures (CShM) value for Co1 and Co2 are 0.338 and 0.240, respectively, indicating only quite a small coordination distortion from a regular octa­hedron. A pair of carboxyl and one DMF link adjacent cobalt(II) cations into infinite chains via C—H⋯O hydrogen bonds (Table 1[link], Fig. 2[link]). In particular, the DMF ligand adopts a μ2-bridging mode to link adjacent metal ions. Compared to its usual role as a terminally bound ligand, such coordination behaviour is rare but has been observed in some known MOFs (Fritzsche et al., 2019[Fritzsche, J., Ettlinger, R., Grzywa, M., Jantz, S. G., Kalytta-Mewes, A., Bunzen, H., Höppe, H. A. & Volkmer, D. (2019). Dalton Trans. 48, 15236-15246.]). As a result, a rod–spacer framework with rhombus-window channels is formed through the tdc2− linkage of neighbouring chains. However, no solvent-accessible voids were noted because the coordinating DMF molecule is oriented into the channels and fully occupies any potential void space. The compound is thermally stable up to 260°C under an N2 atmosphere by thermogravimetric analysis. Thermogravimetric analysis: the mass of the compound remains stable until 250°C, followed by an obvious mass loss of 23.7% corresponding to the loss of coordinating DMF (calculated 26.8%) in the range of 250–310°C, and then thermal decomposition of the framework with residuals of 34.3% from 400–800°C, much higher than the theoretical data for decomposition products of Co3O4 (calculated 27.7%) or CoO (calculated 26.0%), suggesting the formation of carbon- and sulfur-rich nanocomposites.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8A—H8AB⋯O4i 0.96 2.44 3.308 (6) 150
C9A—H9AA⋯O1ii 0.96 2.60 3.347 (6) 135
C9B—H9BB⋯O3iii 0.96 2.58 3.42 (4) 146
Symmetry codes: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+1, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the asymmetric unit of the title compound showing the atom labelling with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
(a) A view of the coordination environment of the Co2+ ions. Colour code: Co2+, light blue; O, red; C, grey; S, yellow; N, blue. (b) The coordination modes of the tdc2− ligand. (c) Structural view of the chain. (d) Perspective view of the three-dimensional rod–spacer framework.

Synthesis and crystallization

A solution of H2tdc (0.2 mmol, 34.4 mg) and CoCl2·6H2O (0.2 mmol, 47.6 mg) in DMF (dimethyl formamide, 15 ml) was stirred in air with a magnetic stirrer, generating a purple transparent solution after stirring for 5 min. The reaction solution was transferred to a hydro­thermal reaction vessel containing 25 ml of a polytetra­fluoro­ethyl­ene liner, followed by heating at 140°C for 48 h. The reaction vessel was cooled to room temperature at a rate of 10°C per hour. The precipitate was washed and filtered to obtain a large amount of light-purple block-shaped crystals of the title compound with a yield of about 60% (based on Co). The obtained crystals are insoluble in common organic solvents of DMF, CH3OH, C2H5OH, CH2Cl2 and acetone. IR (KBr pellets, cm−1): 3446(bm), 2943(vs), 1654(s), 1532(s), 1370(vs), 1106(s), 1010(s), 771(m), 674(w). Elemental analysis (%), calculated: C, 39.63; H, 3.33; N, 5.14; S, 11.76; found: C, 38.83; H, 3.76; N, 4.95; S, 12.02.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms C3 and C4 of the thia­zole ring and the C atoms of the coordinating DMF are disordered over two sets of sites with occupancy ratios of 0.550 (17):0.450 (17) nd 0.855 (5):0.145 (5), respectively. Disorder treatment and restraints for the displacement parameters of the thiazole ring and coordinated DMF were applied. Disorder was treated as follows: two adjacent carbon atoms C3, C4 in the thia­zole ring were split into two parts, and the C7, C8, C9 atoms in the DMF were split into two positions also, followed by SIMU restraints for these atoms and subsequent refinements, resulting in lower, acceptable R-factors and refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C6H2O4S)(C3H7NO)]
Mr 302.16
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 11.610 (2), 18.046 (4), 11.496 (2)
β (°) 102.35 (3)
V3) 2352.9 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.64
Crystal size (mm) 0.24 × 0.15 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.656, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12568, 2928, 2285
Rint 0.054
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.089, 1.10
No. of reflections 2928
No. of parameters 203
No. of restraints 90
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and DIAMOND (Brandenburg & Putz, 2019[Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg & Putz, 2019); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[bis(µ2-N,N-dimethylformamide-κ2O:O)bis(µ4-thiophene-2,5-dicarboxylato-κ4O:O':O'':O''')dicobalt(II)] top
Crystal data top
[Co(C6H2O4S)(C3H7NO)]F(000) = 1224
Mr = 302.16Dx = 1.706 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.610 (2) ÅCell parameters from 4391 reflections
b = 18.046 (4) Åθ = 3.6–27.9°
c = 11.496 (2) ŵ = 1.64 mm1
β = 102.35 (3)°T = 298 K
V = 2352.9 (9) Å3Block, clear dark violet
Z = 80.24 × 0.15 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
2285 reflections with I > 2σ(I)
ω scansRint = 0.054
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 28.3°, θmin = 2.5°
Tmin = 0.656, Tmax = 0.746h = 1515
12568 measured reflectionsk = 2024
2928 independent reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0336P)2 + 4.208P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2928 reflectionsΔρmax = 0.48 e Å3
203 parametersΔρmin = 0.43 e Å3
90 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single-crystal diffraction data were collected on a on a Bruker APEX-II CCD diffractometer (Mo-Kα, λ = 0.71073?Å), with the APEX-II software for data reduction and analysis (Bruker 2016). The dataset of a selected single-crystal of (I) were collected at 298?K. The structure was solved by direct methods and refined by full-matrix least-squares method on F2 using SHELX algorithms in Olex2 (Sheldrick 2008; Dolomanov et al., 2009). All non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were generated geometrically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00000.22585 (3)0.25000.01571 (14)
Co20.25000.25000.50000.01521 (13)
S10.28427 (7)0.49423 (4)0.30550 (7)0.0294 (2)
O10.11164 (18)0.30921 (11)0.22411 (18)0.0282 (5)
O20.24100 (19)0.34160 (11)0.39173 (18)0.0292 (5)
O30.21863 (18)0.67965 (10)0.12859 (17)0.0238 (4)
O40.38032 (18)0.64477 (11)0.26243 (18)0.0266 (5)
O50.06101 (17)0.22609 (11)0.44616 (17)0.0226 (4)
N10.0669 (3)0.2096 (2)0.5674 (3)0.0460 (8)
C10.1779 (2)0.35367 (14)0.2909 (2)0.0203 (6)
C20.1840 (3)0.42955 (16)0.2402 (3)0.0288 (7)
C3A0.1295 (10)0.4528 (5)0.1270 (9)0.035 (2)0.550 (17)
H3A0.08080.42270.07190.043*0.550 (17)
C4A0.1552 (10)0.5261 (5)0.1043 (9)0.035 (2)0.550 (17)
H4A0.12620.55000.03230.042*0.550 (17)
C3B0.1167 (12)0.5369 (7)0.1402 (12)0.039 (2)0.450 (17)
H3B0.06430.56780.09010.047*0.450 (17)
C4B0.0916 (11)0.4632 (7)0.1631 (12)0.036 (2)0.450 (17)
H4B0.02090.43960.13020.043*0.450 (17)
C50.2283 (3)0.55903 (16)0.2002 (3)0.0285 (7)
C60.2810 (3)0.63407 (15)0.1970 (2)0.0205 (6)
C7A0.0030 (3)0.2499 (2)0.5112 (3)0.0309 (9)0.855 (5)
H7A0.00580.30100.52080.037*0.855 (5)
C8A0.0681 (5)0.1296 (3)0.5558 (5)0.0716 (17)0.855 (5)
H8AA0.11930.10880.60260.107*0.855 (5)
H8AB0.09620.11640.47370.107*0.855 (5)
H8AC0.01030.11070.58320.107*0.855 (5)
C9A0.1409 (5)0.2434 (4)0.6420 (5)0.0772 (19)0.855 (5)
H9AA0.18100.20520.67580.116*0.855 (5)
H9AB0.09220.27140.70470.116*0.855 (5)
H9AC0.19780.27560.59410.116*0.855 (5)
C7B0.008 (2)0.1836 (16)0.497 (2)0.044 (4)0.145 (5)
H7B0.01830.13280.48960.052*0.145 (5)
C9B0.078 (3)0.291 (2)0.591 (3)0.072 (5)0.145 (5)
H9BA0.13400.29770.64130.107*0.145 (5)
H9BB0.00300.31010.63080.107*0.145 (5)
H9BC0.10510.31650.51750.107*0.145 (5)
C8B0.118 (3)0.154 (2)0.628 (3)0.085 (6)0.145 (5)
H8BA0.16820.17610.67430.128*0.145 (5)
H8BB0.16310.12020.57120.128*0.145 (5)
H8BC0.05620.12650.68020.128*0.145 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0156 (3)0.0107 (3)0.0203 (3)0.0000.0029 (2)0.000
Co20.0192 (3)0.0098 (2)0.0164 (2)0.0001 (2)0.0033 (2)0.00102 (18)
S10.0331 (4)0.0171 (4)0.0303 (4)0.0084 (3)0.0102 (3)0.0082 (3)
O10.0318 (12)0.0204 (11)0.0297 (11)0.0118 (9)0.0004 (9)0.0050 (8)
O20.0403 (13)0.0151 (10)0.0280 (11)0.0063 (9)0.0020 (9)0.0069 (8)
O30.0254 (11)0.0196 (10)0.0264 (11)0.0019 (8)0.0054 (8)0.0103 (8)
O40.0244 (11)0.0188 (10)0.0335 (11)0.0082 (8)0.0009 (9)0.0075 (8)
O50.0178 (10)0.0317 (11)0.0190 (10)0.0012 (8)0.0058 (8)0.0002 (8)
N10.0297 (17)0.083 (3)0.0280 (15)0.0124 (16)0.0124 (13)0.0028 (15)
C10.0183 (14)0.0161 (14)0.0270 (15)0.0037 (11)0.0059 (11)0.0044 (11)
C20.0253 (16)0.0224 (16)0.0339 (17)0.0110 (12)0.0048 (13)0.0080 (12)
C3A0.038 (5)0.025 (3)0.035 (4)0.013 (3)0.012 (3)0.008 (3)
C4A0.040 (5)0.027 (3)0.032 (4)0.011 (3)0.010 (3)0.016 (3)
C3B0.035 (5)0.030 (4)0.043 (5)0.009 (4)0.013 (4)0.018 (4)
C4B0.030 (5)0.029 (4)0.042 (5)0.016 (4)0.010 (4)0.019 (4)
C50.0317 (17)0.0171 (15)0.0309 (16)0.0076 (12)0.0062 (13)0.0114 (11)
C60.0252 (16)0.0175 (14)0.0196 (13)0.0041 (11)0.0068 (11)0.0037 (10)
C7A0.0246 (19)0.042 (2)0.0250 (18)0.0002 (16)0.0036 (14)0.0021 (15)
C8A0.084 (4)0.080 (4)0.054 (3)0.026 (3)0.022 (3)0.011 (3)
C9A0.046 (3)0.145 (6)0.051 (3)0.002 (3)0.033 (3)0.004 (3)
C7B0.040 (8)0.055 (8)0.029 (7)0.009 (8)0.009 (7)0.007 (7)
C9B0.064 (10)0.102 (10)0.046 (9)0.004 (10)0.006 (9)0.001 (9)
C8B0.077 (11)0.122 (12)0.061 (11)0.021 (11)0.027 (10)0.004 (11)
Geometric parameters (Å, º) top
Co1—O1i2.0485 (19)N1—C8B1.43 (4)
Co1—O12.0484 (19)C1—C21.496 (4)
Co1—O4ii2.0438 (19)C2—C3A1.385 (9)
Co1—O4iii2.0437 (19)C2—C4B1.378 (11)
Co1—O5i2.215 (2)C3A—H3A0.9300
Co1—O52.215 (2)C3A—C4A1.392 (11)
Co2—O22.0585 (19)C4A—H4A0.9300
Co2—O2iv2.0585 (19)C4A—C51.375 (9)
Co2—O3ii2.0397 (18)C3B—H3B0.9300
Co2—O3v2.0396 (18)C3B—C4B1.399 (13)
Co2—O5iv2.192 (2)C3B—C51.390 (12)
Co2—O52.192 (2)C4B—H4B0.9300
S1—C21.705 (3)C5—C61.489 (4)
S1—C51.709 (3)C7A—H7A0.9300
O1—C11.254 (3)C8A—H8AA0.9600
O2—C11.251 (3)C8A—H8AB0.9600
O3—Co2vi2.0396 (18)C8A—H8AC0.9600
O3—C61.255 (3)C9A—H9AA0.9600
O4—Co1vii2.0438 (19)C9A—H9AB0.9600
O4—C61.250 (3)C9A—H9AC0.9600
O5—C7A1.239 (4)C7B—H7B0.9300
O5—C7B1.21 (3)C9B—H9BA0.9700
N1—C7A1.305 (5)C9B—H9BB0.9600
N1—C8A1.449 (6)C9B—H9BC0.9600
N1—C9A1.469 (6)C8B—H8BA0.9600
N1—C7B1.39 (3)C8B—H8BB0.9600
N1—C9B1.50 (4)C8B—H8BC0.9700
O1—Co1—O1i85.50 (13)C4B—C2—S1110.2 (5)
O1i—Co1—O5i94.13 (8)C4B—C2—C1123.9 (5)
O1—Co1—O594.13 (8)C2—C3A—H3A123.5
O1—Co1—O5i85.71 (8)C2—C3A—C4A113.1 (6)
O1i—Co1—O585.71 (8)C4A—C3A—H3A123.5
O4ii—Co1—O1i175.30 (8)C3A—C4A—H4A123.8
O4iii—Co1—O1i93.14 (9)C5—C4A—C3A112.4 (6)
O4ii—Co1—O193.14 (9)C5—C4A—H4A123.8
O4iii—Co1—O1175.30 (8)C4B—C3B—H3B123.5
O4iii—Co1—O4ii88.56 (12)C5—C3B—H3B123.5
O4ii—Co1—O5i90.25 (8)C5—C3B—C4B112.9 (8)
O4iii—Co1—O5i89.91 (8)C2—C4B—C3B112.0 (8)
O4iii—Co1—O590.25 (8)C2—C4B—H4B124.0
O4ii—Co1—O589.91 (8)C3B—C4B—H4B124.0
O5i—Co1—O5179.78 (11)C4A—C5—S1110.4 (4)
O2iv—Co2—O2180.00 (9)C4A—C5—C6124.1 (4)
O2iv—Co2—O586.04 (8)C3B—C5—S1109.1 (5)
O2—Co2—O5iv86.04 (8)C3B—C5—C6126.4 (5)
O2iv—Co2—O5iv93.96 (8)C6—C5—S1122.9 (2)
O2—Co2—O593.96 (8)O3—C6—C5115.2 (2)
O3v—Co2—O286.82 (8)O4—C6—O3127.6 (3)
O3ii—Co2—O2iv86.83 (8)O4—C6—C5117.2 (2)
O3ii—Co2—O293.17 (8)O5—C7A—N1125.7 (4)
O3v—Co2—O2iv93.18 (8)O5—C7A—H7A117.1
O3v—Co2—O3ii180.0N1—C7A—H7A117.1
O3ii—Co2—O5iv90.24 (8)N1—C8A—H8AA109.5
O3v—Co2—O5iv89.76 (8)N1—C8A—H8AB109.5
O3ii—Co2—O589.76 (8)N1—C8A—H8AC109.5
O3v—Co2—O590.24 (8)H8AA—C8A—H8AB109.5
O5iv—Co2—O5180.0H8AA—C8A—H8AC109.5
C2—S1—C592.08 (15)H8AB—C8A—H8AC109.5
C1—O1—Co1134.86 (19)N1—C9A—H9AA109.5
C1—O2—Co2130.09 (18)N1—C9A—H9AB109.5
C6—O3—Co2vi133.92 (19)N1—C9A—H9AC109.5
C6—O4—Co1vii128.48 (18)H9AA—C9A—H9AB109.5
Co2—O5—Co1111.77 (9)H9AA—C9A—H9AC109.5
C7A—O5—Co1120.9 (2)H9AB—C9A—H9AC109.5
C7A—O5—Co2117.1 (2)O5—C7B—N1121 (2)
C7B—O5—Co1114.2 (11)O5—C7B—H7B119.6
C7B—O5—Co2124.6 (11)N1—C7B—H7B119.6
C7A—N1—C8A120.3 (4)N1—C9B—H9BA109.5
C7A—N1—C9A121.5 (4)N1—C9B—H9BB109.5
C8A—N1—C9A118.1 (4)N1—C9B—H9BC109.5
C7B—N1—C9B121.7 (18)H9BA—C9B—H9BB109.5
C7B—N1—C8B115 (2)H9BA—C9B—H9BC109.5
C8B—N1—C9B123 (2)H9BB—C9B—H9BC109.5
O1—C1—C2114.9 (2)N1—C8B—H8BA109.5
O2—C1—O1128.1 (2)N1—C8B—H8BB109.5
O2—C1—C2116.9 (2)N1—C8B—H8BC109.5
C1—C2—S1122.7 (2)H8BA—C8B—H8BB109.5
C3A—C2—S1109.7 (4)H8BA—C8B—H8BC109.5
C3A—C2—C1126.4 (4)H8BB—C8B—H8BC109.5
Co1—O1—C1—O238.9 (5)C1—C2—C3A—C4A177.8 (5)
Co1—O1—C1—C2143.4 (2)C1—C2—C4B—C3B173.3 (6)
Co1vii—O4—C6—O320.0 (5)C2—S1—C5—C4A14.2 (6)
Co1vii—O4—C6—C5160.7 (2)C2—S1—C5—C3B16.9 (8)
Co1—O5—C7A—N199.3 (4)C2—S1—C5—C6176.5 (3)
Co1—O5—C7B—N1110.7 (16)C2—C3A—C4A—C50.6 (10)
Co2—O2—C1—O18.1 (5)C3A—C4A—C5—S110.9 (9)
Co2—O2—C1—C2174.2 (2)C3A—C4A—C5—C6173.0 (5)
Co2vi—O3—C6—O449.8 (4)C4A—C5—C6—O332.4 (8)
Co2vi—O3—C6—C5130.8 (2)C4A—C5—C6—O4148.1 (7)
Co2—O5—C7A—N1118.5 (4)C3B—C5—C6—O33.5 (10)
Co2—O5—C7B—N1105.9 (18)C3B—C5—C6—O4176.0 (9)
S1—C2—C3A—C4A10.0 (9)C4B—C3B—C5—S112.7 (11)
S1—C2—C4B—C3B12.8 (10)C4B—C3B—C5—C6178.7 (6)
S1—C5—C6—O3167.7 (2)C5—S1—C2—C1177.9 (3)
S1—C5—C6—O411.8 (4)C5—S1—C2—C3A13.7 (6)
O1—C1—C2—S1170.0 (2)C5—S1—C2—C4B17.2 (8)
O1—C1—C2—C3A3.6 (8)C5—C3B—C4B—C20.0 (12)
O1—C1—C2—C4B31.9 (9)C8A—N1—C7A—O50.7 (6)
O2—C1—C2—S18.0 (4)C9A—N1—C7A—O5179.5 (4)
O2—C1—C2—C3A174.4 (7)C9B—N1—C7B—O55 (3)
O2—C1—C2—C4B150.1 (9)C8B—N1—C7B—O5176 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8AB···O4iii0.962.443.308 (6)150
C9A—H9AA···O1viii0.962.603.347 (6)135
C9B—H9BB···O3v0.962.583.42 (4)146
Symmetry codes: (iii) x1/2, y1/2, z; (v) x, y+1, z+1/2; (viii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Shaanxi University of Science and Technology for supporting this work.

Funding information

Funding for this research was provided by: the College Students' Innovation and Entrepreneurship Training Program at Shaanxi University of Science and Technology (No. S202110708108) and the Key Research and Development Program of Shaanxi (No. 2022GY-180).

References

First citationBrandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, Y., Yin, Z., Ma, W. M., He, Z. X., Yao, X. & Lv, W. Y. (2022). Inorg. Chem. 61, 3327–3336.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFritzsche, J., Ettlinger, R., Grzywa, M., Jantz, S. G., Kalytta-Mewes, A., Bunzen, H., Höppe, H. A. & Volkmer, D. (2019). Dalton Trans. 48, 15236–15246.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSeh, Z. W., Kibsgaard, J., Dickens, C. F., Chorkendorff, I., Norskov, J. K. & Jaramillo, T. F. (2017). Science, 355, aad4998. https://doi.org/10.1126/science.aad4998.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, Y. X., He, Y. P., Zhang, Y., Zheng, Y. J. & Zhang, J. (2013). CrystEngComm, 15, 6009–6014.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, Z., Zhou, Y. L., Zeng, M. H. & Kurmoo, M. (2015). Dalton Trans. 44, 5258–5275.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhu, B. J., Zou, R. Q. & Xu, Q. (2018). Adv. Energy Mater. 8, 1801193.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds