organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4,4′-Methyl­enebis[N-(2-hy­dr­oxy-3-meth­­oxy­benzyl­­idene)-2,6-diiso­propyl­aniline]

crossmark logo

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
*Correspondence e-mail: rmv@chem.iitb.ac.in

Edited by R. J. Butcher, Howard University, USA (Received 20 May 2022; accepted 5 August 2022; online 26 August 2022)

In the V-shaped title Schiff base, C41H50N2O4, the planes of the benzene rings of the central di­phenyl­methane unit make a dihedral angle of 70.40 (5)°, whereas the planes of the neighbouring benzene and ortho-vanilin rings are twisted with respect to one another by dihedral angles of 75.76 (5) and 73.89 (6)°. The Schiff base displays intra­molecular O—H⋯N hydrogen bonds and weak inter­molecular C—H⋯O contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Bis-bidentate Schiff ligands have been widely used as building blocks in metallo-supra­molecular chemistry (Xu et al., 2015[Xu, L., Zhu, L.-C., Ma, J.-C., Zhang, Y., Zhang, J. & Dong, W.-K. (2015). Z. Anorg. Allg. Chem. 641, 2520-2524.]; Chu & Huang, 2007[Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15-22.]; Birkedal & Pattison, 2006[Birkedal, H. & Pattison, P. (2006). Acta Cryst. C62, o139-o141.]). Additionally, these compounds have been employed as thermosetting resins (Lin et al., 2008[Lin, C. H., Chang, S. L., Hsieh, C. W. & Lee, H. H. (2008). Polymer, 49, 1220-1229.]). We are inter­ested in such ligands because of their diverse applications in coordination chemistry and their single mol­ecular magnetic and luminescent properties (Cucos et al., 2014[Cucos, P., Tuna, F., Sorace, L., Matei, I., Maxim, C., Shova, S., Gheorghe, R., Caneschi, A., Hillebrand, M. & Andruh, M. (2014). Inorg. Chem. 53, 7738-7747.]; Habib et al., 2012[Habib, F., Long, J., Lin, P.-H., Korobkov, I., Ungur, L., Wernsdorfer, W., Chibotaru, L. F. & Murugesu, M. (2012). Chem. Sci. 3, 2158-2164.]; Taneda et al., 2004[Taneda, M., Amimoto, K., Koyama, H. & Kawato, T. (2004). Org. Biomol. Chem. 2, 499-504.], 2009[Taneda, M., Koyama, H. & Kawato, T. (2009). Res. Chem. Intermed. 35, 643-650.]; Novitchi et al., 2008[Novitchi, G., Costes, J.-P., Tuchagues, J.-P., Vendier, L. & Wernsdorfer, W. (2008). New J. Chem. 32, 197-200.]). As part of our ongoing studies in this area, we describe here the synthesis and characterization of the title ortho-vanillin-based bis-bidentate Schiff base. The reaction of 4,4′–methyl­ene-bis­(2,6–diiso­propyl­anilne) with o-vanillin led to the formation of 4,4′-methyl­enebis[N-(2-hy­droxy-3-meth­oxy­benzyl­idene)-2,6-diiso­propyl­aniline] (Fig. 1[link]).

[Figure 1]
Figure 1
Reaction scheme.

The asymmetric unit of the title mol­ecule contains one mol­ecule (Fig. 2[link]). The dihedral angle between the planes of the benzene rings bonded to the central methyl­ene group is 70.4 (5)°. The phenyl and o-vanillin rings are nearly perpendicular to one another, with dihedral angles of 75.76 (5)° and 73.89 (6)°. The N1—C26 and N2—C34 bond lengths [1.281 (2) and 1.278 (2) Å] support the double-bond nature of the C—N bonds. The mol­ecule exhibits an imine E configuration with C1—N1—C26—C27 and C11—N2—C34—C35 torsion angles of 179.37 (16) and 177.85 (15)°, respectively. In the mol­ecule, atoms N1 and N2 of the imine moieties serve as hydrogen-bond acceptors, with adjacent phenol groups forming an intra­molecular O—H⋯N hydrogen bond. The closest inter­molecular contact is C41—H41B⋯O2 (at x, y, 1 + z), resulting in zigzag chain formation (Table 1[link]). Fig. 3[link] depicts the packing of the title compound.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N2 0.87 (2) 1.79 (2) 2.5912 (17) 153 (2)
O1—H1⋯N1 0.87 (2) 1.80 (2) 2.5991 (19) 153 (2)
C41—H41B⋯O2i 0.98 2.49 3.452 (3) 168
Symmetry code: (i) x, y, z+1.
[Figure 2]
Figure 2
The mol­ecular crystal structure of compound 1. Ellipsoids represent the 50% probability level. C-bonded H atoms are omitted.
[Figure 3]
Figure 3
Crystal packing of compound 1 viewed down the a axis.

Synthesis and crystallization

4,4′–Methyl­ene-bis­(2,6–diiso­propyl­anilne) (1 g, 2.72 mmol) and o-vanilin (0.870 g, 5.72 mmol) were dissolved in methanol (40 ml) and heated under reflux overnight, resulting in a yellow solution that was filtered and crystallized by slow evaporation at room temperature. The crystals were filtered and washed with cold methanol and dried under reduced pressure (985 mg, 56% yield, m.p. 143°C). Analysis calculated for (%) C41H50N2O4: C, 77.57; H, 7.94; N, 4.41. Found: C, 76.99; H, 7.96; N, 4.18. FT–IR (KBr pellet) 3447 cm−1 [m, ν (O—H)], 2959 cm−1 [s, ν (Ar—H)], 1621 cm−1 [s, ν (C=N)]. 1H NMR (CDCl3, 500 MHz) δ p.p.m. 1.15 (d, 12H), 3.0 (m, 2H, CHMe2), 4.0 (s, 3H, OMe), 4.01 (s, 2H, CH2), 6.89–6.97 (m, 3H), 7.03 (s, 2H), 8.30 (s, 1H, CH=N), 13.62 (br, 1H, OH). 13C NMR (CDCl3, 125 MHz) δ p.p.m. 23.7, 28.3, 41.8, 56.3, 114.7, 118.7, 123.7, 138.2, 144, 148.7, 151.6, 167.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C41H50N2O4
Mr 634.83
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 6.0155 (1), 16.5935 (3), 19.2093 (3)
α, β, γ (°) 101.541 (2), 97.341 (2), 92.928 (2)
V3) 1857.47 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.45 × 0.14 × 0.10
 
Data collection
Diffractometer Rigaku Saturn 724+
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku, OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.701, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14358, 6528, 5207
Rint 0.020
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.03
No. of reflections 6528
No. of parameters 440
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.17
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku, OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2015 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2017); cell refinement: CrysAlis PRO (Rigaku OD, 2017); data reduction: CrysAlis PRO (Rigaku OD, 2017); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2015 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

4,4'-Methylenebis[N-(2-hydroxy-3-methoxybenzylidene)-2,6-diisopropylaniline] top
Crystal data top
C41H50N2O4Z = 2
Mr = 634.83F(000) = 684
Triclinic, P1Dx = 1.135 Mg m3
a = 6.0155 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 16.5935 (3) ÅCell parameters from 9193 reflections
c = 19.2093 (3) Åθ = 2.3–31.1°
α = 101.541 (2)°µ = 0.07 mm1
β = 97.341 (2)°T = 150 K
γ = 92.928 (2)°Needle, yellow
V = 1857.47 (6) Å30.45 × 0.14 × 0.1 mm
Data collection top
Rigaku Saturn 724+
diffractometer
6528 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
h = 77
Tmin = 0.701, Tmax = 1.000k = 1915
14358 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.623P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6528 reflectionsΔρmax = 0.36 e Å3
440 parametersΔρmin = 0.17 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O31.0025 (2)0.74747 (8)0.94420 (6)0.0440 (3)
H30.951 (3)0.7684 (12)0.9080 (9)0.053*
O10.7058 (2)0.60969 (8)0.22598 (7)0.0516 (4)
H10.681 (4)0.6413 (12)0.2656 (9)0.062*
N20.7464 (2)0.82044 (8)0.86122 (7)0.0331 (3)
O41.0694 (3)0.68864 (8)1.06103 (7)0.0578 (4)
N10.5193 (3)0.67089 (8)0.33770 (7)0.0382 (3)
O20.6886 (3)0.49933 (10)0.10588 (8)0.0728 (5)
C110.6910 (3)0.84537 (10)0.79454 (8)0.0319 (4)
C10.5145 (3)0.73131 (10)0.40200 (8)0.0359 (4)
C400.8509 (3)0.76246 (9)0.99044 (8)0.0354 (4)
C120.8185 (3)0.91305 (10)0.78247 (9)0.0365 (4)
C100.5268 (3)0.79864 (10)0.74104 (8)0.0355 (4)
C340.6145 (3)0.83185 (10)0.90880 (8)0.0371 (4)
H340.4816090.8588800.8997910.044*
C60.6688 (3)0.72676 (10)0.46248 (8)0.0373 (4)
C350.6612 (3)0.80476 (10)0.97640 (8)0.0368 (4)
C390.8850 (3)0.73198 (10)1.05412 (9)0.0419 (4)
C20.3717 (3)0.79565 (10)0.40243 (9)0.0389 (4)
C260.3601 (3)0.61353 (10)0.31618 (9)0.0406 (4)
H260.2405490.6115750.3438120.049*
C200.4027 (3)0.72003 (11)0.74959 (9)0.0415 (4)
H200.4659580.7080750.7968570.050*
C270.3567 (3)0.55148 (10)0.25099 (9)0.0437 (5)
C170.8142 (3)0.65446 (11)0.46037 (9)0.0429 (4)
H170.8505170.6384450.4103260.052*
C130.7696 (3)0.93566 (10)0.71661 (9)0.0443 (5)
H130.8540350.9814420.7074780.053*
C90.4843 (3)0.82531 (11)0.67685 (9)0.0440 (4)
H90.3706110.7956360.6405630.053*
C320.5288 (3)0.55181 (10)0.20858 (9)0.0450 (5)
C50.6753 (3)0.78841 (11)0.52375 (9)0.0445 (5)
H50.7785310.7864890.5650460.053*
C80.6012 (4)0.89338 (10)0.66378 (9)0.0479 (5)
C140.2141 (3)0.80248 (11)0.33507 (9)0.0455 (5)
H140.1566260.7451870.3095720.055*
C231.0007 (3)0.96050 (11)0.84052 (10)0.0430 (4)
H231.0608840.9205710.8694810.052*
C40.5351 (4)0.85284 (10)0.52639 (9)0.0484 (5)
C380.7348 (4)0.74707 (12)1.10290 (10)0.0541 (5)
H380.7576540.7267111.1459020.065*
C30.3853 (4)0.85535 (11)0.46560 (9)0.0461 (5)
H3A0.2891540.8991460.4671170.055*
C220.4396 (3)0.64662 (11)0.69073 (10)0.0492 (5)
H22A0.3756980.6561810.6438080.074*
H22B0.3655930.5961540.6991710.074*
H22C0.6011060.6406090.6916090.074*
C250.9011 (4)1.02789 (12)0.89148 (11)0.0559 (5)
H25A0.8376311.0677680.8646710.084*
H25B1.0194781.0561750.9296680.084*
H25C0.7823461.0028390.9126770.084*
C150.3467 (4)0.83974 (13)0.28492 (9)0.0506 (5)
H15A0.4149130.8945360.3097150.076*
H15B0.2453400.8445960.2420360.076*
H15C0.4651460.8040040.2708280.076*
C360.5113 (4)0.81944 (14)1.02708 (10)0.0561 (5)
H360.3825890.8486221.0179360.067*
C191.0370 (3)0.67380 (14)0.51052 (11)0.0572 (5)
H19A1.1159650.7232190.5018780.086*
H19B1.1300500.6270700.5014140.086*
H19C1.0080320.6835390.5604620.086*
C180.6850 (4)0.57976 (12)0.47611 (12)0.0582 (5)
H18A0.6495140.5928900.5253200.087*
H18B0.7775770.5325860.4706930.087*
H18C0.5452380.5659740.4424070.087*
C310.5186 (4)0.49171 (12)0.14498 (10)0.0564 (6)
C300.3394 (5)0.43240 (13)0.12604 (12)0.0692 (7)
H300.3331600.3911430.0835430.083*
C160.0106 (4)0.85078 (14)0.35006 (12)0.0578 (5)
H16A0.0684390.8278350.3841440.087*
H16B0.0910970.8467690.3051680.087*
H16C0.0604410.9088070.3705160.087*
C241.1994 (4)0.99674 (13)0.81108 (13)0.0617 (6)
H24A1.2566110.9531850.7771100.093*
H24B1.3190351.0198000.8507730.093*
H24C1.1498221.0404280.7865030.093*
C411.1111 (5)0.65391 (13)1.12360 (10)0.0706 (7)
H41A1.2489750.6249541.1221680.106*
H41B0.9843250.6149301.1247530.106*
H41C1.1286260.6981071.1666700.106*
C370.5509 (4)0.79164 (15)1.08980 (11)0.0638 (6)
H370.4513950.8030201.1245490.077*
C280.1750 (4)0.49100 (12)0.22983 (12)0.0594 (6)
H280.0569290.4909000.2582650.071*
C290.1685 (5)0.43223 (13)0.16819 (14)0.0733 (7)
H290.0462510.3911430.1542170.088*
C70.5468 (5)0.92094 (12)0.59319 (10)0.0707 (7)
H7A0.6625090.9645980.5909160.085*
H7B0.4004840.9457050.5926210.085*
C210.1526 (4)0.73049 (15)0.75052 (13)0.0664 (6)
H21A0.1326400.7738930.7915640.100*
H21B0.0761160.6784390.7546580.100*
H21C0.0884050.7458730.7059520.100*
C330.6978 (6)0.43475 (17)0.04340 (12)0.0931 (10)
H33A0.5629630.4331930.0084930.140*
H33B0.7050750.3814520.0578660.140*
H33C0.8316930.4459240.0215860.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0572 (8)0.0496 (7)0.0265 (6)0.0123 (6)0.0014 (6)0.0118 (5)
O10.0671 (9)0.0487 (8)0.0317 (7)0.0023 (7)0.0012 (6)0.0034 (6)
N20.0405 (8)0.0335 (7)0.0220 (7)0.0002 (6)0.0033 (6)0.0037 (5)
O40.0913 (11)0.0533 (8)0.0309 (7)0.0170 (8)0.0017 (7)0.0175 (6)
N10.0505 (9)0.0356 (8)0.0252 (7)0.0078 (7)0.0046 (6)0.0073 (6)
O20.1026 (13)0.0644 (10)0.0392 (8)0.0231 (9)0.0028 (9)0.0140 (7)
C110.0403 (10)0.0314 (8)0.0231 (8)0.0068 (7)0.0005 (7)0.0048 (6)
C10.0474 (10)0.0339 (9)0.0238 (8)0.0136 (8)0.0004 (7)0.0074 (7)
C400.0528 (11)0.0272 (8)0.0206 (8)0.0070 (7)0.0016 (7)0.0014 (6)
C120.0456 (10)0.0312 (8)0.0308 (9)0.0059 (7)0.0013 (8)0.0039 (7)
C100.0440 (10)0.0347 (9)0.0253 (8)0.0049 (7)0.0012 (7)0.0035 (7)
C340.0405 (10)0.0394 (9)0.0271 (8)0.0012 (8)0.0028 (8)0.0021 (7)
C60.0467 (10)0.0373 (9)0.0269 (8)0.0122 (8)0.0015 (7)0.0123 (7)
C350.0463 (10)0.0367 (9)0.0227 (8)0.0068 (8)0.0007 (7)0.0010 (7)
C390.0659 (13)0.0292 (9)0.0247 (8)0.0065 (8)0.0062 (8)0.0023 (7)
C20.0539 (11)0.0337 (9)0.0279 (9)0.0103 (8)0.0018 (8)0.0118 (7)
C260.0509 (11)0.0346 (9)0.0340 (9)0.0047 (8)0.0066 (8)0.0120 (7)
C200.0504 (11)0.0399 (10)0.0304 (9)0.0043 (8)0.0043 (8)0.0068 (7)
C270.0602 (12)0.0292 (9)0.0358 (9)0.0024 (8)0.0153 (9)0.0084 (7)
C170.0464 (11)0.0505 (11)0.0301 (9)0.0055 (8)0.0015 (8)0.0109 (8)
C130.0710 (13)0.0282 (9)0.0331 (9)0.0016 (8)0.0050 (9)0.0069 (7)
C90.0633 (12)0.0355 (9)0.0264 (9)0.0033 (8)0.0115 (8)0.0015 (7)
C320.0642 (13)0.0312 (9)0.0330 (9)0.0043 (9)0.0162 (9)0.0055 (7)
C50.0675 (13)0.0390 (10)0.0237 (8)0.0121 (9)0.0084 (8)0.0124 (7)
C80.0873 (15)0.0297 (9)0.0239 (9)0.0063 (9)0.0018 (9)0.0045 (7)
C140.0637 (13)0.0357 (9)0.0329 (9)0.0065 (9)0.0103 (9)0.0108 (7)
C230.0467 (11)0.0372 (9)0.0414 (10)0.0026 (8)0.0061 (8)0.0086 (8)
C40.0871 (15)0.0305 (9)0.0255 (9)0.0078 (9)0.0034 (9)0.0113 (7)
C380.0837 (16)0.0504 (11)0.0261 (9)0.0100 (11)0.0034 (10)0.0096 (8)
C30.0752 (14)0.0320 (9)0.0307 (9)0.0014 (9)0.0002 (9)0.0118 (7)
C220.0581 (12)0.0363 (10)0.0476 (11)0.0005 (9)0.0047 (9)0.0046 (8)
C250.0630 (14)0.0471 (11)0.0463 (11)0.0044 (10)0.0065 (10)0.0063 (9)
C150.0654 (13)0.0596 (12)0.0289 (9)0.0106 (10)0.0017 (9)0.0161 (8)
C360.0599 (13)0.0714 (14)0.0363 (10)0.0052 (11)0.0093 (10)0.0082 (10)
C190.0514 (12)0.0735 (14)0.0452 (11)0.0060 (10)0.0057 (9)0.0193 (10)
C180.0619 (14)0.0443 (11)0.0690 (14)0.0009 (10)0.0026 (11)0.0222 (10)
C310.0854 (16)0.0401 (11)0.0355 (10)0.0170 (11)0.0143 (11)0.0001 (8)
C300.108 (2)0.0358 (11)0.0472 (12)0.0088 (12)0.0302 (14)0.0061 (9)
C160.0529 (13)0.0660 (13)0.0571 (13)0.0065 (10)0.0005 (10)0.0264 (11)
C240.0530 (13)0.0530 (12)0.0765 (15)0.0077 (10)0.0031 (11)0.0139 (11)
C410.129 (2)0.0532 (12)0.0291 (10)0.0189 (13)0.0073 (12)0.0165 (9)
C370.0763 (16)0.0821 (16)0.0348 (11)0.0007 (13)0.0162 (11)0.0128 (10)
C280.0726 (15)0.0379 (10)0.0572 (13)0.0126 (10)0.0186 (11)0.0069 (9)
C290.097 (2)0.0386 (12)0.0668 (15)0.0155 (12)0.0330 (15)0.0029 (11)
C70.144 (2)0.0361 (10)0.0273 (10)0.0050 (12)0.0084 (12)0.0081 (8)
C210.0582 (14)0.0677 (14)0.0706 (15)0.0051 (11)0.0169 (12)0.0056 (12)
C330.141 (3)0.0810 (18)0.0415 (13)0.0436 (18)0.0069 (15)0.0201 (12)
Geometric parameters (Å, º) top
O3—H30.867 (15)C14—C161.524 (3)
O3—C401.351 (2)C23—H231.0000
O1—H10.867 (15)C23—C251.532 (3)
O1—C321.358 (2)C23—C241.532 (3)
N2—C111.4283 (19)C4—C31.390 (3)
N2—C341.278 (2)C4—C71.522 (2)
O4—C391.359 (2)C38—H380.9500
O4—C411.433 (2)C38—C371.386 (3)
N1—C11.431 (2)C3—H3A0.9500
N1—C261.281 (2)C22—H22A0.9800
O2—C311.359 (3)C22—H22B0.9800
O2—C331.449 (2)C22—H22C0.9800
C11—C121.402 (2)C25—H25A0.9800
C11—C101.406 (2)C25—H25B0.9800
C1—C61.408 (2)C25—H25C0.9800
C1—C21.404 (3)C15—H15A0.9800
C40—C351.395 (3)C15—H15B0.9800
C40—C391.410 (2)C15—H15C0.9800
C12—C131.391 (2)C36—H360.9500
C12—C231.521 (2)C36—C371.372 (3)
C10—C201.518 (2)C19—H19A0.9800
C10—C91.390 (2)C19—H19B0.9800
C34—H340.9500C19—H19C0.9800
C34—C351.456 (2)C18—H18A0.9800
C6—C171.517 (3)C18—H18B0.9800
C6—C51.391 (2)C18—H18C0.9800
C35—C361.405 (3)C31—C301.382 (3)
C39—C381.379 (3)C30—H300.9500
C2—C141.530 (2)C30—C291.388 (4)
C2—C31.395 (2)C16—H16A0.9800
C26—H260.9500C16—H16B0.9800
C26—C271.450 (2)C16—H16C0.9800
C20—H201.0000C24—H24A0.9800
C20—C221.534 (2)C24—H24B0.9800
C20—C211.525 (3)C24—H24C0.9800
C27—C321.397 (3)C41—H41A0.9800
C27—C281.406 (3)C41—H41B0.9800
C17—H171.0000C41—H41C0.9800
C17—C191.527 (3)C37—H370.9500
C17—C181.531 (3)C28—H280.9500
C13—H130.9500C28—C291.370 (3)
C13—C81.388 (3)C29—H290.9500
C9—H90.9500C7—H7A0.9900
C9—C81.382 (3)C7—H7B0.9900
C32—C311.406 (3)C21—H21A0.9800
C5—H50.9500C21—H21B0.9800
C5—C41.392 (3)C21—H21C0.9800
C8—C71.518 (2)C33—H33A0.9800
C14—H141.0000C33—H33B0.9800
C14—C151.527 (3)C33—H33C0.9800
C40—O3—H3105.0 (13)C2—C3—H3A118.9
C32—O1—H1104.8 (15)C4—C3—C2122.13 (18)
C34—N2—C11120.48 (14)C4—C3—H3A118.9
C39—O4—C41117.77 (17)C20—C22—H22A109.5
C26—N1—C1120.19 (15)C20—C22—H22B109.5
C31—O2—C33117.5 (2)C20—C22—H22C109.5
C12—C11—N2117.70 (14)H22A—C22—H22B109.5
C12—C11—C10121.75 (14)H22A—C22—H22C109.5
C10—C11—N2120.32 (14)H22B—C22—H22C109.5
C6—C1—N1117.43 (16)C23—C25—H25A109.5
C2—C1—N1120.55 (15)C23—C25—H25B109.5
C2—C1—C6121.87 (15)C23—C25—H25C109.5
O3—C40—C35122.38 (14)H25A—C25—H25B109.5
O3—C40—C39118.06 (16)H25A—C25—H25C109.5
C35—C40—C39119.54 (16)H25B—C25—H25C109.5
C11—C12—C23120.51 (15)C14—C15—H15A109.5
C13—C12—C11117.75 (16)C14—C15—H15B109.5
C13—C12—C23121.73 (16)C14—C15—H15C109.5
C11—C10—C20123.08 (14)H15A—C15—H15B109.5
C9—C10—C11117.40 (16)H15A—C15—H15C109.5
C9—C10—C20119.48 (15)H15B—C15—H15C109.5
N2—C34—H34118.9C35—C36—H36120.0
N2—C34—C35122.13 (16)C37—C36—C35120.0 (2)
C35—C34—H34118.9C37—C36—H36120.0
C1—C6—C17120.00 (15)C17—C19—H19A109.5
C5—C6—C1117.76 (16)C17—C19—H19B109.5
C5—C6—C17122.20 (15)C17—C19—H19C109.5
C40—C35—C34120.49 (15)H19A—C19—H19B109.5
C40—C35—C36119.71 (16)H19A—C19—H19C109.5
C36—C35—C34119.78 (17)H19B—C19—H19C109.5
O4—C39—C40114.75 (16)C17—C18—H18A109.5
O4—C39—C38125.72 (16)C17—C18—H18B109.5
C38—C39—C40119.53 (18)C17—C18—H18C109.5
C1—C2—C14121.32 (15)H18A—C18—H18B109.5
C3—C2—C1117.64 (16)H18A—C18—H18C109.5
C3—C2—C14120.98 (16)H18B—C18—H18C109.5
N1—C26—H26118.9O2—C31—C32115.3 (2)
N1—C26—C27122.13 (18)O2—C31—C30125.46 (19)
C27—C26—H26118.9C30—C31—C32119.3 (2)
C10—C20—H20107.8C31—C30—H30119.5
C10—C20—C22111.11 (15)C31—C30—C29121.0 (2)
C10—C20—C21111.23 (16)C29—C30—H30119.5
C22—C20—H20107.8C14—C16—H16A109.5
C21—C20—H20107.8C14—C16—H16B109.5
C21—C20—C22110.92 (16)C14—C16—H16C109.5
C32—C27—C26121.01 (16)H16A—C16—H16B109.5
C32—C27—C28119.76 (18)H16A—C16—H16C109.5
C28—C27—C26119.21 (19)H16B—C16—H16C109.5
C6—C17—H17107.3C23—C24—H24A109.5
C6—C17—C19114.19 (16)C23—C24—H24B109.5
C6—C17—C18110.88 (15)C23—C24—H24C109.5
C19—C17—H17107.3H24A—C24—H24B109.5
C19—C17—C18109.68 (16)H24A—C24—H24C109.5
C18—C17—H17107.3H24B—C24—H24C109.5
C12—C13—H13119.0O4—C41—H41A109.5
C8—C13—C12122.04 (17)O4—C41—H41B109.5
C8—C13—H13119.0O4—C41—H41C109.5
C10—C9—H9118.8H41A—C41—H41B109.5
C8—C9—C10122.50 (17)H41A—C41—H41C109.5
C8—C9—H9118.8H41B—C41—H41C109.5
O1—C32—C27122.06 (16)C38—C37—H37119.7
O1—C32—C31118.3 (2)C36—C37—C38120.5 (2)
C27—C32—C31119.67 (19)C36—C37—H37119.7
C6—C5—H5119.0C27—C28—H28120.0
C6—C5—C4122.02 (16)C29—C28—C27120.0 (2)
C4—C5—H5119.0C29—C28—H28120.0
C13—C8—C7120.93 (18)C30—C29—H29119.8
C9—C8—C13118.42 (16)C28—C29—C30120.4 (2)
C9—C8—C7120.65 (18)C28—C29—H29119.8
C2—C14—H14107.4C8—C7—C4114.93 (15)
C15—C14—C2109.56 (16)C8—C7—H7A108.5
C15—C14—H14107.4C8—C7—H7B108.5
C16—C14—C2114.26 (16)C4—C7—H7A108.5
C16—C14—H14107.4C4—C7—H7B108.5
C16—C14—C15110.48 (15)H7A—C7—H7B107.5
C12—C23—H23107.2C20—C21—H21A109.5
C12—C23—C25110.64 (15)C20—C21—H21B109.5
C12—C23—C24113.66 (16)C20—C21—H21C109.5
C25—C23—H23107.2H21A—C21—H21B109.5
C24—C23—H23107.2H21A—C21—H21C109.5
C24—C23—C25110.75 (16)H21B—C21—H21C109.5
C5—C4—C7121.60 (17)O2—C33—H33A109.5
C3—C4—C5118.58 (16)O2—C33—H33B109.5
C3—C4—C7119.80 (18)O2—C33—H33C109.5
C39—C38—H38119.7H33A—C33—H33B109.5
C39—C38—C37120.64 (18)H33A—C33—H33C109.5
C37—C38—H38119.7H33B—C33—H33C109.5
O3—C40—C35—C342.5 (2)C6—C1—C2—C14176.57 (15)
O3—C40—C35—C36179.12 (16)C6—C1—C2—C30.7 (2)
O3—C40—C39—O41.1 (2)C6—C5—C4—C30.3 (3)
O3—C40—C39—C38179.22 (16)C6—C5—C4—C7178.75 (18)
O1—C32—C31—O21.5 (2)C35—C40—C39—O4177.23 (15)
O1—C32—C31—C30179.72 (17)C35—C40—C39—C382.4 (2)
N2—C11—C12—C13177.89 (15)C35—C36—C37—C381.8 (3)
N2—C11—C12—C233.2 (2)C39—C40—C35—C34175.79 (15)
N2—C11—C10—C200.9 (2)C39—C40—C35—C362.6 (3)
N2—C11—C10—C9178.65 (15)C39—C38—C37—C361.9 (3)
N2—C34—C35—C402.1 (3)C2—C1—C6—C17177.89 (15)
N2—C34—C35—C36179.51 (17)C2—C1—C6—C50.3 (2)
O4—C39—C38—C37179.43 (19)C26—N1—C1—C6108.15 (19)
N1—C1—C6—C176.6 (2)C26—N1—C1—C276.2 (2)
N1—C1—C6—C5175.87 (15)C26—C27—C32—O10.1 (3)
N1—C1—C2—C141.2 (2)C26—C27—C32—C31178.83 (16)
N1—C1—C2—C3176.08 (15)C26—C27—C28—C29179.62 (18)
N1—C26—C27—C320.0 (3)C20—C10—C9—C8175.86 (17)
N1—C26—C27—C28178.98 (17)C27—C32—C31—O2177.26 (16)
O2—C31—C30—C29177.0 (2)C27—C32—C31—C301.0 (3)
C11—N2—C34—C35177.84 (15)C27—C28—C29—C300.6 (3)
C11—C12—C13—C80.1 (3)C17—C6—C5—C4177.33 (17)
C11—C12—C23—C2586.5 (2)C13—C12—C23—C2592.4 (2)
C11—C12—C23—C24148.19 (17)C13—C12—C23—C2433.0 (2)
C11—C10—C20—C22121.14 (18)C13—C8—C7—C4130.3 (2)
C11—C10—C20—C21114.75 (19)C9—C10—C20—C2256.6 (2)
C11—C10—C9—C82.0 (3)C9—C10—C20—C2167.5 (2)
C1—N1—C26—C27179.37 (15)C9—C8—C7—C449.5 (3)
C1—C6—C17—C19153.14 (16)C32—C27—C28—C290.6 (3)
C1—C6—C17—C1882.3 (2)C32—C31—C30—C291.1 (3)
C1—C6—C5—C40.2 (3)C5—C6—C17—C1929.4 (2)
C1—C2—C14—C1579.1 (2)C5—C6—C17—C1895.1 (2)
C1—C2—C14—C16156.29 (16)C5—C4—C3—C20.1 (3)
C1—C2—C3—C40.5 (3)C5—C4—C7—C834.7 (3)
C40—C35—C36—C370.5 (3)C14—C2—C3—C4176.71 (17)
C40—C39—C38—C370.2 (3)C23—C12—C13—C8179.00 (17)
C12—C11—C10—C20173.55 (15)C3—C2—C14—C1598.0 (2)
C12—C11—C10—C94.2 (2)C3—C2—C14—C1626.6 (2)
C12—C13—C8—C92.0 (3)C3—C4—C7—C8146.9 (2)
C12—C13—C8—C7178.19 (19)C31—C30—C29—C280.3 (3)
C10—C11—C12—C133.3 (2)C41—O4—C39—C40178.36 (16)
C10—C11—C12—C23177.79 (15)C41—O4—C39—C381.3 (3)
C10—C9—C8—C131.0 (3)C28—C27—C32—O1178.83 (16)
C10—C9—C8—C7179.16 (19)C28—C27—C32—C310.1 (3)
C34—N2—C11—C12109.56 (18)C7—C4—C3—C2178.41 (19)
C34—N2—C11—C1075.8 (2)C33—O2—C31—C32174.40 (18)
C34—C35—C36—C37177.86 (19)C33—O2—C31—C307.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N20.87 (2)1.79 (2)2.5912 (17)153 (2)
O1—H1···N10.87 (2)1.80 (2)2.5991 (19)153 (2)
C41—H41B···O2i0.982.493.452 (3)168
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

TP acknowledges IIT Bombay and SERB SUPRA for a research fellowship. The authors thank the central facilities at IIT Bombay for various characterization data.

Funding information

Funding for this research was provided by: Science and Engineering Research Board (award No. SB/S2/JCB-85/2014 & 2020).

References

First citationBirkedal, H. & Pattison, P. (2006). Acta Cryst. C62, o139–o141.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationCucos, P., Tuna, F., Sorace, L., Matei, I., Maxim, C., Shova, S., Gheorghe, R., Caneschi, A., Hillebrand, M. & Andruh, M. (2014). Inorg. Chem. 53, 7738–7747.  CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHabib, F., Long, J., Lin, P.-H., Korobkov, I., Ungur, L., Wernsdorfer, W., Chibotaru, L. F. & Murugesu, M. (2012). Chem. Sci. 3, 2158–2164.  CSD CrossRef CAS Google Scholar
First citationLin, C. H., Chang, S. L., Hsieh, C. W. & Lee, H. H. (2008). Polymer, 49, 1220–1229.  Web of Science CrossRef CAS Google Scholar
First citationNovitchi, G., Costes, J.-P., Tuchagues, J.-P., Vendier, L. & Wernsdorfer, W. (2008). New J. Chem. 32, 197–200.  CSD CrossRef CAS Google Scholar
First citationRigaku, OD (2017). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaneda, M., Amimoto, K., Koyama, H. & Kawato, T. (2004). Org. Biomol. Chem. 2, 499–504.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTaneda, M., Koyama, H. & Kawato, T. (2009). Res. Chem. Intermed. 35, 643–650.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, L., Zhu, L.-C., Ma, J.-C., Zhang, Y., Zhang, J. & Dong, W.-K. (2015). Z. Anorg. Allg. Chem. 641, 2520–2524.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds